• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Experimental and numerical investigation of mid-infrared laser in Pr3+-doped chalcogenidefiber?

    2019-02-25 07:22:50HuaChen陳華KeLunXia夏克倫ZiJunLiu劉自軍XunSiWang王訓(xùn)四XiangHuaZhang章向華YinShengXu許銀生andShiXunDai戴世勛
    Chinese Physics B 2019年2期
    關(guān)鍵詞:陳華

    Hua Chen(陳華),Ke-Lun Xia(夏克倫),Zi-Jun Liu(劉自軍),?,Xun-Si Wang(王訓(xùn)四),Xiang-Hua Zhang(章向華),Yin-Sheng Xu(許銀生) and Shi-Xun Dai(戴世勛)

    1 Laboratory of Infrared Materials and Devices,Advanced Technology Research Institute,Ningbo University,Ningbo 315211,China

    2 Key Laboratory of Photoelectric Detection Materials and Devices of Zhejiang Province,Ningbo 315211,China

    3 Laboratory of Glasses and Ceramics,UMR CNRS 6226,University of Rennes 1,Rennes Cedex 135042,France

    Keywords:mid-infrared fiber laser,chalcogenide glass fiber,rare earth doped glass fiber,laser modelling

    1.Introduction

    The broadband optical transmission of chalcogenide glasses in the infrared range offers a wide range of potential applications,such as biological and chemical sensing,nonlinear optics,or optical fibers.[1-5]Notably,selenium-based glasses transmit in the second(3μm-5μm)and third(8μm-12μm)atmospheric windows.Moreover,selenium glasses,as potential mid-IR laser media,have low phonon energy values and high refractive index values,which result in low probability of de-excitation due to multiphonon relaxation and high absorption/emission cross-section.[6-9]Since 1982,when Reisfeld first reported the spectral characteristics of Er3+-,Nd3+-,and Ho3+-doped Ga-La-S and Al-La-S glasses,many scholars have conducted research on the infrared emission of rare earth-doped chalcogenide glasses.[10]In the near-infrared case,some progress in fiber amplifiers and lasers has been made,including the Nd:1.08-μm continuous fiber laser output and the fiber optic amplification and the optical fiber ampli fication of Pr3+ions 1.34μm with a maximum internal gain of 6.8 dB at a pump power of 180 mW.[11,12]However,reports on the mid-infrared cases are mainly concentrated on the fluorescence of glasses and fibers.Studies at home and abroad have shown that although rare earth-doped chalcogenidefibers are the best gain medium for mid-infrared fiber lasers,many problems still remain unsolved,which limits their development and applications.The main problems that stop this technology include the difficulty in manufacturing high-purity rare earth-doped chalcogenidefibers and the self-terminating effect,which makes achieving population inversion difficult.

    The Ge-As-Ga-Se(GAGS)glass system has a low tendency to crystallize,high mechanical properties,and high solubility for rare-earth ions.Shiryaev et al.[13]provided a new vapor phase transport approach to purify and add the batch of metallic gallium into the silica glass reactor for the GAGS glass synthesis.The content of residual impurities of Se-H can be reduced to 0.023 cm-1.Among the rare-earth dopants,praseodymium is among best to exploit the generation of radiation with 3μm-5μm wavelength.However,the upperenergy level of Pr3+ion has a long lifetime,which results in a selfterminating effect and makes achieving population inversion difficult.The cascade lasing scheme is an effective solution to depopulate the(3F2,3H6)levels and significantly improve the 4.89-μm laser output power.[3,6,14]

    In this work,the cascade lasing approach was used to enhance efficiency and was numerically investigated.To obtain realistic results,the Ge10As24Ga4Se62-Pr0.1mol%(GAGSPr0.1mol%)glasses and fibers were prepared and measured for further calculation and analysis.The emission spectra of the fiber and glass under 2.0-μm laser excitation were then compared.The modeling parameters were directly extracted from the FTIR absorption measurements of the fabricated bulk glass samples using J-O theory and McCumber theory.[15-17]For the proposed laser structures,a numerical model of the threelevel fiber laser was developed with the Pr3+doping concentration of 0.1 mol%(4.5×1025ions/m3),and the dependence of laser performance on fiber length,pump power,doping concentration,and fiber losses were calculated.Moreover,the effect of the idler laser on the in fluence of the signal laser power wasdiscussed.Finally,to maximize the outputpower,the fiber laser structural parameters were optimized by using a particle swarm optimization(PSO)algorithm.

    2.Numerical model

    Figure 1 illustrates the fiber laser cavity composed of two suitable fiber Bragg gratings(FBGs)mirrors.In this model,fiber gratings trapped the idler light at~3.7μm to promote lasing at~4.89μm.The reflectivity of the input FBG2/1 for the idler R1and signal wavelength R3are all 0.95.The output reflectivity was 0.05 for the signal R4and 0.95 for the idler wavelength R2.

    Fig.1.Schematic illustration of the Pr3+-doped chalcogenidefiber laser cavity.

    Figure 2 illustrates the Pr3+ion leveldiagram by pumping at the wavelength of 2.04μm.Relevant transitions between the three lowest levels of Pr3+are spontaneous transitions and stimulated emission and absorption transitions between each pair of levels.The rare earth behavior can be modelled as a three-level laser system.

    Fig.2.Three-level model of praseodymium.The most important phenomena are represented(absorption and emission).

    Pump light at 2.04μm is coupled into the Pr3+chalcogenide glass fiber,where it promotes Pr3+ions to the(3F2,3H6)(level 3).Moreover,the3F2level will be transferred to the3H6level through non-radiative transitions quickly due to the multi-phonon relaxation,so that the3F2and3H6levels can be considered as one level.[18]Transition from this level to the3H5(level 2)occurs and is accompanied by fluorescence between 3.3μm and 4.5μm.Lasing at a wavelength within this range is obtained using two fiber Bragg gratings(FBG1)tuned to 3.7μm.Fluorescence from level 2 to the ground state3H4(level 1)occurs between 3.8μm and 5.7μm,and simultaneous lasing at a wavelength within this range is obtained using two additional fiber Bragg gratings(FBG2)tuned to 4.89μm.

    In steady state,the rate equations can be represented in the following matrix,which forms a set of three algebraic equations:

    The coefficients in the equations are as follows:C11=where τ3and τ2are the lifetime of levels 3 and 2,respectively,β32is the branching ratio of transition of levels 3 to 2,Niwith i=1,2,3 are the steady-state ion populations of the i-th Pr3+energy level.[19]

    The stimulated rates for the pump,signal,and idler are given by

    where x=p represents the pump,s represents the signal,and i represents the idler;Γxis the confinement factor;σijis the absorption or emission cross-section for the ij transition;and Pxdenotes the propagating signal and pump powers,respectively.A is the doping cross-section area,h is Planck’s constant,and c is the speed of light in free space.

    The laser power propagation equations are as follows:

    P(z)=P+(z)+P-(z)is the optical mode power(superscript‘+’represents the forward propagating beam and superscript‘-’represents the backward propagating beam).The coupled equations(1)-(3)were solved self-consistently using the coupled solution method.

    3.Experiment and calculation

    Fig.3.Absorption spectrum(a)and mid-infrared emission spectral(b)of the 0.1-mol%Pr3+:GAGS glass and fiber.

    Figure 3(a)shows the absorption spectra of 0.1-mol%Pr3+:Ge10As24Ga4Se62glasses. The absorption band at 2.94μm is assigned to O-H impurity vibrational absorption.The absorption band observed at 4.5μm is attributed to the ground state electronic absorption band3H5→3H4and also encompasses Se-H extrinsic impurity vibrational absorption.In the actual calculation,this should be reasonably deducted.Figure 3(b)shows the photoluminescence intensity of the 0.1-mol%Pr3+for bulk and fiber sample together to compare their band shapes.The fiber sample exhibits a greater proportion of its observed emission intensity at wavelengths>4800 nm compared with the bulk sample.This method is expected due to the longer path length of the fiber sample.For emission in the fiber,the shorter wavelength emission overlaps with the absorption from the ground state(3H5→3H4).Therefore,the shorterwavelength emission is self-absorbed and then re-emitted at longer wavelengths.The emission spectra were measured for the calculation of emission cross-sections.

    Table 1.Probable radiative electron transitions in Pr3+ions with corresponding wavelengths,spontaneous emission probabilities,A,branching rations β ,and the radiative lifetime τ.

    The J-O theory can quantitatively calculate the luminous intensity of rare earth ions in a certain precision.The number of spectral absorption bands that have been used in the J-O computations for Pr3+contains six peaks(Fig.3(a))centered at 1022,1478,1584,2039,2345,and 4890 nm.[20,21]To minimize the error,the measured FTIR spectra were corrected by extracting the baseline,each represented by atleast 50 selected points.This procedure yielded nine sets of J-O parameters.

    Table 2.Parameters used for simulations of Pr3+-doped chalcogenidefiber lasers.

    Radiative transition probabilities(A),branching ratios(β),and radiative lifetime(τ)of the excited states of Pr3+were calculated based on the J-O theory and are summarized in Table 1.Based on these data,the absorption cross sections for each wavelength were calculated,and the emission crosssections were determined from the measured emission spectra(Fig.3(b))and from the spontaneous radiative transition probabilities,A,by using the Füchtbaure-Ladenburg relation,which are all shown in Table 2.

    In this modeling,considering the feasibility of the laser’s design,the Pr3+concentration 4.5×1025ions/m3was selected. The GAGS fiber doped with 4.5×1025ions/m3of Pr3+allows to achieve a favorable compromise for easy implementation of fiber drawing,optical attenuation,and fluorescence.[22]The minimum background losses of the GAGS-Pr glass fibers are about 1 dB/m at 2μm and 4μm and 3 dB/m at 4.89μm.To avoid a deleterious nonlinear effect,the maximum pump power is set to 5 W.

    4.Results and discussions

    Figure 4 shows the optical signal power Ps(L)of the Pr3+-doped fiber laser versus fiber length L for different pump wavelengths.The dopant concentration NPr=4.5×1025ions/m3and mirror reflectivity(R3=0.95,R4=0.05)were fixed.Based on the experimental data,Pr3+has strong absorption bands at 1.55μm and 2.04μm,and the absorption cross-sections are 1.5×10-24m2and 2.32×10-24m2,respectively.In this study,the detailed calculation of the four-level mode forthe 1.55-μm pump was notexhibited.To improve the accuracy of the simulation,the fiber loss values are varied according to the wavelength.The results plotted for a fiber with a background loss of pump and idler wavelengths are 1 dB/m,and the signal wavelength is 3 dB/m.The energy efficiency is higher,and the optimal fiber length is shorter when pumped by 2.04μm.This result arises because the absorption crosssection at 2.04μm is larger than that at 1.55μm.Therefore,in a shorter fiber length,the power of the pump light is absorbed almost completely.In the future,we will further study the difference between the two pump lasers.

    Figure 5(a)shows the dependence of output power on the cavity length for different levels of fiber background loss.The maximum output signal power was 1.41 W for 1.28 m cavity length,with fiberloss of1 dB/m.For fiberloss fixed at3 dB/m,the maximum output signal power was reduced to 1.07 W for a fiber length of 0.97 m.A rapid decrease of the output power and the optimal fiber length Lmaxwas observed with the increase of fiber background loss.A bigger fiber background loss leads to faster pump power depletion and a reduced signal power and short optimal fiber length.To make a more comprehensive analysis of the proposed fiber laser,the in fluence of background loss on laser performance was investigated.Background loss is a limiting factor that hampers the possibility of achieving mid-IR laser action from selenide-doped fibers.Selenide glass possesses high optical absorption loss at wavelengthsaround 4.5μm due to Se-Hglassimpurities.However,the loss in this spectral region has recently been proven to be reduced to 1.6 dB/m in the host glass by using sophisticated glass purification techniques.[23]The calculated output power as a function of fiber background loss is presented in Fig.5(b).The mirror reflectivity(R3=0.95,R4=0.05)was fixed.The output power decreases from 1.33 W to 0.26 W as fiber loss increased from 1 dB/m to 9 dB/m.Output power above 300 mW is expected for a fiber loss<6 dB/m.Therefore,to obtain efficient laser operation,the fiber loss should be reduced below 6 dB/m.

    Fig.4.Calculated signal laser power(λs=4.89 μm)as a function of fiber length for different pump wavelengths.

    Figure 6(a)shows the optical signal power Ps(L)of the Pr3+-doped fiber laser versus length L for different levels of dopant concentration NPr.In the actual fiber laser design,to get a higher output power,a reasonable fiber length is dependent on the doping concentration.As the doping concentration increases,the optimum fiber length will be shorter,and the maximum output power will be higher.Figure 6(b)shows the optical signal power Ps(L)of the Pr3+-doped fiber laser versus dopant concentration NPrfor different input pump powers.The mirrors reflectivity(R3=0.95,R4=0.05)were fixed.From Fig.6(b),we can see that when the doping concentration of rare earth ions exceeds 4.5×1025ions/m3,the power enhancement is slow due to the limitation of the pump power.Furthermore,the increase in doping concentration causes the homopolar interaction to increase.Because of the concentration quenching in the emission glasses,we chose 4.5×1025ions/m3as the optimal concentration.

    Fig.5.Optical signal power P s of the Pr3+-doped fiber laser versus the fiber length L for different levels of fiber background loss(a).The signal output power as a function of input pump power for different fiber background losses(b).

    Fig.6.Optical signal power P s of the Pr3+-doped fiber laser versus fiber length L for different levels of dopant concentration(a).Optical signal power P s(L)of the Pr3+-doped fiber laser versus input pump power for different dopant concentrations(b).

    Figure 7(a)shows the optical signal power Ps(L)of the Pr3+-doped fiber laser versus output mirror reflectivity R4for different pump powers.The results are plotted for a fiber laser with a background loss of 1 dB/m at 2.04μm and 3.7μm and 3 dB/m at 4.89μm.Decreasing the output mirror reflectivity leads to increase in signal output power.The results presented in Fig.7(a)show that the highest output power can be achieved for an output mirror reflectivity of 0.05 at 4.89μm.Figure 7(b)shows the optical signal power Ps(L)of the Pr3+-doped fiber laser versus fiber length for the idler.Figure 7(a)shows that with the increase of R4,the output signal power monotonically decreased.According to Fig.7(b),the existence of idler can effectively improve the signal output power.This result is because the idler laser promotes the de-excitation of the level(3F2,3H6)faster.Furthermore,such structure promotes the reabsorption of the idler light and improves the cross-relaxation transition probability between(3F2,3H6)→3H5,and3H4→3H5in the Pr3+that can effectively enhance the signal power and energy efficiency.[24]This method will reduce the threshold and improve energy conversion efficiency.Therefore,in the actual research,we should consider reducing R4and increasing R2to increase the laser output power.

    Fig.7.Optical signal power P s(L)of the Pr3+-doped fiber laser versus output mirror reflectivity R4 for different pump powers(a).Calculated laser power as a function of fiber length(b).Two cases are considered:without idler and with idler.

    The output power of a fiber laser is affected by many parameters that improve the flexibility of the laser design while making the optimization of the laser output power difficult to accomplish by simple trial and error.In fact,the power of the laser is nonlinearly related to the output mirror reflectivity,fiber length,and dopant concentration.To overcome this problem,the Particle Swarm Optimization(PSO)[25,26]approach is employed to globally optimize the optical source.PSO is a computational method that optimizes a problem by iteratively trying to improve a candidate solution with regard to a given measure of quality,which is a relatively recent heuristic inspired by the choreography of a bird flock.This solves the problem by having a population of candidate solutions,here dubbed particles,and moving these particles around in the search-space according to simple mathematical formulae over the particle’s position and velocity.Each particle’s movement is in fluenced by its local best known position and is also guided toward the best known positions in the search-space,which are updated as better positions are found by other particles.This is expected to move the swarm toward the best solutions.

    Figure 8(a)shows the effects of fiber length and laser output mirror reflectivity on the output of the laser.The input pump power is Pp(0)=5 W,the dopant concentration is NPr=4.50×1025ions/m3,and the mirrors reflectivity is R1=R2=R3=95%.It allows a quick identification of the best fiber laser configuration via a three-dimensional plot.

    Fig.8.Output power of the Pr3+-doped fiber laser versus laser cavity length L and output mirror reflectivity R4(a).Global best fitness value versus iteration(b).

    Figure 8(b)illustrates PSO fitness function(signal output power)versus the iteration number.After iteration for about 10 times,the maximum output power is obtained.The parameters used for optimization are the laser cavity length,output signal reflectivity R4,and dopant concentration NPr.The input pump power is Pp(0)=5 W,and the mirror reflectivity is R1=R2=R3=95%.The laser output reached 1.28 W,and the energy efficiency can reach 25%with background loss of 3 dB/m.The optimal parameters calculated by the particle swarm method are L=0.94 m,R4=0.02,and NPr=4.22×1025ions/m3.These results indicate that chalcogenide glass fiber doped with praseodymium is a good candidate for constructing an efficient fiber laser working in the mid-IR wavelength range.

    5.Conclusions

    In this paper,a GAGS glass fiber doped with Pr3+has been prepared and studied.We have systematically investigated the dependences of pump wavelengths,cascade structure,and fiber features,and also output mirror reflectivity on the laser’s performance.We have demonstrated that threelevel fiber lasing is feasible in Pr3+-doped GAGS glass fiber.We observed strong mid-IR emission in the range of 3.5μm-5.2μm and a lifetime of 14.24 ms for the3H5→3H4transition.These numerical simulations suggest that the proposed cascade lasing scheme will result in a highly efficient laser compared with a traditional single laser wavelength scheme.The output power function is optimized by the particle swarm optimization algorithm to obtain the maximum output power.Our simulations show that an output signal power of 1.28 W and energy efficiency of 25%at 4.89-μm wavelength can be achieved with Pp(0)=5 W,R1=R2=R3=95%,L=0.94 m,R4=0.02,NPr=4.22×1025ions/m3,with fiber loss at 3 dB/m.

    猜你喜歡
    陳華
    陳華莎、楊艷作品
    廳級(jí)“村官”愧疚成河:母親啊來生再伴您身旁
    水質(zhì)控制與節(jié)水一體化裝置在大榭石化的應(yīng)用
    陳華
    唱吧CEO陳華:你敢行動(dòng),成功就給你機(jī)會(huì)
    哲思(2017年11期)2018-01-23 18:27:56
    Retrieval of high-order susceptibilities of nonlinear metamaterials?
    沒有一只鳥死在覓食的路上
    北方人(2016年19期)2016-10-18 08:53:42
    沒有一只鳥死在覓食的路上
    北方人(2016年10期)2016-05-30 15:07:31
    廣東省人大常委會(huì)原副秘書長(zhǎng)陳華一被“雙開”
    沒有一只鳥會(huì)死在尋食的路上
    国产一卡二卡三卡精品| 99久久精品国产亚洲精品| 一级片'在线观看视频| 夫妻午夜视频| 搡老熟女国产l中国老女人| 国产亚洲一区二区精品| 人妻 亚洲 视频| 免费观看人在逋| 亚洲一卡2卡3卡4卡5卡精品中文| 久久99热这里只频精品6学生| 亚洲精品一卡2卡三卡4卡5卡| 天天躁夜夜躁狠狠躁躁| 五月开心婷婷网| 大香蕉久久成人网| 菩萨蛮人人尽说江南好唐韦庄| 国产高清videossex| 欧美 亚洲 国产 日韩一| 国产在线一区二区三区精| 欧美日本中文国产一区发布| 国产福利在线免费观看视频| 国产精品久久电影中文字幕 | 亚洲一区中文字幕在线| av在线播放免费不卡| 久久中文字幕人妻熟女| 久久久精品国产亚洲av高清涩受| 欧美日韩国产mv在线观看视频| 国产精品久久久久久精品电影小说| 欧美精品高潮呻吟av久久| 老司机影院毛片| 亚洲一卡2卡3卡4卡5卡精品中文| 丝袜美足系列| 在线观看人妻少妇| 亚洲av日韩在线播放| 最新在线观看一区二区三区| 又黄又粗又硬又大视频| 18禁观看日本| 露出奶头的视频| 99热国产这里只有精品6| 黄色成人免费大全| 国产精品免费一区二区三区在线 | 最近最新免费中文字幕在线| 国产一区二区 视频在线| 日韩一区二区三区影片| 欧美+亚洲+日韩+国产| 建设人人有责人人尽责人人享有的| 欧美乱码精品一区二区三区| 日韩一卡2卡3卡4卡2021年| 欧美日韩视频精品一区| 久久亚洲真实| 国产一区二区在线观看av| 丁香六月欧美| 丰满饥渴人妻一区二区三| 1024香蕉在线观看| tocl精华| 美女福利国产在线| 男人舔女人的私密视频| 香蕉丝袜av| 成人国产av品久久久| 久久久水蜜桃国产精品网| 后天国语完整版免费观看| 50天的宝宝边吃奶边哭怎么回事| 建设人人有责人人尽责人人享有的| 久久天堂一区二区三区四区| 麻豆国产av国片精品| 日本av手机在线免费观看| 精品国产超薄肉色丝袜足j| 久久天堂一区二区三区四区| 99香蕉大伊视频| 国产av国产精品国产| 在线亚洲精品国产二区图片欧美| 国产欧美亚洲国产| 欧美日韩一级在线毛片| 亚洲精品av麻豆狂野| 成人av一区二区三区在线看| 老司机影院毛片| e午夜精品久久久久久久| 91九色精品人成在线观看| 日本五十路高清| 国产精品自产拍在线观看55亚洲 | 无限看片的www在线观看| 丁香六月天网| 99国产精品一区二区蜜桃av | 777久久人妻少妇嫩草av网站| 国产精品香港三级国产av潘金莲| 欧美日韩成人在线一区二区| 中文字幕av电影在线播放| 中文字幕制服av| 国产一区二区激情短视频| 女警被强在线播放| 亚洲专区字幕在线| 在线永久观看黄色视频| 99精品久久久久人妻精品| 国产av国产精品国产| 大型黄色视频在线免费观看| 狠狠狠狠99中文字幕| 高清av免费在线| 国产精品99久久99久久久不卡| 日韩欧美一区二区三区在线观看 | 精品一区二区三区四区五区乱码| 在线十欧美十亚洲十日本专区| 美女午夜性视频免费| 99国产精品一区二区蜜桃av | 国产日韩欧美视频二区| 国产精品一区二区在线观看99| 菩萨蛮人人尽说江南好唐韦庄| 一本综合久久免费| av在线播放免费不卡| 午夜福利在线观看吧| 丰满迷人的少妇在线观看| 久久久久久免费高清国产稀缺| 天堂动漫精品| 桃花免费在线播放| 日韩中文字幕欧美一区二区| 国产一区二区三区在线臀色熟女 | 亚洲人成电影免费在线| 丝袜美足系列| 国产精品久久久人人做人人爽| 高清毛片免费观看视频网站 | bbb黄色大片| av电影中文网址| 日韩视频在线欧美| 一区在线观看完整版| 国产免费视频播放在线视频| 欧美av亚洲av综合av国产av| 亚洲av国产av综合av卡| 亚洲情色 制服丝袜| 久久久久久久大尺度免费视频| 久久久国产精品麻豆| 桃花免费在线播放| 亚洲中文字幕日韩| 黄色视频,在线免费观看| 国产成人欧美在线观看 | av欧美777| 免费看十八禁软件| 一区二区三区国产精品乱码| 国产又色又爽无遮挡免费看| 精品福利永久在线观看| 亚洲 欧美一区二区三区| 亚洲 国产 在线| 19禁男女啪啪无遮挡网站| 亚洲人成伊人成综合网2020| 777久久人妻少妇嫩草av网站| 免费在线观看完整版高清| 男人操女人黄网站| 欧美人与性动交α欧美软件| 黄片小视频在线播放| 欧美成狂野欧美在线观看| 黄片播放在线免费| 亚洲国产毛片av蜜桃av| 久久性视频一级片| 一本综合久久免费| 国产精品免费一区二区三区在线 | 精品午夜福利视频在线观看一区 | 亚洲欧美一区二区三区黑人| 国产一区二区 视频在线| 亚洲全国av大片| 黄频高清免费视频| 青青草视频在线视频观看| 伊人久久大香线蕉亚洲五| 香蕉丝袜av| 国产精品欧美亚洲77777| 久久婷婷成人综合色麻豆| 国产一区二区三区在线臀色熟女 | 操美女的视频在线观看| 黑人巨大精品欧美一区二区mp4| 午夜福利,免费看| 精品熟女少妇八av免费久了| 岛国在线观看网站| 国产一区二区激情短视频| 日韩大片免费观看网站| 久久久久久免费高清国产稀缺| 午夜福利在线免费观看网站| 男女高潮啪啪啪动态图| 男人舔女人的私密视频| 中国美女看黄片| 看免费av毛片| 精品国产一区二区三区四区第35| 国产熟女午夜一区二区三区| 国产老妇伦熟女老妇高清| 亚洲精品一二三| 欧美日韩一级在线毛片| 不卡av一区二区三区| 精品一品国产午夜福利视频| 最近最新中文字幕大全免费视频| 久久久精品国产亚洲av高清涩受| 精品少妇久久久久久888优播| 亚洲精品一卡2卡三卡4卡5卡| 国产真人三级小视频在线观看| 久久久水蜜桃国产精品网| 老鸭窝网址在线观看| 亚洲第一欧美日韩一区二区三区 | 在线亚洲精品国产二区图片欧美| 一夜夜www| 成人18禁高潮啪啪吃奶动态图| 亚洲全国av大片| 69av精品久久久久久 | 国产男女超爽视频在线观看| av天堂久久9| 99久久人妻综合| 精品福利永久在线观看| 在线观看舔阴道视频| 80岁老熟妇乱子伦牲交| 色婷婷av一区二区三区视频| 一区二区三区激情视频| 国产福利在线免费观看视频| 精品少妇内射三级| 精品乱码久久久久久99久播| 亚洲精品乱久久久久久| 成人av一区二区三区在线看| 午夜福利在线观看吧| 丝袜美足系列| 天堂动漫精品| 亚洲精品国产色婷婷电影| 999久久久国产精品视频| 男女免费视频国产| 亚洲av成人一区二区三| 99精品欧美一区二区三区四区| 精品久久久久久电影网| 精品一区二区三区视频在线观看免费 | 看免费av毛片| 一区二区日韩欧美中文字幕| 日本撒尿小便嘘嘘汇集6| 亚洲欧美日韩另类电影网站| 肉色欧美久久久久久久蜜桃| 国精品久久久久久国模美| h视频一区二区三区| 最黄视频免费看| 亚洲一区中文字幕在线| 亚洲av电影在线进入| 国产精品 欧美亚洲| 午夜精品国产一区二区电影| 99riav亚洲国产免费| 黑人操中国人逼视频| 少妇被粗大的猛进出69影院| 日韩中文字幕视频在线看片| 大型黄色视频在线免费观看| 国产精品偷伦视频观看了| 亚洲av片天天在线观看| 91精品三级在线观看| 日韩中文字幕视频在线看片| 国产深夜福利视频在线观看| 最近最新免费中文字幕在线| 亚洲自偷自拍图片 自拍| 男女床上黄色一级片免费看| 夫妻午夜视频| 99re在线观看精品视频| 桃花免费在线播放| 好男人电影高清在线观看| 99国产精品99久久久久| 日韩一区二区三区影片| 久久热在线av| 欧美午夜高清在线| 日韩欧美国产一区二区入口| 国产精品熟女久久久久浪| 777米奇影视久久| 一级毛片电影观看| 中文字幕人妻丝袜制服| 免费观看av网站的网址| 在线看a的网站| 最近最新免费中文字幕在线| 久久这里只有精品19| 在线av久久热| 国产精品久久电影中文字幕 | 久久久久国产一级毛片高清牌| 亚洲五月婷婷丁香| 久久精品91无色码中文字幕| 国产精品成人在线| 麻豆国产av国片精品| 成年人黄色毛片网站| 午夜精品久久久久久毛片777| 法律面前人人平等表现在哪些方面| 亚洲av片天天在线观看| 国产视频一区二区在线看| 建设人人有责人人尽责人人享有的| 狠狠精品人妻久久久久久综合| 日本五十路高清| 99re在线观看精品视频| 国产精品二区激情视频| 亚洲七黄色美女视频| 欧美日韩成人在线一区二区| 免费观看a级毛片全部| 老司机午夜十八禁免费视频| 国产成人免费观看mmmm| 国产精品免费大片| 精品卡一卡二卡四卡免费| 在线观看舔阴道视频| 欧美激情久久久久久爽电影 | 久久久久久久国产电影| 男女无遮挡免费网站观看| 亚洲熟妇熟女久久| 久久久国产成人免费| 搡老乐熟女国产| 午夜福利视频精品| 美女国产高潮福利片在线看| 欧美日韩av久久| 一区二区三区激情视频| 亚洲成人免费av在线播放| 日本精品一区二区三区蜜桃| 亚洲九九香蕉| 在线观看免费日韩欧美大片| 视频区图区小说| 正在播放国产对白刺激| 欧美性长视频在线观看| 韩国精品一区二区三区| 欧美老熟妇乱子伦牲交| 少妇裸体淫交视频免费看高清 | 国产不卡一卡二| 麻豆av在线久日| svipshipincom国产片| 国产高清videossex| 国产精品熟女久久久久浪| www日本在线高清视频| 欧美日韩黄片免| 少妇粗大呻吟视频| 女人被躁到高潮嗷嗷叫费观| 精品人妻1区二区| 波多野结衣av一区二区av| 精品少妇黑人巨大在线播放| 一个人免费在线观看的高清视频| 中文欧美无线码| 国产高清国产精品国产三级| 五月天丁香电影| 天天躁狠狠躁夜夜躁狠狠躁| 国产亚洲欧美在线一区二区| 久久精品亚洲av国产电影网| 亚洲欧洲日产国产| 香蕉久久夜色| 三上悠亚av全集在线观看| 日韩欧美国产一区二区入口| 人妻 亚洲 视频| 女人久久www免费人成看片| 丝袜人妻中文字幕| av片东京热男人的天堂| 国产男女内射视频| 少妇猛男粗大的猛烈进出视频| 久热爱精品视频在线9| 波多野结衣av一区二区av| 国产三级黄色录像| 18在线观看网站| av又黄又爽大尺度在线免费看| 精品第一国产精品| 国产老妇伦熟女老妇高清| 亚洲伊人色综图| 美女高潮喷水抽搐中文字幕| 性色av乱码一区二区三区2| 制服诱惑二区| 成人18禁在线播放| 国产成人精品久久二区二区免费| 国产精品99久久99久久久不卡| 女同久久另类99精品国产91| www.自偷自拍.com| 欧美黑人欧美精品刺激| 亚洲一区二区三区欧美精品| 少妇的丰满在线观看| 亚洲av成人一区二区三| 99久久人妻综合| 黄色视频,在线免费观看| 日本撒尿小便嘘嘘汇集6| www.熟女人妻精品国产| 9191精品国产免费久久| 欧美 日韩 精品 国产| 亚洲精品一二三| 免费观看av网站的网址| 十分钟在线观看高清视频www| 天天躁日日躁夜夜躁夜夜| 欧美日韩亚洲高清精品| 蜜桃在线观看..| 嫁个100分男人电影在线观看| 午夜成年电影在线免费观看| 国产精品99久久99久久久不卡| 国产av一区二区精品久久| 亚洲黑人精品在线| 高清av免费在线| 在线观看66精品国产| 国产精品国产av在线观看| 嫁个100分男人电影在线观看| 久久久久久久久免费视频了| 亚洲精品国产区一区二| 国产午夜精品久久久久久| 国产成人精品久久二区二区91| 亚洲熟女精品中文字幕| 国产片内射在线| 岛国在线观看网站| 亚洲av成人不卡在线观看播放网| 国产又色又爽无遮挡免费看| 99精国产麻豆久久婷婷| 久久免费观看电影| 国产成人免费观看mmmm| 黄色怎么调成土黄色| 在线观看66精品国产| 他把我摸到了高潮在线观看 | 91麻豆av在线| 天天躁日日躁夜夜躁夜夜| 免费黄频网站在线观看国产| 国产有黄有色有爽视频| 狂野欧美激情性xxxx| 欧美日韩精品网址| 在线永久观看黄色视频| 两性夫妻黄色片| 免费一级毛片在线播放高清视频 | 国产真人三级小视频在线观看| 天堂俺去俺来也www色官网| 亚洲,欧美精品.| 日韩欧美三级三区| 久久精品91无色码中文字幕| 男女高潮啪啪啪动态图| 老熟妇乱子伦视频在线观看| 日韩精品免费视频一区二区三区| 在线看a的网站| www.精华液| 亚洲欧美日韩另类电影网站| 1024香蕉在线观看| 一区二区av电影网| 无限看片的www在线观看| 好男人电影高清在线观看| 久久精品人人爽人人爽视色| 一区二区av电影网| 亚洲中文日韩欧美视频| 涩涩av久久男人的天堂| 国产av精品麻豆| 在线观看免费日韩欧美大片| 最近最新中文字幕大全电影3 | 亚洲少妇的诱惑av| 国内毛片毛片毛片毛片毛片| 大码成人一级视频| 欧美成人午夜精品| 成在线人永久免费视频| 男人操女人黄网站| 啦啦啦在线免费观看视频4| 欧美性长视频在线观看| 他把我摸到了高潮在线观看 | 国产精品av久久久久免费| 中文字幕人妻熟女乱码| 国产成人av激情在线播放| 一级a爱视频在线免费观看| 久久中文看片网| 高清黄色对白视频在线免费看| www.熟女人妻精品国产| 国产精品国产高清国产av | 麻豆乱淫一区二区| 99re在线观看精品视频| 18在线观看网站| 国产精品电影一区二区三区 | 欧美精品啪啪一区二区三区| 国产精品国产av在线观看| 青草久久国产| 亚洲成人手机| 两个人免费观看高清视频| 国产色视频综合| 中文字幕精品免费在线观看视频| 久久国产精品男人的天堂亚洲| 十八禁人妻一区二区| 中文字幕高清在线视频| 午夜福利欧美成人| 亚洲一卡2卡3卡4卡5卡精品中文| 国产免费视频播放在线视频| 亚洲成人免费av在线播放| 国产精品 国内视频| 天堂8中文在线网| 日韩一区二区三区影片| 成年人免费黄色播放视频| 亚洲成a人片在线一区二区| 老熟妇乱子伦视频在线观看| 亚洲av美国av| 黄色片一级片一级黄色片| 一本综合久久免费| 考比视频在线观看| 99精品久久久久人妻精品| 我要看黄色一级片免费的| 两个人免费观看高清视频| 日韩有码中文字幕| 国产老妇伦熟女老妇高清| 欧美黑人欧美精品刺激| 99久久精品国产亚洲精品| 美女视频免费永久观看网站| 日韩熟女老妇一区二区性免费视频| 亚洲国产中文字幕在线视频| 91字幕亚洲| 最近最新免费中文字幕在线| 99久久99久久久精品蜜桃| 国产精品久久久人人做人人爽| 极品人妻少妇av视频| 久热爱精品视频在线9| 丝袜美腿诱惑在线| 欧美精品av麻豆av| 欧美 日韩 精品 国产| 69av精品久久久久久 | 女人高潮潮喷娇喘18禁视频| 亚洲av国产av综合av卡| 日韩免费高清中文字幕av| 亚洲男人天堂网一区| 99热网站在线观看| 国产精品1区2区在线观看. | 在线观看www视频免费| 一个人免费在线观看的高清视频| 成年女人毛片免费观看观看9 | 正在播放国产对白刺激| 丝瓜视频免费看黄片| 色精品久久人妻99蜜桃| 天天躁日日躁夜夜躁夜夜| 捣出白浆h1v1| 国产成人免费观看mmmm| 麻豆乱淫一区二区| 国产av精品麻豆| 人人妻人人添人人爽欧美一区卜| 亚洲少妇的诱惑av| 后天国语完整版免费观看| 手机成人av网站| 美女高潮到喷水免费观看| 日韩有码中文字幕| 免费日韩欧美在线观看| 日本精品一区二区三区蜜桃| 久久久久视频综合| 热re99久久精品国产66热6| 法律面前人人平等表现在哪些方面| 精品久久久精品久久久| 精品少妇黑人巨大在线播放| 久久精品国产99精品国产亚洲性色 | 女同久久另类99精品国产91| 午夜福利免费观看在线| 久久久精品94久久精品| 亚洲av成人不卡在线观看播放网| 亚洲av欧美aⅴ国产| 午夜福利视频精品| 免费在线观看完整版高清| 熟女少妇亚洲综合色aaa.| 91字幕亚洲| 欧美精品人与动牲交sv欧美| 在线观看免费高清a一片| 亚洲,欧美精品.| 午夜久久久在线观看| 国产视频一区二区在线看| 久久久久久久精品吃奶| 久久国产亚洲av麻豆专区| 久久毛片免费看一区二区三区| 欧美日韩一级在线毛片| 国产精品99久久99久久久不卡| 成在线人永久免费视频| 青青草视频在线视频观看| 午夜福利欧美成人| 精品久久久久久电影网| 午夜两性在线视频| 精品国产乱码久久久久久男人| 黄色丝袜av网址大全| 久久久久久免费高清国产稀缺| 深夜精品福利| av福利片在线| 欧美乱码精品一区二区三区| 久久精品熟女亚洲av麻豆精品| 免费人妻精品一区二区三区视频| 亚洲午夜理论影院| 十八禁网站网址无遮挡| 久久久久国产一级毛片高清牌| 在线亚洲精品国产二区图片欧美| 免费观看av网站的网址| 精品卡一卡二卡四卡免费| 欧美黄色片欧美黄色片| 在线播放国产精品三级| 午夜免费成人在线视频| 欧美日韩一级在线毛片| 国产无遮挡羞羞视频在线观看| 狠狠婷婷综合久久久久久88av| 窝窝影院91人妻| 欧美激情 高清一区二区三区| 色综合欧美亚洲国产小说| videos熟女内射| 操出白浆在线播放| 久久婷婷成人综合色麻豆| a在线观看视频网站| 侵犯人妻中文字幕一二三四区| 大型av网站在线播放| 无限看片的www在线观看| 精品国产一区二区三区久久久樱花| 一级毛片精品| kizo精华| 婷婷丁香在线五月| 日本五十路高清| 国产欧美日韩综合在线一区二区| 亚洲三区欧美一区| 在线看a的网站| 国产成人免费无遮挡视频| 亚洲av美国av| 免费久久久久久久精品成人欧美视频| 国产男靠女视频免费网站| 久9热在线精品视频| 国产精品久久久久久精品电影小说| 久久国产精品大桥未久av| 午夜免费鲁丝| 国产一区二区三区综合在线观看| 看免费av毛片| 精品少妇黑人巨大在线播放| 日本av手机在线免费观看| 99国产精品免费福利视频| 国产日韩一区二区三区精品不卡| 国产欧美日韩一区二区三| 国产精品欧美亚洲77777| 久久精品熟女亚洲av麻豆精品| 777米奇影视久久| 国产一区有黄有色的免费视频| 免费不卡黄色视频| 日本五十路高清| 成人国产av品久久久| 久久亚洲精品不卡| 久久精品国产99精品国产亚洲性色 | 国产精品av久久久久免费| 99久久99久久久精品蜜桃| 国产精品av久久久久免费| 超碰成人久久| 国产精品久久久久久人妻精品电影 | 日韩免费av在线播放| 三级毛片av免费| 丝瓜视频免费看黄片| 两人在一起打扑克的视频| 涩涩av久久男人的天堂| 中文字幕色久视频|