吳軍虎,任 敏
?
羥丙基甲基纖維素作土壤改良劑對(duì)土壤溶質(zhì)運(yùn)移的影響
吳軍虎,任 敏
(西安理工大學(xué)西北旱區(qū)生態(tài)水利國家重點(diǎn)實(shí)驗(yàn)室,西安 710048)
羥丙基甲基纖維素(hydroxypropyl methyl cellulose,HPMC)是一種潛在的土壤改良劑,加入土壤中后具有明顯的減滲效果,對(duì)緩解黃土高原水土養(yǎng)分的流失具有重要意義。該文通過在土壤中施加不同含量的HPMC,研究HPMC對(duì)土壤溶質(zhì)遷移特性的影響。結(jié)果表明:1)HPMC質(zhì)量分?jǐn)?shù)在0~0.5 g/kg范圍內(nèi),飽和導(dǎo)水率隨HPMC添加量增大而逐漸減小,0.5 g/kg組相比未添加HPMC的空白組降低37.3%;土壤中保守性溶質(zhì)的運(yùn)移速度顯著降低;隨HPMC添加量增加,溶質(zhì)的初始和完全穿透時(shí)間明顯推遲,穿透總歷時(shí)延長;2)CDE方程和兩區(qū)模型均能較好地模擬在土壤中添加不同含量HPMC時(shí)溶質(zhì)的運(yùn)移狀況,2種模型的擬合曲線也均能與實(shí)測曲線較好吻合,但兩區(qū)模型的模擬精度更高。3)基于兩區(qū)模型的參數(shù)擬合結(jié)果,隨HPMC添加量的增加,平均孔隙水流速越小,水動(dòng)力彌散系數(shù)、彌散度和質(zhì)量交換系數(shù)均增加,而土壤可動(dòng)水體的含水量比率逐漸減少。
溶質(zhì);模型;土壤;羥丙基甲基纖維素;飽和導(dǎo)水率;穿透曲線;對(duì)流彌散方程
羥丙基甲基纖維素(hydroxypropyl methyl cellulose,HPMC)是各類纖維素中用途最廣、性能最優(yōu)的品種之一,屬于非離子型纖維素混合醚中的一種。HPMC安全無毒,具有廣泛的耐酶性和黏結(jié)性,由于羥基和羥丙基的親水性,HPMC具有良好的持水性能[1-2]。王昕昕等[3]發(fā)現(xiàn)HPMC的持水性能對(duì)于降低面團(tuán)中可凍結(jié)水含量和提高酵母細(xì)胞在凍藏過程中的存活率效果顯著。劉海燕等[4-5]研究表明,添加適量的HPMC能有效提高面包的焙烤品質(zhì),改善其質(zhì)構(gòu)特性,增加彈性和內(nèi)聚性能,顯著降低面包的硬度和咀嚼性,并有較好的抗老化效果。在食品包裝材料上添加改性纖維HPMC使得大豆分離蛋白復(fù)合膜的實(shí)際應(yīng)用價(jià)值增加,具有良好的開發(fā)利用前景[6]。
HPMC來源豐富可再生,環(huán)境友好,且生物可降解,與離子型纖維素醚相比,HPMC不與重金屬發(fā)生反應(yīng),且具有酸堿穩(wěn)定性。在農(nóng)業(yè)生產(chǎn)中,由于其良好的水溶、分散、增稠、保水和成膜性能,HPMC作為水溶性高分子材料形成的包衣薄膜無色無味、堅(jiān)韌、透明度好,廣泛地用作藥物包衣和緩釋制劑的控速聚合物材料,在縮短成膜時(shí)間、降低脫落率和提高均勻度方面有較為明顯的效果[7]。王海燕[8]研究發(fā)現(xiàn),HPMC包衣后能延緩種子萌發(fā),有利于提高種子耐儲(chǔ)存性,且在土壤中HPMC可被微生物有效降解,環(huán)境相容性好,是良好的種衣成膜劑材料。
近年來,水土流失和大量的不合理耕種現(xiàn)象造成了大量的養(yǎng)分流失和水體污染,深入研究土壤溶質(zhì)的遷移機(jī)制,保持水土及減緩養(yǎng)分在土壤中的無效流失具有深遠(yuǎn)的意義,且數(shù)學(xué)模型在深入研究溶質(zhì)在多孔介質(zhì)中的遷移中發(fā)揮了重要的作用[9-10],其中傳統(tǒng)對(duì)流-彌散模型和兩區(qū)模型的應(yīng)用最為廣泛。已有研究表明,HPMC等凝膠狀保水劑對(duì)土壤水分的保持具有明顯的改善效果[11],但對(duì)土壤養(yǎng)分運(yùn)動(dòng)及溶質(zhì)遷移影響內(nèi)在機(jī)理方面的研究相對(duì)較少?;贖PMC的黏結(jié)性、持水性、pH穩(wěn)定性和生物可降解等各項(xiàng)優(yōu)良性能,若將HPMC應(yīng)用于土壤養(yǎng)分流失及重金屬吸附過程的研究,并借助數(shù)學(xué)模型分析其變化規(guī)律和內(nèi)在機(jī)理,可為提高土壤保水保肥性能,改善水土養(yǎng)分流失現(xiàn)狀提供思路和方法。因此,本文研究HPMC對(duì)溶質(zhì)遷移的影響,旨在為治理水土流失提供理論依據(jù)。
1.1.1 供試土樣
試驗(yàn)用土采樣時(shí)間為2017年9月,采樣地點(diǎn)為中科院長武農(nóng)業(yè)生態(tài)試驗(yàn)站(35°12¢N、107°40¢E)空閑農(nóng)田耕作表層0~20 cm的土壤,用英國馬爾文公司生產(chǎn)的Mastersizer 2000激光粒度分析儀對(duì)供試土壤做顆粒分析,待測土壤黏粒(<0.002 mm)質(zhì)量分?jǐn)?shù)為6.83%,粉粒(0.002~<0.02 mm)為93.08%,砂粒(0.02~<2 mm)為0.09%。依據(jù)國際制土壤質(zhì)地分類標(biāo)準(zhǔn),供試土壤屬于粉砂質(zhì)壤土。利用環(huán)刀法測容重,測得供試土壤容重為1.31 g/cm3。土壤的飽和含水率為42%,利用van Genuchten模型擬合土壤水分特征曲線參數(shù)的方法得到殘余含水率為1.2%。將供試土壤碾碎,除去其中的碎石,枯草及根系殘留物等雜質(zhì),風(fēng)干后過2 mm篩備用。
1.1.2 HPMC理化特性
HPMC是一種半合成的纖維素醚聚合物,可溶于一定濃度的酒精、丙醇、二氯乙烷溶液,性質(zhì)較為穩(wěn)定,膠體溶液具有一定黏彈性。HPMC常溫下為固體顆?;蚶w維狀白色粉末,不相容于強(qiáng)氧化劑,固體易燃。HPMC的表觀密度(也叫視密度,指自然條件下單位體積的干質(zhì)量)通常為0.5 g/cm3左右,相對(duì)密度為1.3,在180~200 ℃范圍內(nèi)易變色,在280~300 ℃范圍內(nèi)易炭化,22 ℃條件下濃度為2%的水溶液HPMC黏度在5~2×105mPa·s范圍內(nèi),表面張力為0.042~0.056N/m。HPMC的甲氧基值和羥丙基值分別為19%~30%和4%~12%。HPMC生產(chǎn)工藝不同性質(zhì)略有差異,本試驗(yàn)選用山東瑞泰公司生產(chǎn)的HPMC。
試驗(yàn)于2018年4月在西安理工大學(xué)土壤物理實(shí)驗(yàn)室進(jìn)行。不同HPMC含量的入滲試驗(yàn)[12]顯示:HPMC在土壤中施加量為0.1~1.0 g/kg時(shí)入滲狀態(tài)可形成較為鮮明的對(duì)比,但當(dāng)施加量>0.5 g/kg時(shí),入滲速度較為緩慢,土柱達(dá)到飽和所需時(shí)間過長,因此本試驗(yàn)設(shè)計(jì)HPMC的添加比例為0(CK)、0.1、0.2、0.3、0.4、0.5 g/kg,共6個(gè)處理。為控制HPMC黏度不變,HPMC選用中等黏度水平:100 Pa·s。
試驗(yàn)前先將HPMC與備用土樣按照既定比例均勻混合,采用高50 cm、直徑5 cm的圓柱形有機(jī)玻璃土柱作為試驗(yàn)裝置,土柱底部平鋪1層纖維質(zhì)定性濾紙,以防裝土?xí)r土壤顆粒損失造成的裝土不均。將不同HPMC施加量的土樣按照每層5 cm分層裝入土柱內(nèi),裝4層累計(jì)高度為20 cm,容重為1.31 g/cm3,每層裝完之后,表土刮毛,以使土壤層間充分結(jié)合,整體裝填更加均勻。試驗(yàn)供水系統(tǒng)為高40 cm、直徑5 cm的馬氏瓶,控制水頭高度為4.5 cm。
待充分入滲土壤飽和后,馬氏瓶持續(xù)定水頭供水,接土柱下方的出流液,每120 min用量筒計(jì)量1次出流液的體積,,用以計(jì)算土壤飽和導(dǎo)水率K。然后停止向土柱供水,并立即吸去土柱表層積水;供水裝置換為裝有0.2 mol/L CaCl2溶液的馬氏瓶,水頭高度仍保持為4.5 cm,同時(shí)用10 mL量筒在土柱下端接出流液,每滿10 mL接1次,用鉻酸鉀-硝酸銀法[13]測定氯離子濃度,直至出流液中Cl-濃度接近馬氏瓶中Cl-的濃度,且一段時(shí)間相對(duì)穩(wěn)定;采集完出流液后,迅速取土柱每層(每5 cm為1層)中心位置的土樣約5 g,以1∶5的質(zhì)量比將土樣和純水混合,用震蕩器中等轉(zhuǎn)速震蕩30 min,取濾液并測定其Cl-濃度。
本試驗(yàn)用鉻酸鉀-硝酸銀法測定氯離子濃度,具體步驟為:將待測液放入150 mL錐形瓶中,滴加5%鉻酸鉀指示劑8滴,用0.01 mol/L硝酸銀標(biāo)準(zhǔn)溶液滴定,在滴定過程中不斷搖動(dòng)錐形瓶,直至出現(xiàn)磚紅色沉淀且不再消失為止,記錄消耗標(biāo)準(zhǔn)溶液的體積。試驗(yàn)結(jié)束后于2018年6月對(duì)數(shù)據(jù)進(jìn)行了分析。
1.3.1 飽和導(dǎo)水率公式
土壤飽和導(dǎo)水率K是指單位水勢梯度下通過飽和土壤的水通量,與土壤的孔隙結(jié)構(gòu)狀況、容重及土壤質(zhì)地密切相關(guān),是反映土壤水分運(yùn)動(dòng)及影響溶質(zhì)遷移的重要指標(biāo)。定水頭法測定飽和導(dǎo)水率可用公式(1)計(jì)算[14]。
K=/AtH(1)
式中K為飽和導(dǎo)水率,cm/h;為出流量,mL;為土柱長度,cm;為土柱橫截面積,cm2;t為滲透時(shí)間,min;為滲流路徑始末斷面的總水頭差,數(shù)值上等于水頭高度加土柱長度,cm。
1.3.2 溶質(zhì)遷移模型
本試驗(yàn)將Cl-作為示蹤離子,主要研究飽和土壤的一維溶質(zhì)穿透,由于試驗(yàn)結(jié)果表明,溶液的最終穿透濃度與初始濃度基本一致,且不同含量HPMC的土柱剖面處Cl-濃度無明顯差異,證明HPMC對(duì)Cl-在土壤剖面濃度分布的影響不夠明顯。因此選用一維飽和穩(wěn)定流條件下保守性溶質(zhì)運(yùn)移的對(duì)流彌散模型(convection-dispersion equation,CDE)和穩(wěn)定水流條件下兩區(qū)模型(two-region model,TRM)。其中,一維飽和穩(wěn)定流條件下保守性溶質(zhì)運(yùn)移的對(duì)流彌散模型數(shù)學(xué)表達(dá)式如公式(2)所示[15-16]:
式中為水動(dòng)力彌散系數(shù),cm2/h;為平均孔隙流速,cm/h;為延遲因子,由于Cl-在土壤中基本上不發(fā)生反應(yīng),也不被帶有負(fù)電荷的土壤顆粒所吸附,所以在本試驗(yàn)中可以認(rèn)為=1;為土體中的溶質(zhì)濃度,mol/L;0為運(yùn)移溶液的初始濃度,mol/L;為溶質(zhì)穿透時(shí)間變量,h;為垂直方向的坐標(biāo),cm,假定≥0。
穩(wěn)定水流條件下兩區(qū)模型如式(3)所示[16-17]:
式中為土壤體積含水率,cm3/cm3;和分別為可動(dòng)區(qū)和不可動(dòng)區(qū)的體積含水率,cm3/cm3;C和C為可動(dòng)區(qū)和不可動(dòng)區(qū)的溶質(zhì)濃度,g/mL;v為可動(dòng)區(qū)的平均孔隙流速,cm/h;為兩區(qū)之間的質(zhì)量交換系數(shù),h-1。
對(duì)于如下初始條件和連續(xù)輸入的邊界條件可表示為
式中為模擬土樣垂直方向的長度,cm。為單位時(shí)間溶質(zhì)穿過單位橫截面積的溶質(zhì)的摩爾質(zhì)量,10-3mol×cm-2×h-1。
1.3.3 一維條件下的彌散度
一維條件下彌散系數(shù)和彌散度具有如下關(guān)系[18]:
式中0為分子擴(kuò)散系數(shù),cm2/h;為曲折度,%;0表示離子擴(kuò)散系數(shù),為彌散度,cm;為經(jīng)驗(yàn)參數(shù),在飽和情況下近似為1。實(shí)際中離子的擴(kuò)散作用遠(yuǎn)小于彌散作用,可以忽略不計(jì)[19-20],故彌散度可表示為
(10)
1.3.4 其他公式
式中C為相對(duì)濃度,無量綱;液為出流液濃度,mol/L;0為溶液初始濃度,mol/L;為孔隙體積數(shù),無量綱;液為出流液體積,mL;孔為土柱被溶液所充滿的體積,mL[16]。
本文應(yīng)用CXTFIT2.1軟件對(duì)施加不同含量HPMC的6組溶質(zhì)穿透曲線進(jìn)行CDE和兩區(qū)模型的模擬分析,通過對(duì)試驗(yàn)數(shù)據(jù)的擬合得到模型參數(shù)、、、及決定系數(shù)2和殘差平方和殘差平方和(sum of squared residuals,SSQ),其中=θ/θ,為可動(dòng)水體含量比率[16]。應(yīng)用軟件WPS 2017處理試驗(yàn)數(shù)據(jù),Origin 2017繪圖,SPSS19.0進(jìn)行方差分析和經(jīng)驗(yàn)參數(shù)擬合。
添加不同HPMC比例的土壤K變化如圖1所示,HPMC質(zhì)量分?jǐn)?shù)在0~0.5 g/kg范圍內(nèi),K隨HPMC含量的增大而逐漸減小,0.5 g/kg組相比未添加HPMC時(shí)K降低37.3%(<0.05)。這是由于HPMC遇水可溶脹成介于固液之間的一種三維網(wǎng)絡(luò)狀凝膠結(jié)構(gòu),一定程度上填充了土壤孔隙[21]。高杰[22]研究發(fā)現(xiàn)隨著HPMC添加量的增加,面團(tuán)內(nèi)部孔隙的數(shù)量和大小均呈現(xiàn)降低的趨勢。王艷茹[23]研究發(fā)現(xiàn)摻質(zhì)量分?jǐn)?shù)為0.02%的HPMC可以明顯減小發(fā)泡水泥保溫板的孔徑,且表面張力增大。該種結(jié)構(gòu)的形成使土壤水分運(yùn)動(dòng)通道變得更加曲折復(fù)雜,相同時(shí)間內(nèi)土壤出流液減少,且HPMC含量越高,凝膠網(wǎng)絡(luò)結(jié)構(gòu)越密集,飽和導(dǎo)水率越小。
圖1 添加不同比例羥丙基甲基纖維素HPMC后土壤飽和導(dǎo)水率Ks變化
土壤溶質(zhì)穿透曲線(breakthrough curve,BTCs)用以反映流液溶質(zhì)相對(duì)濃度C和孔隙體積數(shù)關(guān)系[24],是研究土壤溶質(zhì)運(yùn)移機(jī)制的一個(gè)重要途徑[25]。圖2為添加不同比例的HPMC后土壤的溶質(zhì)穿透曲線圖,由圖可知:相同的水力梯度下,添加不同含量HPMC土柱的溶質(zhì)穿透曲線形態(tài)與CK組類似,均為S型的平滑曲線。不同處理?xiàng)l件下,S型穿透曲線有逐漸變化的趨勢,即隨HPMC含量增加,相對(duì)濃度隨出流液的增加而逐漸升高的趨勢放緩,拖尾特征均明顯,完全穿透(即相對(duì)濃度為1)時(shí)的孔隙體積數(shù)有所增加,故HPMC的添加對(duì)土壤溶質(zhì)運(yùn)移過程具有一定的延緩效應(yīng)。這是由于示蹤離子Cl-為保守性溶質(zhì)離子,與HPMC不發(fā)生反應(yīng),HPMC與土壤水結(jié)合形成的三維互穿凝膠網(wǎng)絡(luò)一定程度上填充了土壤孔隙[26],使飽和土壤的孔隙結(jié)構(gòu)更為復(fù)雜,溶質(zhì)穿透路徑的彎曲度增加,由此隨著HPMC含量在土壤中的增加,溶質(zhì)的費(fèi)克(Fick)運(yùn)移減弱[27],機(jī)械彌散作用增強(qiáng),完全穿透土柱的孔隙體積數(shù)增加。大小不均的土壤孔隙導(dǎo)致了不均衡的水流流速,從而在土壤剖面形成不均衡的溶質(zhì)鋒,因此HPMC含量的增加造成溶質(zhì)穿透曲線拖尾延長的現(xiàn)象。
圖2 不同比例HPMC土壤的Cl-穿透曲線
初始穿透時(shí)間、完全穿透時(shí)間、穿透總歷時(shí)均為溶質(zhì)穿透的重要特征參數(shù),由土壤的孔隙水流速和水動(dòng)力彌散系數(shù)共同決定。表1為添加不同比例HPMC的Cl-穿透時(shí)間表,由表1可得:HPMC添加量在0~0.5 g/kg范圍內(nèi),1、2均與HPMC含量成正比,HPMC添加量越多,初始穿透時(shí)間和完全穿透時(shí)間越晚,進(jìn)一步觀察可得:0~0.2 g/kg,1、2的增幅較大,0.2~0.5 g/kg時(shí),1、2的增幅放緩。在HPMC質(zhì)量分?jǐn)?shù)為0.1~0.4 g/kg范圍內(nèi),總隨HPMC含量遞增而逐漸增大,HPMC為0.5 g/kg時(shí)的總與0.4 g/kg時(shí)的總相比略有減小,HPMC為0.4 g/kg時(shí)的溶質(zhì)穿透的總歷時(shí)時(shí)間最長。由此說明HPMC含量的增加可在一定程度上使初始穿透時(shí)間、完全穿透時(shí)間和穿透總歷時(shí)延長,間接表明HPMC的施加對(duì)土壤平均孔隙流速有一定的影響。
表1 不同比例HPMC的Cl-穿透時(shí)間
為進(jìn)一步研究施加HPMC土壤的Cl-遷移特征,并對(duì)比分析不同溶質(zhì)遷移數(shù)學(xué)模型[28]的適用性,本文對(duì)CDE方程和兩區(qū)模型進(jìn)行了主要參數(shù)的擬合。由表2可知,CDE方程和兩區(qū)模型對(duì)、和的擬合值隨HPMC含量的變化趨于一致,CDE方程擬合6組試驗(yàn)參數(shù)的決定系數(shù)2高于0.98,SSQ最小值為0.009,而兩區(qū)模型擬合6組試驗(yàn)參數(shù)的2均大于0.999 3,SSQ均小于0.002。這表明CDE方程和兩區(qū)模型均能較好地?cái)M合不同HPMC添加量下溶質(zhì)的運(yùn)移狀況,都具有較高的擬合精度,但兩區(qū)模型相比CDE方程精度更高。進(jìn)一步觀察可得,CDE方程擬合的平均孔隙水流速、水動(dòng)力彌散系數(shù)和彌散系數(shù)均不同程度地偏大,原因是傳統(tǒng)的CDE模型只考慮溶質(zhì)的對(duì)流彌散作用,而不考慮溶質(zhì)在土壤不可動(dòng)區(qū)內(nèi)的溶質(zhì)擴(kuò)散[9],而對(duì)流彌散和擴(kuò)散均能引起土壤溶質(zhì)的分散,兩者共同構(gòu)成水動(dòng)力彌散作用。
表2 對(duì)流彌散方程和兩區(qū)模型參數(shù)擬合結(jié)果
劉艷麗等[29]的Cl-穿透試驗(yàn)的供試土樣黏粒質(zhì)量分?jǐn)?shù)為5.53%,粉粒為19.32%,砂粒為75.15%,土壤類型為砂質(zhì)壤土,水頭高度為7 cm,試驗(yàn)的、和的擬合值分別為13.64 cm/h、0.264 cm2/h和0.019。而本試驗(yàn)的供試土樣為擾動(dòng)土,黏粒和粉??偟馁|(zhì)量分?jǐn)?shù)高達(dá)91%,砂粒僅占0.09%,屬粉砂質(zhì)壤土,水頭高度為4.5 cm。由于土粒中的粉粒及黏粒所占比例越大,土壤的滲透性越低,擾動(dòng)土因結(jié)構(gòu)受到破壞,滲透系數(shù)與原狀土相比越小[30];水頭高度越低,滲透速度越慢;HPMC的添加可以降低入在土壤中的入滲率[12],因此在本試驗(yàn)條件下擬合出的、和值較小。呂金榜等[31]對(duì)離子遷移過程的研究數(shù)據(jù)也可進(jìn)行相同的類比分析。
為了更直觀地對(duì)比實(shí)測、CDE方程和兩區(qū)模型模擬的溶質(zhì)穿透曲線之間的區(qū)別和聯(lián)系,將HPMC質(zhì)量分?jǐn)?shù)為0~0.5 g/kg時(shí)的3種溶質(zhì)穿透曲線繪于圖3。觀察圖3可知,CDE方程和兩區(qū)模型擬合曲線均能與實(shí)測曲線較好吻合,但CDE方程擬合的各組曲線與實(shí)測曲線均有不同程度的疏離現(xiàn)象,尤其是HPMC質(zhì)量分?jǐn)?shù)為0~0.2 g/kg時(shí)曲線的疏離現(xiàn)象更為明顯;用t表示平均穿透時(shí)間(大小為1和2的平均值),在1~tm范圍內(nèi),CDE擬合曲線均高于實(shí)測曲線,t~2范圍內(nèi),CDE擬合曲線先低于后略高于實(shí)測曲線;而兩區(qū)模型的擬合結(jié)果與實(shí)測曲線吻合程度較高,無明顯疏離現(xiàn)象,在早期穿透和臨近完全穿透時(shí)也均達(dá)到了較高的擬合水平。這表明添加HPMC的土壤中的溶質(zhì)運(yùn)移方式既包括可動(dòng)區(qū)的對(duì)流彌散形式,又不可忽略土壤水相對(duì)不運(yùn)動(dòng)的不可動(dòng)區(qū)域中的溶質(zhì)擴(kuò)散形式,溶質(zhì)必須在土壤的可動(dòng)和不可動(dòng)2個(gè)區(qū)域均達(dá)到平衡時(shí)才算穿透完成。以上分析進(jìn)一步表明,與CDE方程相比,兩區(qū)模型可以更好地模擬添加不同含量HPMC時(shí)土壤溶質(zhì)的運(yùn)移規(guī)律,擬合結(jié)果可信度較高。
將HPMC質(zhì)量分?jǐn)?shù)與兩區(qū)模型擬合的參數(shù)和進(jìn)行相關(guān)性分析,結(jié)果如表3所示,HPMC含量與?和的相關(guān)性達(dá)到顯著性水平。將HPMC質(zhì)量分?jǐn)?shù)用表示,假設(shè)與和間的函數(shù)關(guān)系如式(13)所示,、1、2、3、4均為經(jīng)驗(yàn)參數(shù)。
式中為HPMC質(zhì)量分?jǐn)?shù),g/kg;為平均孔隙流速,cm/h;為水動(dòng)力彌散系數(shù),cm2/h;為可動(dòng)區(qū)含水量比率;為質(zhì)量交換系數(shù),h-1。
采用多元回歸分析法將表2中0、0.1、0.2、0.4和0.5 g/kg 5組與對(duì)應(yīng)的兩區(qū)模型的和值進(jìn)行擬合,并將擬合所得各經(jīng)驗(yàn)參數(shù)代入式(13),可得經(jīng)驗(yàn)公式如式(14)所示。擬合模型2為0.969(<0.05),精度較高,可以較好地反映HPMC濃度與兩區(qū)模型各參數(shù)間的關(guān)系。
表3 HPMC含量與兩區(qū)模型各參數(shù)Pearson相關(guān)性分析
注:*在0.05級(jí)別(雙尾),相關(guān)性顯著。
Note:*, the correlation is significant at the level of 0.05 (two-tailed).
為驗(yàn)證式(14)的準(zhǔn)確性,用HPMC質(zhì)量分?jǐn)?shù)為0.3 g/kg試驗(yàn)組的、、和參數(shù)代入式(14),得的估算值為0.31,與實(shí)際值的相對(duì)誤差僅為3%??梢姡剑?4)用于估算HPMC添加量簡便可行。
結(jié)合表2兩區(qū)模型參數(shù)擬合結(jié)果,對(duì)其相應(yīng)參數(shù)的變化特征分析如下:
1)平均孔隙水流速
指土壤的有效水流通量,即單位時(shí)間內(nèi)流過單位過流斷面的液體體積[32]。由表1可得:在HPMC質(zhì)量分?jǐn)?shù)為0~0.5 g/kg的范圍內(nèi),平均孔隙水流速由兩區(qū)模型所得擬合值在0.904 cm/h范圍內(nèi),且值均隨HPMC添加量增加而減小。這可能是由于HPMC與土壤水結(jié)合形成三維凝膠網(wǎng)絡(luò)導(dǎo)致土壤孔徑減小,水流通道變窄的緣故。
2)水動(dòng)力彌散系數(shù)
水動(dòng)力彌散引起的溶質(zhì)通量被稱為水動(dòng)力彌散系數(shù)。兩區(qū)模型擬合不同HPMC含量下的隨HPMC添加量增加而增大。由于水動(dòng)力彌散作用的大小是由含水率和孔隙水流速共同決定的[32-34],而HPMC的添加降低了土壤的平均孔隙水流速,增加了水流通道彎曲度,因此Cl-在穿透過程中的機(jī)械彌散作用增強(qiáng),水動(dòng)力彌散系數(shù)有隨HPMC含量的增加而顯著增加的趨勢。
3)彌散度
用以表征溶質(zhì)在孔隙介質(zhì)中的彌散能力,其大小與孔隙介質(zhì)的平均粒徑和均勻度間密不可分,數(shù)量上等于和的比值,越大,孔隙介質(zhì)的溶質(zhì)擴(kuò)散能力就越強(qiáng)。由表1和表2可知:隨HPMC添加量增加而增加,這表明HPMC的添加量越大,土壤溶質(zhì)的彌散度越大,溶質(zhì)在土壤中充分?jǐn)U散的能力就越強(qiáng)。
4)可動(dòng)區(qū)含水量比率
可動(dòng)區(qū)含水量比率表示均衡條件下,可動(dòng)區(qū)域中溶質(zhì)所占土體總濃度的百分比[35]。值越接近于1說明溶質(zhì)在運(yùn)移過程中受到的物理非平衡機(jī)制的影響越小,即可認(rèn)為是物理平衡過程[36]。通過兩區(qū)模型的模擬結(jié)果可得:隨HPMC含量的增加,由0.946 減少至0.925 。的減少表明不可動(dòng)區(qū)水體的含水率增加,溶質(zhì)穿透物理過程更加趨于平衡。
5)質(zhì)量交換系數(shù)
是表征可動(dòng)區(qū)和不可動(dòng)區(qū)域之間溶質(zhì)交換程度的參數(shù)[24]。由表1和表2可得,供試土壤隨HPMC添加量增加而增加,隨著HPMC添加量由0增加到0.5 g/kg,值由1.43增加到5.63。由此可見HPMC的添加促進(jìn)了可動(dòng)區(qū)和不可動(dòng)區(qū)域之間溶質(zhì)交換程度,促進(jìn)了Cl-向水分幾乎無法流動(dòng)的土壤微孔和死孔的擴(kuò)散,證明了HPMC有促進(jìn)溶質(zhì)離子在土壤中充分存儲(chǔ)和擴(kuò)散的潛力。
通過添加HPMC土壤的CaCl2溶質(zhì)穿透試驗(yàn),運(yùn)用CDE方程和兩區(qū)模型進(jìn)行模擬及對(duì)比分析,結(jié)果表明:
1)HPMC質(zhì)量分?jǐn)?shù)在0~0.5 g/kg范圍內(nèi),飽和導(dǎo)水率隨HPMC添加量增大而逐漸減小,相比不添加HPMC組最多降低37.3%;土壤中保守性溶質(zhì)的運(yùn)移速度顯著降低;隨HPMC含量增加,溶質(zhì)的初始和完全穿透時(shí)間明顯推遲,穿透總歷時(shí)延長;2)CDE方程和兩區(qū)模型均能較好地模擬在土壤中添加不同含量HPMC時(shí)溶質(zhì)的運(yùn)移狀況,但CDE方程各擬合曲線與實(shí)測曲線間略有疏離,兩區(qū)模型的擬合精度更高,效果更好;3)基于兩區(qū)模型的參數(shù)擬合結(jié)果,隨HPMC添加量增加,平均孔隙水流速越小,水動(dòng)力彌散系數(shù)、彌散度和質(zhì)量交換系數(shù)均呈增加趨勢,土壤可動(dòng)水體的含水量比率逐漸減少。
[1] Han Minbing.The development and prospect of HPMC[J]. Meticulous and Specialty Chemicals, 1998(12): 1-3.
[2] 張秋菊. 羥丙基甲基纖維素(HPMC)在PVC工業(yè)中的應(yīng)用[J]. 聚氯乙烯,2007,35(5):22-24.Zhang Qiuju. Theapplication of hydroxypropylmethylcellulose (HPMC) to PVC industry[J]. Polyvinyl Chloride, 2007,35(5): 22-24. (in Chinese with English abstract)
[3] 王昕昕,劉元法,李進(jìn)偉. HPMC的持水性能及其對(duì)面包酵母抗凍性的影響[J]. 食品與生物技術(shù)學(xué)報(bào),2018,37(4):355-359. Wang Xinxin, Liu Yuanfa, Li Jinwei. Water-holding capacity of HPMC and its antifreeze effect on baker's yeast cells[J]. Journal of Food Science and Biotechnology, 2008, 37(4): 355-359. (in Chinese with English abstract)
[4] 劉海燕,張娟娟,王曉梅,等. 不同膠體對(duì)面包烘焙特性的影響研究[J]. 中國食品添加劑,2014,25(7):129-134. Liu Haiyan, Zhang Juanjuan, Wang Xiaomei, et al. Effect of different hydrocolloids on baking performance of bread[J]. China Food Additives, 2014, 25(7): 129-134.(in Chinese with English abstract)
[5] Rouille J, Delia V G, Lefebvre J, et al. Shear and extensional properties of bread doughs affected by their minor components[J]. Journal of Cereal Science, 2005, 42 (1): 45-57.
[6] 張兆燁,陳光,孫旸,等. 復(fù)合大豆分離蛋白膜力學(xué)性能研究[J]. 食品工業(yè)科技,2013,34(5):71-75. Zhang Zhaoye, Chen Guang, Sun Yang, et al. Study on the mechanical properties of composite film of soybean isolated protein[J]. Science and Technology of Food Industry, 2013, 34(5): 71-75. (in Chinese with English abstract)
[7] 王易. 新型生物種衣劑的研究[D]. 長沙: 湖南農(nóng)業(yè)大學(xué), 2014:2-3. Wang Yi. Research on New Biological Seed Coat Agents [D]. Changsha: Hunan Agricultural University, 2014: 2-3. (in Chinese with English abstract)
[8] 王海燕. 羥丙基甲基纖維素(HPMC)作為種衣成膜劑的應(yīng)用性能研究[J]. 天津農(nóng)業(yè)科學(xué),2018,24(6):60-62. Wang Haiyan. Study on the application performance of hydroxylpropyl methyl cellulose as a kind of membrane- forming agent[J]. Tianjin Agricultural Sciences, 2008, 24(6): 60-62. (in Chinese with English abstract)
[9] 楊建鋒,萬書勤,鄧偉,等. 地下水淺埋條件下包氣帶水和溶質(zhì)運(yùn)移數(shù)值模擬研究述評(píng)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2005,21(6):158-165. Yang Jianfeng, Wan Shuqin, Deng Wei, et al. Review of numerical simulation of soil water flow and solute transport in the presence of a water table[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2005, 21(6): 158-165.(in Chinese with English abstract)
[10] 魏峰,王全九,周蓓蓓. 考慮尺度效應(yīng)的瞬時(shí)輸入溶質(zhì)運(yùn)移模型及解析解[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(16):129-135. Wei Feng, Wang Quanjiu, Zhou Beibei, et al. Analytical solution for scale-dependent solute transport model with instantaneous source[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(16): 129-135. (in Chinese with English abstract)
[11] 王百田,馬豐斌,張府娥,等. 凝膠狀保水劑使用效果研究[J]. 水土保持學(xué)報(bào),2005,19(2):65-68.Wang Baitian, Ma Fengbin, Zhang Fue, et al. Study on application effect of gelatin of super absorbent polymers[J]. Journal of Soil and Water Conservation, 2005, 19(2): 65-68. (in Chinese with English abstract)
[12] 吳軍虎,任敏. 羥丙甲纖維素對(duì)土壤水分入滲特性及水穩(wěn)性團(tuán)聚體的影響[J]. 水土保持學(xué)報(bào),2018,32(6):66-71,235. Wu Junhu, Ren Min. Effect of hydroxypropyl methyl cellulose on soil water movement and water stable aggregate[J]. Journal of Soil and Water Conservation, 2018, 32(6): 66-71, 235. (in Chinese with English abstract)
[13] 李小囝,郭崇武,羅小平. 氯化物三價(jià)鉻鍍鉻液中氯離子和溴離子總濃度的測定[J]. 電鍍與涂飾,2017,36(4):49-50. Li Xiaojian, Guo Chongwu, Luo Xiaoping. Determination of total concentration of chloride and bromide ions in trivalent chromium plating bath in chloride system[J]. Electroplating & Finishing, 2017,36(4): 49-50. (in Chinese with English abstract)
[14] 邵明安,王全久,黃明斌. 土壤物理學(xué)[M]. 北京:高等教育出版社,2006.
[15] Van Genuchten M Th, Wagenet R J. Two-site/two-region models for pesticide transport and degradation: Theoretical development and analytical solutions[J]. Soil Sci Soc Am J, 1989, 53: 1303-1310
[16] 周蓓蓓. 土石混合介質(zhì)水分溶質(zhì)運(yùn)移的試驗(yàn)研究[D].楊凌:西北農(nóng)林科技大學(xué),2009. Zhou Beibei. Experimental Study on Water and Soil Transport of the Soil-stone Mixture.[D]. Yangling: Northwest Sci-Tech University of Agriculture and Forestry, 2009. (in Chinese with English abstract)
[17] 李韻株,李保國. 土壤溶質(zhì)運(yùn)移[M] 北京:科學(xué)出版社 1998.
[18] Bear J. Hydraulics of Groundwater[M]. New York:Mc Graw-Hill, 1979.
[19] 李新潔,李功勝,賈現(xiàn)正. 非對(duì)稱分?jǐn)?shù)階對(duì)流彌散的數(shù)值模擬及參數(shù)反演[J]. 高等學(xué)校計(jì)算數(shù)學(xué)學(xué)報(bào),2013,35(4):309-326. Li Xinjie, Li Gongsheng, Jia Xianzheng. Numerical simulation and parameters inversion for non-symmetric fractional advection dispersion equation[J]. Numerical Mathematics A Journal of Chinese Universities, 2013, 35(4): 309-326. (in Chinese with English abstract)
[20] 鄭紀(jì)勇,邵明安,張興昌,等. 坡地土壤溶質(zhì)遷移參數(shù)的空間變異特性[J]. 應(yīng)用生態(tài)學(xué)報(bào),2005,16(7):1285-1289. Zheng Jiyong, Shao Mingan, Zhang Xingchang, et al. Spatial variability of slope land soil solute transport parameters[J]. Chinese Journal of Applied Ecology, 2005,16(7): 1285-1289. (in Chinese with English abstract)
[21] 杜聰,賈曉輝,沈青. HPMC水凝膠溶脹性能的影響因素研究[J]. 纖維素科學(xué)與技術(shù),2011,19(1):47-51. Du Cong, Jia Xiaohui, Shen Qing. Influencing factors in swelling of HPMC hydrogel[J]. Journal of Cellulose Science and Technology, 2011, 19(1): 47-51. (in Chinese with English abstract)
[22] 高杰. 羥丙基甲基纖維素(HPMC)對(duì)面團(tuán)加工性質(zhì)和油條品質(zhì)的影響及相關(guān)機(jī)理研究[D]. 合肥:合肥工業(yè)大學(xué),2018. Gao Jie. Study on the Effect of Hydroxypropyl Methylcellulose (HPMC) on the Processing Properties of Dough and the Quality of Youtiao and the Related Mechanisms[D]. Hefei:Hefei University of Technology, 2018. (in Chinese with English abstract)
[23] 王艷茹. 羥丙基甲基纖維素醚對(duì)改性發(fā)泡水泥保溫板孔結(jié)構(gòu)和性能的影響[J]. 新型建筑材料,2017,44(9):119-122. Wang Yanru. Effect of HPMC on the pore structure and properties of foam cement insulation board[J]. New Building Materials, 2017, 44(9): 119-122. (in Chinese with English abstract)
[24] Bear J. Dynamics of Fluids in Porous Media[M].New York: Courier Corporation, 2013.
[25] Hillel D. Environmental Soil Physics: Fundamentals, Applications, and Environmental Considerations[M].Pittsburgh: Academic press, 1998.
[26] 翟茂林,哈鴻飛. 水凝膠的合成、性質(zhì)及應(yīng)用[J]. 大學(xué)化學(xué),2001,16(5):22-27.
[27] Berkowitz B, ScherH, Silliman S E. Anomalous transport in labora-tory-scale, heterogeneous porous media[J]. Water Resour Res, 2000, 36(1): 149-158.
[28] 高光耀,馮紹元,黃冠華. 飽和非均質(zhì)土壤中溶質(zhì)大尺度運(yùn)移的兩區(qū)模型模擬[J]. 土壤學(xué)報(bào),2008,61(3):398-404. Gao Guangyao, Feng Shaoyuan, Huang Guanhua. Simulation of solute transport at large scale in saturated heterogeneous soil with two region model[J]. Acta Pedologica Sinica, 2008,61(3): 398-404. (in Chinese with English abstract)
[29] 劉艷麗,周蓓蓓,王全九,等. 納米碳對(duì)黃綿土水分運(yùn)動(dòng)及溶質(zhì)遷移特征的影響[J]. 水土保持學(xué)報(bào),2015,29(1):21-25. Liu Yanli, Zhou Beibei, Wang Quanjiu, et al. Effects of nano-carbon on water movement and solute transport in loessial soil[J]. Journal of Soil and Water Conservation, 2015, 29(1): 21-25. (in Chinese with English abstract)
[30] 吳曙光. 土力學(xué)[M]. 重慶:重慶大學(xué)出版社,2016.
[31] 呂金榜,周蓓蓓,王全九,等. 納米TiO2對(duì)土壤水分運(yùn)動(dòng)及離子遷移過程影響的試驗(yàn)研究[J]. 水土保持研究,2015,22(5):58-61,66. Lü Jinbang, Zhou Beibei, Wang Quanjiu, et al. Experimental study on effects of nano TiO2on water movement, solute transport in soil columns[J]. Research of Soil and Water Conservation, 2015, 22(5): 58-61,66. (in Chinese with English abstract)
[32] 王慧芳,邵明安. 土石混合介質(zhì)中非反應(yīng)性陰離子運(yùn)移試驗(yàn)研究[J]. 水科學(xué)進(jìn)展,2007,18(2):164-169. Wang Huifang, Shao Mingan. Experimental study of non-reactive anion transport in the soil-stone mixture [J]. Advances in Water Science, 2007, 18(2): 164-16. (in Chinese with English abstract)
[33] 許迪,程先軍. 地下滴灌土壤水運(yùn)動(dòng)和溶質(zhì)運(yùn)移數(shù)學(xué)模型的應(yīng)用[J]. 農(nóng)業(yè)工程學(xué)報(bào),2002,18(1):27-30,12. Xu Di, Cheng Xianjun. Model application of water flow and solute transport during non-steady diffusion from subsurface emitter source[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2002, 18(1): 27-30, 12.(in Chinese with English abstract)
[34] 田世英,羅紈,賈忠華,等. 用溶質(zhì)運(yùn)移理論評(píng)價(jià)污水土地處理系統(tǒng)長期運(yùn)行的處理效果[J]. 農(nóng)業(yè)工程學(xué)報(bào), 2006(6): 152-156. Tian Shiying, Luo Wan, Jia Zhonghua, et al. Long-term treatment effect of wastewater land treatment system with solute transport theory[J].Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2006(6): 152-156. (in Chinese with English abstract)
[35] Schulin R, Genuchten M T, Flühler H, et al. An experimental study of solute transport in a stony field soil[J]. Water Resources Research, 1987, 23(9): 1785-1794.
[36] Gonzalez J, Ukrainczyk L. Transport of nicosulfuron in soil columns[J]. Journal of Environmental Quality, 1999, 28(1): 101-107.
Effect of hydroxypropyl methyl cellulose as soil modifier on solute migration in soil
Wu Junhu, Ren Min
(710048,)
Hydroxypropyl methyl cellulose (HPMC) is a kind of soil modifier. Effect of HPMC addition on solute migration characteristics of soil was studied in this study. The test soil was silty loam. HPMC was added into soils based on different contents of 0, 0.1, 0.2, 0.3, 0.4 and 0.5 g/kg. The column-shaped plexiglass soil column with a height of 50 cm and a diameter of 5 cm was prepared. The soil loading height was 20 cm and the bulk density was 1.31 g/cm3. Water was supplied in a Markov bottle. After the soil column was fully infiltrated, water was supplied continuously at the fixed water head of 4.5 cm. The effluent was collected to calculate the saturated water conductivity of the soil. Then, water supply stopped and the surface water of column was removed. The water was replaced with 0.2 mol/LCaCl2solution for the solute migration experiment. Tubes (10 mL) were used to collect the fluid at the lower end of the soil column once every 10 mL. The concentration of chlorine ions was determined by potassium chromate-silver nitrate method until the concentration of Cl-in effluent almost equaled to that in markov bottle. At the end of the experiment, the saturated water conductivity, penetration curve characteristics and penetration time of soil under different HPMC additions were compared and analyzed. The main parameters of the convection-dispersion equation (CDE) and the two-region model (TRM) were fitted by the software CXTIFIT2.1. The migration characteristics of soil solute were further studied by analyzing the change of parameters. The results showed that: 1) When the HPMC content was within the range of 0-0.5 g/kg, and the saturated conductivity decreased with the increase of HPMC content. 2) Applying a certain amount of HPMC in the soil could significantly reduce the migration velocity of solute. With the increase of HPMC content, the relative concentration of solute decreased with the same pore volume. 3) Increasing HPMC addition content could delay the initial penetration time and complete penetration time, and thus the total penetration time. 4) Both the CDE and TRM models could well simulate the migration of solute in soils with different contents of HPMC. The fitting curves of both models could be in good agreement with the measured curves, but the simulation accuracy of the TRM model was higher. 5) Based on the parameter fitting results of the TRM, with the increase of HPMC, the mean pore water velocity was smaller, and the hydrodynamic dispersion coefficient, dispersion degree and mass exchange coefficient were increased. Since HPMC had good water holding capacity, the application of HPMC also increased the water content ratio of immovable water in soil. Therefore, HPMC has great potential in adjusting soil pore structure and slowing soil nutrient loss. This study provides new ideas and methods for improving soil and water nutrient loss.
solute; models; soils;hydroxypropyl methyl cellulose; saturated hydraulic conductivity; breakthrough curve; convection-dispersion equation
2018-08-03
2019-01-24
國家自然科學(xué)基金重點(diǎn)項(xiàng)目(51239009);西北旱區(qū)生態(tài)水利工程國家重點(diǎn)實(shí)驗(yàn)室科研課題項(xiàng)目(2016ZZKT-9);陜西省教育廳重點(diǎn)實(shí)驗(yàn)室科研計(jì)劃項(xiàng)目(17JS096)
吳軍虎,博士,副教授,主要從事農(nóng)業(yè)水土工程與水文水資源研究。Email:wujunhu@126.com
10.11975/j.issn.1002-6819.2019.05.017
S153.5
A
1002-6819(2019)-05-0141-07
吳軍虎,任 敏[J]. 羥丙基甲基纖維素作土壤改良劑對(duì)土壤溶質(zhì)運(yùn)移的影響,2019,35(5):141-147. doi:10.11975/j.issn.1002-6819.2019.05.017 http://www.tcsae.org
Wu Junhu, Ren Min. Effect of hydroxypropyl methyl cellulose as soil modifier on solute migration in soil[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(5): 141-147. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.05.017 http://www.tcsae.org