• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    M- (Sm, Pr, Ga)摻雜TiO2帶隙及電子結構的第一原理研究

    2019-03-19 09:21:20房玉真孔祥晉劉軍海崔守鑫王東亭
    原子與分子物理學報 2019年1期
    關鍵詞:帶隙化工學院聊城

    房玉真, 孔祥晉, 劉軍海, 崔守鑫, 王東亭

    (1.聊城大學 化學化工學院,聊城 252059; 2.聊城大學 物理科學與信息工程學院,聊城 252059)

    1 Introduction

    Titanium dioxide (TiO2) has drawn intense interest as promising material for photochemical applications[1-3]. It has excellent characteristics, such as long term stability and non-toxicity. Whereas factors that limit the usefulness of titania are its wide band-gaps (Eg= 3.20 eV for the anatase phase and 3.00 eV for the rutile phase), which can only be excited by UV light irradiation, i.e. only about 5% of the solar spectrum can be absorbed by TiO2[4-6]. Therefore, reducing the band gap of TiO2to make it photosensitive to the visible-light region has become one of the most important goals in photo-catalyst studies. In recent years, doping with non-metals and metal ions into the semiconductor matrix of TiO2have been used widely[7-9]. Doping with non-metal dopants (C, S, N, Br, Cl, etc.) can shift the top of the valence band to higher energies to reduce their forbidden band gaps[10-12]. On the other hand, a series of metal ions such as W6+, V5+, Ce4+, Zr4+, Fe3+, Cu2+, La3+, Pd2+, Cr3+, Ag+and Nd3+have been investigated[13-15], which promote the separation of photo-generated electrons and holes, and reduce electron-hole recombination. Some of them are manifested in experimental studies as significantly enhanced photo-catalytic activity in the visible region[16-19]. Although the optical properties of several doped TiO2systems have been studied, a number of questions arise simultaneously, including dopant metal ions type, the doping amounts and the dopant states on the doped TiO2. Lanthanides with special electronic layer structure (4fn6s2or 4fn- 15d6s2), rich level, and easy to produce more electronic configuration, doping TiO2lattice by lanthanide elements can increase the separation efficiency of photo-generated electron hole, and to improve the photo-catalytic activity[20]. According to the published literature, Ga doping will induce oxygen vacancies and create defect levels near conduction band in TiO2, which act as electron traps and enhance the separation of photo generated electron-hole pairs[21, 22]. It’s quite difficult to obtain the configuration, energy, electronic structure and the electronic distribution of different types of dopants in TiO2by experimental means. Meanwhile, a detailed study is necessary to understand the fundamental mechanism of chemical bonds in doped TiO2. As well as the first-principles electronic structure theory has played a crucial role in understanding various physical and chemical properties of TiO2[23, 24].

    Based on the above reasons,we choose Sm, Pr and Ga as the dopant metal ions type in this work, and a systematic analysis of the dopant characteristics of elements (Sm/Pr/Ga) in anatase TiO2were investigated by the first principles. The optimized lattice parameters and electronic structures, as well as the effects of different kinds of dopants on electronic structures and the chemical bonds were compared. The understanding of the chemical bond between the dopant and O (or Ti) will be critical to improve the optical performance of TiO2-based photo-catalysts.

    2 Computational methods

    To examine the impacts of doping with Sm, Pr, Ga (M) element on the photo-catalytic activity of TiO2, a super-cell with M-Ti15O32was built where the M element substitutes for the Ti atom. All the calculations were performed using the CASTEP code based on first-principles density functional theory. The exchange and correlation interactions were modeled using the generalized gradient approximation and the Perdew-Burke-Ernzerhof (PBE) functional. The cutoff kinetic energy of the electron wave function was 380 eV, and the k-point sampling set 7×3×3 division of the reciprocal unit cell based on the Monkhorst-Pack scheme was found to be converged. In the geometrical optimization, all forces on atoms were converged to less than 0.3 eV/? , the maximum ionic displacement was within 0.001 ? and the total stress tensor was reduced to the order of 0.5 GPa. In this work, the band gap calculated by GGA is lower than the experimental value, which has also been accepted internationally for the result of the function itself, and it can not be used to make accurate calculation of the absolute energy. But as an effective approximation method, the relative value is still very accurate, and it can be used to analyze the band structure and electronic properties.

    3 Results and discussion

    3.1 Optimized structures and electronic properties

    In this work, the pure,and the M- (Sm, Pr, Ga) doped anatase TiO2were studied. The calculated models are shown in Fig. 1, the green atom represents the substituted Ti atom, and their optimized lattice parameters and volumes are listed in Table 1.

    Fig. 1 The calculated models. (a) pure anatase TiO2; (b) M-doped anatase TiO2

    For the pure anatase phase of TiO2, our calculated lattice parameters area=7.5648,b=3.7824,c=9.5102 ?, which are in excellent agreement with the previously reported experimental values[25], and all of lattice parameters in the doped systems are larger than that of pure TiO2except for Ga-doped TiO2. This can be understood by the fact that the radii of impurity atoms Sm (1.80 ?) and Pr (1.83 ?) are larger than that of Ti (1.45 ? ) and the radii of impurity atoms Ga (1.40 ?) are shorter. Although doping with foreign elements results in the variation of lattice constants, the deformations of a and c are less 4%, considering the larger radius of dopant atoms, the calculated models of the pure and M-doped anatase TiO2are structurally stable.

    Table 1 The lattice parameters and volumes of the doped anatase TiO2supercells

    TiO2Lattice parameters(?)Volume (?3)abcPure7.56483.78249.5102272.1163Pureexp[25]7.56963.78489.5124272.5248Sm-doped7.57503.78759.8713283.2107Pr-doped7.58623.79319.8858284.4660Ga-doped7.55883.77949.5667273.2989

    To further understand the chemical bond characteristic, we calculated theMulliken populations. The results for M-doped anatase TiO2are summarized in Table 2. For the pure anatase TiO2structure, the average Ti-O bond length is 1.947 ?, there is also a tiny change compared with those of the Sm-, Pr-and Ga-doped structures, and their average Ti-O bond lengths are 1.972 ?, 1.957 ? and 1.961 ?, respectively. In the case of doped TiO2systems, the lengths of all these Ti-O bonds have an increase due to the dopant atoms locating on the geometry optimization, which may relax oxygen atom away from the surface of titanium atom and into the dopants atoms. The longer distance of Ti-O bond length results in a weaker interaction between titanium and oxygen atom and hence the covalent bond is weakened and the ionic bond enhanced, and the Ti-O bond in Sm-doped case has ion bond characteristics. The average Sm-O, Pr-O, and Ga-O bond lengths are 2.216 ?, 2.409 ? and 1.992 ? respectively, considering the different radius of metal atoms, the Sm-O, Pr-O and Ga-O bonds have higher ion bond characteristics than Ti-O bond.

    The bond strength is also judged by the population value, as a general rule, the larger population is, the stronger covalent bond is, and vice versa.The average Mulliken populations of Ti-O are 0.407, 0.419, 0.419 and 0.422 for the pure, Sm-, Pr- and Ga-doped structures, respectively, their corresponding values of Sm-O, Pr-O and Ga-O are 0.228, 0.264 and 0.292. As a result, the covalence of Ti-O bond enhanced after doping metal elements, and M-O bond has ion bond characteristics, which have been proved by the bond length discussed above.

    Table 2 Average Mulliken populations (MP), bond length (BL) and net charge (NC) in the pure, and the M-doped (M= Sm, Pr, or Ga) anatase TiO2.

    TiO2BL(?)MPNC (electron)Ti-OTi-OTi-OM-OTiOMPure1.9471.9470.4071.34-0.67Sm-O1.9721.9720.4190.2281.28-0.641.43Pr-O1.9571.9570.4190.2641.26-0.651.57Ga-O1.9611.9610.4220.2921.28-0.671.77

    The atomic charge are also shown in Table 2, the net charges on Ti, Sm, Pr, and Ga are 1.34, 1.43, 1.57 and 1.77 e, respectively. Their corresponding values of O atom are -0.67, -0.64, -0.65 and -0.67 e in the pure Sm-, Pr- and Ga-doped structures. The most negatively charged atoms are the oxygen sites, which is slightly lower in pure anatase TiO2than those in Sm-doped and Pr-doped structures. The charge density near the dopants M is shown in Fig. 2 intuitively (only showing one plane[110]). From Fig. 2, we can see that the covalent bond strengths between the metal atom and adjacent O atoms increase in order of Ti-O, Pr-O, Sm-O and Ga-O. There is a covalent bonding behavior in the former two cases, but ionic bonding characteristic in the latter two case. These imply that more electron transfer from the Ga or Sm atom to an adjacent O atom rather than the sharing of electrons between Ti or Pr and O atoms.

    Fig. 2 The charge density of the M-doped anatase TiO2 (a) pure anatase TiO2; (b) Sm-doped; (c) Pr-doped; (d) Ga-doped.

    As stated above,the doped atoms change the center of the positive charge centers to form internal dipole moment, which is conducive to the separation of photo-generated electron hole pairs, especially in the Sm-doped case. This result is in agreement with the following conclusion from the band structure and DOS analysis.

    3.2 Band structure and DOS

    To analyze the modifications of electronic properties and discover the origin reason of enhanced visible-light photocatalytic activity, the band structures and density of states (DOS) including projected density of states (PDOS) of pure and M-doped anatase TiO2were calculated. The calculated band gap structures are given in Fig. 3, the DOS and PDOS results are plotted in Fig. 4.

    Fig.3 Band structures for all the simulated systems. (a) pure anatase TiO2; (b) Sm-doped; (c) Pr-doped; (d) Ga-doped.

    As seen in Fig.3, the modification of Sm to TiO2introduces new states below the conduction band edge compared to the original TiO2, meanwhile, the dopant of Pr introduces both the conduction band and valence band to low edge, and the electronic gap between the highest occupied and lowest unoccupied electronic states is modified. As a result, the band gaps of Sm-doped (0.280 eV) and Pr-doped (2.000 eV) systems were reduced by 1.866 and 0.146 eV compared with that of pure TiO2(2.146 eV) respectively, which led to the red shift of the optical absorption edge and visible light could be absorbed by doped systems. Similar phenomena have been found by other groups both theoretically and experimentally[26, 27]. Whereas, the band gap increases by 0.051 eV when the dopant element being of Ga (2.197 eV).

    Although the DFT method underestimates the band gap due to a self-interaction error, and the actual band gap of TiO2should be slightly larger than the calculated values, but the relative order and trend are credible.

    The conduction and valence orbitals changes could be analyzed based on the DOS and PDOS of all systems. As shown in Fig. 4a, the valence bands are mainly made up of O-2p between -5.04 and 0 eV, and the small part of which is made up of Ti-3d orbitals between -5.01 eV and 0 eV. Meanwhile, the O-2p orbital hybridized with Ti-3d orbitals between 0 and -5.04 eV in the valence band, and the O-2p orbital hybridized with the Ti-3d orbital between 2.146 and 7.543 eV in the conduction band.

    Fig. 4 Density of states for all the simulated systems: (a) pure anatase TiO2; (b) Sm-doped; (c) Pr-doped; (d) Ga-doped.

    As shown in Fig.4b, Fig. 4c and Fig. 4d, the compositions of the conduction band and valence band in doped systems are homologous with the pure one. However, the conduction band moved towards the Fermi level, which resulted in the reduction of band gap in Sm-doped and Pr-doped systems. The dopants actually create new energy levels between the conduction and valence bands, known as inter-levels, in the TiO2band-gap. Meanwhile, Ga-doped TiO2behaves differently, when an Ga atom was introduced into TiO2, Ga-4p and Ga-3d orbitals hybridized with the O-2p orbital between -6.88 and 0.102 eV in the valence band and the Ga-4d orbital hybridized with the O-2p orbital between 2.299 and 4.42 eV in the conduction band. The conduction bands moved towards higher energy compared to pure TiO2, which caused the band gap increasing 0.051 eV.

    4 Conclusions

    In summary, the anatase TiO2systems doped with elements of Sm, Pr, and Ga were studied by first principles calculations. The band gaps of Sm-doped and Pr-doped systems were reduced by 1.866 and 0.146 eV compared with that of pure TiO2respectively, whereas the band gap increases 0.051 eV when the dopant element being of Ga. Anatase TiO2doped by Sm and Pr can be possible efficacy for the visible light photo-catalysis and solar energy conversion. The reasons may be that more electrons transfer from the Sm or Pr atom to adjacent O atoms to affect the strength of the hybrid orbital of M-O, and the hybridized orbitals can form some impurity energy levels, which can reduce the recombination rate of photo-excited carrier and improve the visible-light absorption performance of TiO2gradually.

    猜你喜歡
    帶隙化工學院聊城
    使固態(tài)化學反應100%完成的方法
    密度泛函理論計算半導體材料的帶隙誤差研究
    國家開放大學石油和化工學院學習中心列表
    【鏈接】國家開放大學石油和化工學院學習中心(第四批)名單
    聊城高新區(qū)多措并舉保障貧困戶“居住無憂”
    一種基于BJT工藝的無運放低溫度系數(shù)的帶隙基準源
    聊城 因水而生 有水則靈
    走向世界(2018年11期)2018-12-26 01:12:44
    聊城,宛在水中央
    走向世界(2018年11期)2018-12-26 01:12:44
    新動能,新聊城
    走向世界(2018年11期)2018-12-26 01:12:32
    間距比對雙振子局域共振軸縱振帶隙的影響
    很黄的视频免费| 亚洲精品粉嫩美女一区| 男人舔女人下体高潮全视频| 中文亚洲av片在线观看爽| 国产在线精品亚洲第一网站| 高清毛片免费观看视频网站| 国产精品久久久久久人妻精品电影| 一个人免费在线观看的高清视频| 黄色女人牲交| 亚洲最大成人中文| www.熟女人妻精品国产| 又大又爽又粗| 午夜福利一区二区在线看| 一区二区三区高清视频在线| 身体一侧抽搐| 欧美日韩黄片免| 精品第一国产精品| 久久久国产成人精品二区| 国产成人影院久久av| 国产av在哪里看| 妹子高潮喷水视频| 久久久久免费精品人妻一区二区 | 看黄色毛片网站| 精品一区二区三区av网在线观看| 精品一区二区三区四区五区乱码| 欧美人与性动交α欧美精品济南到| 精品久久久久久久毛片微露脸| 男人舔奶头视频| 欧美乱色亚洲激情| 一区二区三区国产精品乱码| 级片在线观看| 美女 人体艺术 gogo| 在线观看日韩欧美| 欧美成狂野欧美在线观看| 亚洲九九香蕉| 欧美激情极品国产一区二区三区| 午夜福利一区二区在线看| 97碰自拍视频| 亚洲国产高清在线一区二区三 | 每晚都被弄得嗷嗷叫到高潮| 制服人妻中文乱码| 一进一出抽搐动态| 亚洲aⅴ乱码一区二区在线播放 | 国产一区在线观看成人免费| 日韩中文字幕欧美一区二区| 99国产精品99久久久久| 婷婷丁香在线五月| 香蕉国产在线看| 日本免费a在线| 午夜a级毛片| 国产av在哪里看| 国产av在哪里看| 久久国产乱子伦精品免费另类| 久久欧美精品欧美久久欧美| 999久久久国产精品视频| 一二三四在线观看免费中文在| 精品一区二区三区av网在线观看| 国产成人啪精品午夜网站| 午夜久久久在线观看| 午夜成年电影在线免费观看| 欧美另类亚洲清纯唯美| 午夜福利在线观看吧| 成人亚洲精品一区在线观看| 久久精品国产亚洲av香蕉五月| 国产野战对白在线观看| 亚洲中文字幕一区二区三区有码在线看 | 天天躁夜夜躁狠狠躁躁| 日本黄色视频三级网站网址| 天堂动漫精品| 黄色片一级片一级黄色片| 欧美一级a爱片免费观看看 | 国产三级黄色录像| 一区二区三区精品91| 欧美久久黑人一区二区| 男人舔女人的私密视频| 国产黄色小视频在线观看| 最新在线观看一区二区三区| 老司机在亚洲福利影院| 亚洲,欧美精品.| 黄片大片在线免费观看| 国产av一区在线观看免费| 侵犯人妻中文字幕一二三四区| 精品国产美女av久久久久小说| www.www免费av| 一本精品99久久精品77| 日本黄色视频三级网站网址| 长腿黑丝高跟| e午夜精品久久久久久久| 亚洲专区字幕在线| 两个人免费观看高清视频| 中国美女看黄片| 亚洲欧洲精品一区二区精品久久久| 侵犯人妻中文字幕一二三四区| 精品乱码久久久久久99久播| 人人妻人人澡人人看| 亚洲av片天天在线观看| 亚洲国产精品999在线| 亚洲精品中文字幕一二三四区| 亚洲精品国产一区二区精华液| 国语自产精品视频在线第100页| 国产精品久久久久久精品电影 | 日本五十路高清| 国产亚洲精品久久久久5区| 99久久综合精品五月天人人| 变态另类成人亚洲欧美熟女| 国产一区二区激情短视频| 老司机午夜十八禁免费视频| 欧美绝顶高潮抽搐喷水| 宅男免费午夜| 欧美色欧美亚洲另类二区| 国产成+人综合+亚洲专区| 搡老岳熟女国产| 日本 欧美在线| 九色国产91popny在线| 成人av一区二区三区在线看| 亚洲性夜色夜夜综合| 免费看日本二区| 精品福利观看| 国产av不卡久久| 久久久精品国产亚洲av高清涩受| 国产黄片美女视频| 国产精品二区激情视频| xxxwww97欧美| 国产精品一区二区精品视频观看| 亚洲av美国av| 国产97色在线日韩免费| 白带黄色成豆腐渣| 日韩三级视频一区二区三区| 一卡2卡三卡四卡精品乱码亚洲| 黄色成人免费大全| 美女高潮到喷水免费观看| 亚洲成av人片免费观看| 日日摸夜夜添夜夜添小说| 亚洲真实伦在线观看| 久久人妻福利社区极品人妻图片| 中文字幕最新亚洲高清| 自线自在国产av| 日本免费a在线| 法律面前人人平等表现在哪些方面| 欧美成人午夜精品| 免费看美女性在线毛片视频| 男女那种视频在线观看| 日韩成人在线观看一区二区三区| 一边摸一边抽搐一进一小说| 99久久99久久久精品蜜桃| 美女午夜性视频免费| 亚洲精品久久国产高清桃花| 黄色毛片三级朝国网站| 亚洲美女黄片视频| 青草久久国产| 色综合婷婷激情| 国产一区在线观看成人免费| 别揉我奶头~嗯~啊~动态视频| 色播在线永久视频| 国产一区在线观看成人免费| 欧美日韩福利视频一区二区| 日韩精品中文字幕看吧| 国产精品九九99| 国产成人欧美在线观看| 老司机靠b影院| 精品久久久久久久毛片微露脸| 色av中文字幕| 每晚都被弄得嗷嗷叫到高潮| 母亲3免费完整高清在线观看| 黄色a级毛片大全视频| 亚洲av成人不卡在线观看播放网| 人成视频在线观看免费观看| 麻豆一二三区av精品| 精品久久久久久,| 一边摸一边抽搐一进一小说| av电影中文网址| 他把我摸到了高潮在线观看| 非洲黑人性xxxx精品又粗又长| www日本在线高清视频| 亚洲av美国av| 成熟少妇高潮喷水视频| 伊人久久大香线蕉亚洲五| 久久久久久久精品吃奶| 热re99久久国产66热| 中文字幕人成人乱码亚洲影| 国产熟女午夜一区二区三区| 精品福利观看| av在线天堂中文字幕| 久久久久精品国产欧美久久久| ponron亚洲| 亚洲av熟女| 久久久久久久久免费视频了| 亚洲自拍偷在线| 欧美成人一区二区免费高清观看 | 久久久久久久久免费视频了| 精品国产一区二区三区四区第35| 可以在线观看的亚洲视频| 色婷婷久久久亚洲欧美| 视频区欧美日本亚洲| 欧美成人免费av一区二区三区| 国产午夜福利久久久久久| 精品久久久久久久毛片微露脸| 欧美国产日韩亚洲一区| 久久国产乱子伦精品免费另类| 俺也久久电影网| 在线国产一区二区在线| 88av欧美| 国产久久久一区二区三区| 亚洲全国av大片| 老鸭窝网址在线观看| 国产精品电影一区二区三区| 国产av一区二区精品久久| 日本一区二区免费在线视频| 日本黄色视频三级网站网址| 一个人观看的视频www高清免费观看 | 色综合亚洲欧美另类图片| 人人妻人人澡人人看| 欧美日韩精品网址| 亚洲中文av在线| 一卡2卡三卡四卡精品乱码亚洲| 成人av一区二区三区在线看| www.www免费av| 搡老熟女国产l中国老女人| 国产精品久久久人人做人人爽| 三级毛片av免费| 变态另类成人亚洲欧美熟女| 国产亚洲精品久久久久5区| 亚洲在线自拍视频| 亚洲精品久久成人aⅴ小说| 女警被强在线播放| 精品国产超薄肉色丝袜足j| 丝袜美腿诱惑在线| 黄色毛片三级朝国网站| 免费在线观看完整版高清| 国产区一区二久久| 亚洲 国产 在线| 色精品久久人妻99蜜桃| 亚洲va日本ⅴa欧美va伊人久久| 国产欧美日韩精品亚洲av| 欧美成人免费av一区二区三区| 日韩欧美 国产精品| 色播亚洲综合网| 男男h啪啪无遮挡| 国产av一区二区精品久久| 国产日本99.免费观看| 亚洲熟女毛片儿| 男女之事视频高清在线观看| 国产激情偷乱视频一区二区| 一进一出好大好爽视频| 亚洲男人的天堂狠狠| 嫩草影视91久久| 国产成人影院久久av| 又黄又粗又硬又大视频| 成人免费观看视频高清| 亚洲在线自拍视频| 亚洲激情在线av| 国产精品亚洲av一区麻豆| 一区二区三区高清视频在线| 成人手机av| 色老头精品视频在线观看| 琪琪午夜伦伦电影理论片6080| 国内久久婷婷六月综合欲色啪| 村上凉子中文字幕在线| 国产成人av教育| 侵犯人妻中文字幕一二三四区| 久久人妻福利社区极品人妻图片| 午夜日韩欧美国产| 日韩欧美三级三区| 天堂影院成人在线观看| 男女下面进入的视频免费午夜 | 亚洲精品国产区一区二| 一本久久中文字幕| 欧美性长视频在线观看| 免费观看人在逋| 可以在线观看毛片的网站| 在线永久观看黄色视频| 99热这里只有精品一区 | 欧美乱码精品一区二区三区| 欧美性猛交黑人性爽| 国产精品一区二区免费欧美| 国产私拍福利视频在线观看| 欧美国产日韩亚洲一区| av在线播放免费不卡| 欧美色欧美亚洲另类二区| 久久婷婷成人综合色麻豆| 久久亚洲真实| 欧美日韩瑟瑟在线播放| 国产伦人伦偷精品视频| 波多野结衣巨乳人妻| 久久久久久久久久黄片| 中文字幕最新亚洲高清| 精品国产美女av久久久久小说| 成年女人毛片免费观看观看9| 好男人电影高清在线观看| 又大又爽又粗| 国产精品98久久久久久宅男小说| 夜夜爽天天搞| 日韩精品中文字幕看吧| 狠狠狠狠99中文字幕| 色综合婷婷激情| 久久精品影院6| 中文字幕最新亚洲高清| 国产又色又爽无遮挡免费看| 很黄的视频免费| 亚洲成人久久性| 男人的好看免费观看在线视频 | 一进一出好大好爽视频| 丰满人妻熟妇乱又伦精品不卡| 亚洲国产精品999在线| 精品一区二区三区四区五区乱码| 此物有八面人人有两片| 日本一区二区免费在线视频| 日本免费一区二区三区高清不卡| 午夜精品久久久久久毛片777| 日本成人三级电影网站| 在线观看午夜福利视频| 变态另类成人亚洲欧美熟女| 午夜福利在线观看吧| 激情在线观看视频在线高清| 欧美成人性av电影在线观看| av电影中文网址| 露出奶头的视频| 啦啦啦观看免费观看视频高清| 91麻豆精品激情在线观看国产| 午夜久久久在线观看| 18禁黄网站禁片免费观看直播| xxxwww97欧美| 91成人精品电影| 国内精品久久久久久久电影| 韩国精品一区二区三区| 免费在线观看成人毛片| 亚洲精品在线观看二区| 国产成人一区二区三区免费视频网站| 日本免费一区二区三区高清不卡| 制服诱惑二区| 每晚都被弄得嗷嗷叫到高潮| 欧美日韩福利视频一区二区| 天天躁夜夜躁狠狠躁躁| 久久这里只有精品19| 日本免费一区二区三区高清不卡| bbb黄色大片| 午夜视频精品福利| 国产麻豆成人av免费视频| 午夜视频精品福利| bbb黄色大片| 午夜视频精品福利| 国产精品美女特级片免费视频播放器 | 亚洲人成网站高清观看| 天堂动漫精品| 可以在线观看毛片的网站| 亚洲精品美女久久久久99蜜臀| 最近最新中文字幕大全电影3 | 精品午夜福利视频在线观看一区| 中文字幕人成人乱码亚洲影| 精品久久久久久成人av| 国产蜜桃级精品一区二区三区| 午夜久久久在线观看| 在线观看一区二区三区| 日本在线视频免费播放| 国产91精品成人一区二区三区| 日本三级黄在线观看| 99re在线观看精品视频| 日韩欧美在线二视频| 久久亚洲精品不卡| 级片在线观看| 国产精品二区激情视频| 国产精品电影一区二区三区| 亚洲精品美女久久av网站| 国内精品久久久久精免费| 亚洲熟妇中文字幕五十中出| 中文字幕av电影在线播放| 亚洲熟妇熟女久久| 精品久久久久久久人妻蜜臀av| 美女高潮到喷水免费观看| 日日摸夜夜添夜夜添小说| 国产午夜精品久久久久久| 国产99久久九九免费精品| 亚洲熟妇熟女久久| 亚洲中文日韩欧美视频| 香蕉丝袜av| 熟妇人妻久久中文字幕3abv| 69av精品久久久久久| 色婷婷久久久亚洲欧美| 亚洲精华国产精华精| 少妇 在线观看| 亚洲五月天丁香| 久热爱精品视频在线9| 国产精品 国内视频| 亚洲欧美精品综合一区二区三区| 桃红色精品国产亚洲av| 黄色 视频免费看| 国产av又大| 99久久久亚洲精品蜜臀av| 真人一进一出gif抽搐免费| 日韩精品免费视频一区二区三区| 高清在线国产一区| 88av欧美| 一级毛片高清免费大全| 欧美日韩亚洲综合一区二区三区_| 国产熟女xx| 91av网站免费观看| 婷婷亚洲欧美| 中国美女看黄片| 午夜两性在线视频| 99精品久久久久人妻精品| 大型黄色视频在线免费观看| 十分钟在线观看高清视频www| 亚洲国产精品sss在线观看| 亚洲欧美精品综合久久99| 久久国产精品男人的天堂亚洲| 美女扒开内裤让男人捅视频| 18禁国产床啪视频网站| 国产精品电影一区二区三区| 嫩草影院精品99| 又黄又粗又硬又大视频| 啪啪无遮挡十八禁网站| 日韩中文字幕欧美一区二区| 在线观看免费午夜福利视频| 国产三级在线视频| 婷婷丁香在线五月| 久久天堂一区二区三区四区| 精品国内亚洲2022精品成人| 色综合站精品国产| 亚洲专区字幕在线| 中亚洲国语对白在线视频| 亚洲成人免费电影在线观看| 久99久视频精品免费| 大型黄色视频在线免费观看| 久久久国产成人精品二区| 99re在线观看精品视频| 中文在线观看免费www的网站 | 99精品久久久久人妻精品| 韩国精品一区二区三区| 亚洲欧美精品综合久久99| 久久婷婷人人爽人人干人人爱| 伦理电影免费视频| 国产黄a三级三级三级人| 国产亚洲精品综合一区在线观看 | 校园春色视频在线观看| 亚洲第一青青草原| 国产1区2区3区精品| av在线天堂中文字幕| 天堂动漫精品| 麻豆一二三区av精品| 亚洲九九香蕉| 亚洲精品一卡2卡三卡4卡5卡| 国产亚洲av嫩草精品影院| 日本免费一区二区三区高清不卡| 国产单亲对白刺激| 亚洲激情在线av| 欧美最黄视频在线播放免费| 久久人妻福利社区极品人妻图片| av免费在线观看网站| 久久性视频一级片| 好男人电影高清在线观看| 欧美黄色淫秽网站| 久久婷婷人人爽人人干人人爱| 两个人看的免费小视频| 视频区欧美日本亚洲| 欧美绝顶高潮抽搐喷水| www.www免费av| 成人av一区二区三区在线看| 亚洲成国产人片在线观看| 久久精品国产亚洲av香蕉五月| 亚洲在线自拍视频| 听说在线观看完整版免费高清| 久久久久国产精品人妻aⅴ院| 亚洲精品久久国产高清桃花| 天天躁夜夜躁狠狠躁躁| 精品午夜福利视频在线观看一区| 99热只有精品国产| 日韩大尺度精品在线看网址| 国产精品精品国产色婷婷| www日本在线高清视频| 99riav亚洲国产免费| 精品电影一区二区在线| 亚洲欧美精品综合久久99| 91麻豆精品激情在线观看国产| 一级毛片精品| 性色av乱码一区二区三区2| 国产精品99久久99久久久不卡| 久久午夜亚洲精品久久| 亚洲美女黄片视频| 中文在线观看免费www的网站 | 久久久精品国产亚洲av高清涩受| 国产不卡一卡二| 国产又黄又爽又无遮挡在线| 成人亚洲精品一区在线观看| 成年版毛片免费区| 亚洲一卡2卡3卡4卡5卡精品中文| 美女大奶头视频| 国产又黄又爽又无遮挡在线| 亚洲人成77777在线视频| 激情在线观看视频在线高清| 99在线视频只有这里精品首页| 午夜影院日韩av| 国产片内射在线| 成人免费观看视频高清| 曰老女人黄片| 午夜精品久久久久久毛片777| 在线视频色国产色| 最新美女视频免费是黄的| 久久久久久大精品| 777久久人妻少妇嫩草av网站| 99在线视频只有这里精品首页| 亚洲自拍偷在线| 亚洲天堂国产精品一区在线| or卡值多少钱| 日本成人三级电影网站| 久久这里只有精品19| 国产高清激情床上av| 国产激情欧美一区二区| 满18在线观看网站| 黄色 视频免费看| 国产成人欧美在线观看| 岛国视频午夜一区免费看| 91九色精品人成在线观看| 亚洲精华国产精华精| 亚洲专区中文字幕在线| 亚洲avbb在线观看| 日韩三级视频一区二区三区| 亚洲一区中文字幕在线| 99精品久久久久人妻精品| 国产真人三级小视频在线观看| 九色国产91popny在线| 欧美性猛交╳xxx乱大交人| 麻豆成人av在线观看| 99热6这里只有精品| 久久亚洲精品不卡| 成人精品一区二区免费| 亚洲五月天丁香| 成人国产一区最新在线观看| svipshipincom国产片| 欧美日韩中文字幕国产精品一区二区三区| 免费无遮挡裸体视频| 操出白浆在线播放| 日韩欧美一区视频在线观看| 国产激情欧美一区二区| 99久久无色码亚洲精品果冻| 91字幕亚洲| 欧洲精品卡2卡3卡4卡5卡区| 成人免费观看视频高清| 亚洲专区国产一区二区| 亚洲欧美激情综合另类| 国产欧美日韩一区二区三| 在线国产一区二区在线| 又大又爽又粗| 男女午夜视频在线观看| 久久久久久久久免费视频了| 男女之事视频高清在线观看| 麻豆久久精品国产亚洲av| 少妇的丰满在线观看| 亚洲熟妇中文字幕五十中出| 欧美激情久久久久久爽电影| 欧美日韩一级在线毛片| 久久精品国产亚洲av香蕉五月| 精品高清国产在线一区| 这个男人来自地球电影免费观看| 2021天堂中文幕一二区在线观 | 黄色视频,在线免费观看| 熟女电影av网| 欧美中文日本在线观看视频| 老汉色av国产亚洲站长工具| 美女国产高潮福利片在线看| 无人区码免费观看不卡| 久久精品国产清高在天天线| 国产伦在线观看视频一区| 青草久久国产| 国产真人三级小视频在线观看| 日日夜夜操网爽| 一级片免费观看大全| 国产精品影院久久| 精品久久久久久久久久久久久 | 日日摸夜夜添夜夜添小说| 一级片免费观看大全| av天堂在线播放| 九色国产91popny在线| 一夜夜www| 午夜福利高清视频| √禁漫天堂资源中文www| 日韩视频一区二区在线观看| 亚洲熟女毛片儿| 国产v大片淫在线免费观看| 国产欧美日韩精品亚洲av| 欧美不卡视频在线免费观看 | 91九色精品人成在线观看| 欧美乱妇无乱码| 久久狼人影院| 亚洲av中文字字幕乱码综合 | 午夜福利在线在线| 正在播放国产对白刺激| 免费看美女性在线毛片视频| 丝袜在线中文字幕| 色av中文字幕| 亚洲人成77777在线视频| 在线观看www视频免费| 亚洲av电影不卡..在线观看| 亚洲中文av在线| 一边摸一边做爽爽视频免费| 老司机午夜福利在线观看视频| АⅤ资源中文在线天堂| 久热爱精品视频在线9| 国产精品亚洲av一区麻豆| 国产一区二区在线av高清观看| 又紧又爽又黄一区二区| 国产成人欧美在线观看| 国产三级黄色录像| 中文亚洲av片在线观看爽| 特大巨黑吊av在线直播 | 777久久人妻少妇嫩草av网站| 在线看三级毛片| 亚洲av成人av| 少妇 在线观看| 免费看日本二区| 欧美性猛交黑人性爽| 在线观看www视频免费| 亚洲国产中文字幕在线视频| 亚洲九九香蕉| 精品电影一区二区在线| 久久国产精品人妻蜜桃|