常加富,徐鵬舉,劉兆遠(yuǎn),董玉平,于 杰,董 磊
?
玉米秸稈循環(huán)流化床氣化爐氣化工藝參數(shù)優(yōu)化
常加富1,2,徐鵬舉1,劉兆遠(yuǎn)1,董玉平3※,于 杰1,董 磊1
(1. 山東百川同創(chuàng)能源有限公司,濟(jì)南 250101;2. 山東省生物質(zhì)能清潔轉(zhuǎn)化工程實(shí)驗(yàn)室,濟(jì)南 250061;3. 山東大學(xué)高效潔凈機(jī)械制造教育部重點(diǎn)實(shí)驗(yàn)室,濟(jì)南 250061)
為實(shí)現(xiàn)秸稈類農(nóng)業(yè)生物質(zhì)廢棄物的高效清潔能源化轉(zhuǎn)化利用,采用帶有二級(jí)返料系統(tǒng)的循環(huán)流化床氣化爐對(duì)玉米秸稈進(jìn)行了氣化試驗(yàn)。在二級(jí)返料系統(tǒng)開啟及閉合條件下,選取空氣當(dāng)量比為0.20~0.35,研究空氣當(dāng)量比對(duì)玉米秸稈氣化特性的影響,結(jié)果表明二級(jí)返料系統(tǒng)開啟及閉合兩種工況均在空氣當(dāng)量比為0.26時(shí)取得較優(yōu)值,二級(jí)返料系統(tǒng)開啟時(shí)具有較好的氣化效果,碳轉(zhuǎn)化率與氣化效率最大值分別達(dá)到93.54%與77.06%。在二級(jí)返料系統(tǒng)開啟狀態(tài)下,試驗(yàn)研究了水蒸氣配比對(duì)玉米秸稈氣化特性的影響,結(jié)果表明以空氣為主氣化介質(zhì),輔助以水蒸氣氣化,可以有效改善氣化燃?xì)馄焚|(zhì),提升氣化效率。當(dāng)空氣當(dāng)量比為0.26、水蒸氣配比為0.2時(shí),玉米秸稈空氣—水蒸氣氣化具有較好的氣化特性,燃?xì)鉄嶂蹬c氣化效率分別達(dá)到最大值5.89 MJ/m3與81.45%。典型工況條件下的焦油蒸餾餾分分析結(jié)果表明,提高氣化爐反應(yīng)溫度,并保持一定的水蒸氣氣化環(huán)境,可促進(jìn)焦油裂解轉(zhuǎn)化。試驗(yàn)可為秸稈類生物質(zhì)的高效清潔轉(zhuǎn)化利用提供參考依據(jù)。
生物質(zhì);氣化;優(yōu)化;玉米秸稈;循環(huán)流化床;空氣當(dāng)量比;水蒸氣;二級(jí)返料系統(tǒng)
中國(guó)的秸稈資源非常豐富,2016年玉米、小麥、水稻等秸稈的產(chǎn)量已達(dá)9.96億t,其中玉米秸稈的年產(chǎn)出量約3.32億t,占總秸稈量的41.5%,約合1.7億t標(biāo)準(zhǔn)煤[1-2]。隨著高度依賴化石能源導(dǎo)致的環(huán)境污染問題凸顯,以及社會(huì)經(jīng)濟(jì)發(fā)展對(duì)清潔能源的迫切需求,科學(xué)合理地利用秸稈資源,開發(fā)秸稈類生物質(zhì)資源的高效清潔轉(zhuǎn)化利用技術(shù),是實(shí)現(xiàn)農(nóng)業(yè)可持續(xù)發(fā)展的有效途徑[3-5]。
在生物質(zhì)能源工程化轉(zhuǎn)化利用方式中,氣化是應(yīng)用最廣泛的技術(shù)之一[6-9]。然而,傳統(tǒng)固定床氣化技術(shù)生產(chǎn)強(qiáng)度與能量轉(zhuǎn)化效率較低,不適宜較大規(guī)模的工業(yè)化放大應(yīng)用[10-12]。生物質(zhì)氣化的高效轉(zhuǎn)化利用技術(shù)已經(jīng)引起諸多學(xué)者的關(guān)注,并在其轉(zhuǎn)化應(yīng)用方面進(jìn)行了有重要意義的探索[13-17]。其中,流化床氣化工藝對(duì)生物質(zhì)原料的適應(yīng)性強(qiáng),反應(yīng)爐內(nèi)氣流與溫度分布均勻,容易實(shí)現(xiàn)商業(yè)化,適于應(yīng)用在大型裝置系統(tǒng)[18-19]。孫佳偉[20]針對(duì)生物質(zhì)低溫氣化燃?xì)鉄嶂递^低及焦油含量高的問題,提出了可實(shí)現(xiàn)高溫?zé)峤馀c氣化的生物質(zhì)高溫旋風(fēng)流化熱解氣化工藝。Zeng等[21-22]研究了中藥渣類生物質(zhì)的流化床熱解氣化工藝,并建設(shè)了工業(yè)示范工程,可以產(chǎn)出低焦油含量的生物質(zhì)燃?xì)狻uo等[23]對(duì)循環(huán)流化床氣化系統(tǒng)進(jìn)行了改進(jìn),通過增加返料管將二級(jí)旋風(fēng)分離器分離出的較大粒徑的顆粒物返至流化床主爐,提高了氣化效率及碳轉(zhuǎn)化率。于杰等[24]采用循環(huán)流化床,以氣化燃?xì)怙@熱加熱空氣,使用預(yù)熱空氣為氣化劑對(duì)玉米秸稈進(jìn)行了熱解氣化,與常溫空氣氣化結(jié)果相比,氣化效率及燃?xì)鉄嶂稻刑岣摺\嚨掠碌萚25]建立了生物質(zhì)在流化床中空氣—水蒸氣氣化模型,綜合考慮了氣化工藝碳不完全轉(zhuǎn)化的特性,對(duì)生物質(zhì)在流化床中的空氣—水蒸氣氣化反應(yīng)進(jìn)行模擬,表明水蒸氣對(duì)于生物質(zhì)類原料的氣化反應(yīng)具有良好的促進(jìn)作用。
已有的研究報(bào)道表明,生物質(zhì)氣化的能量轉(zhuǎn)化效率較低、轉(zhuǎn)化過程中產(chǎn)生的副產(chǎn)物焦油含量高,仍是制約氣化技術(shù)工程化推廣應(yīng)用的主要原因,而采用雙回路循環(huán)流化床,以預(yù)熱空氣與水蒸氣為氣化劑,可以具有較好的氣化效果。為研究玉米秸稈高效清潔氣化轉(zhuǎn)化的可行性,探索適合的氣化工藝工作參數(shù),在循環(huán)流化床基礎(chǔ)上,建立帶有二級(jí)返料裝置的雙回路循環(huán)流化床進(jìn)行氣化試驗(yàn),對(duì)比二級(jí)返料系統(tǒng)開啟及閉合狀態(tài)下空氣當(dāng)量比對(duì)氣化特性的影響,試驗(yàn)驗(yàn)證水蒸氣配比對(duì)氣化效果的提升作用,得到較優(yōu)的工況條件,并對(duì)氣化燃?xì)庵械慕褂蜆悠愤M(jìn)行了餾程分析,探索氣化轉(zhuǎn)化過程參數(shù)對(duì)焦油轉(zhuǎn)化的影響作用,以期為實(shí)現(xiàn)玉米秸稈等生物質(zhì)廢棄物的高效清潔轉(zhuǎn)化利用提供借鑒。
選用農(nóng)業(yè)生產(chǎn)中產(chǎn)生量大的玉米秸稈為原料,樣品取自山東省鄒城市,將新鮮秸稈清除根部泥土,保留秸稈根莖葉完整。試驗(yàn)前利用鍘草機(jī)將秸稈切成段狀,使用秸稈粉碎機(jī)對(duì)原料進(jìn)行粉碎至粒徑<10 mm,采用熱風(fēng)爐干燥至含水率約15%備用。試驗(yàn)原料的工業(yè)分析和元素分析見表1。
表1 玉米秸稈原料的工業(yè)分析與元素分析
氣化試驗(yàn)裝置如圖1所示,主要包括生物質(zhì)原料進(jìn)料系統(tǒng)、循環(huán)流化床氣化爐、二級(jí)返料系統(tǒng)、石英砂床料供給系統(tǒng)、空氣預(yù)熱器、水蒸氣發(fā)生器、燃?xì)鈨艋到y(tǒng)、溫度與壓力檢測(cè)系統(tǒng)。流化床主爐為內(nèi)徑約0.35 m的圓柱結(jié)構(gòu),主體高度約10 m,使用粒徑0.3~0.8 mm的石英砂為床料,采用水蒸氣發(fā)生器與空氣預(yù)熱器回收氣化燃?xì)怙@熱,產(chǎn)出的水蒸氣及熱空氣通入氣化爐作為氣化劑,在氣化爐底部風(fēng)室入口管道設(shè)置調(diào)節(jié)閥與流量計(jì),調(diào)節(jié)并控制進(jìn)入氣化爐內(nèi)的氣化介質(zhì)量。
沿氣化爐主爐軸向方向自下而上設(shè)置4 組溫度熱電偶和壓力傳感器,在線監(jiān)測(cè)氣化爐運(yùn)行溫度與壓力。T1/P1、T2/P2、T3/P3、T4/P4測(cè)量點(diǎn)分別位于距氣化爐主爐底部約1、4、6、8 m處。為減小對(duì)氣化爐內(nèi)部流場(chǎng)干擾的影響,所有檢測(cè)器僅伸入主爐內(nèi)壁約20 mm。
試驗(yàn)所用玉米秸稈原料密度小、質(zhì)量較輕,在流化床氣化過程中,未及時(shí)完全反應(yīng)的顆粒原料容易隨氣流攜帶出氣化系統(tǒng),導(dǎo)致氣化爐出口氣體中的飛灰含量大,且會(huì)降低系統(tǒng)氣化效率與碳轉(zhuǎn)化率。為此,氣化試驗(yàn)系統(tǒng)設(shè)置了可以與一級(jí)返料閥及除灰裝置分別連通或斷開的二級(jí)返料系統(tǒng)。試驗(yàn)過程中,玉米秸稈原料通過進(jìn)料裝置保持連續(xù)均勻供給,首先經(jīng)過流化床與一級(jí)返料裝置組成的循環(huán)流化床進(jìn)行氣化反應(yīng),隨后進(jìn)入二級(jí)返料系統(tǒng)的氣固旋風(fēng)分離器,當(dāng)二級(jí)返料系統(tǒng)與一級(jí)返料閥連接管路開啟時(shí),分離出的固體顆粒物返回至氣化爐進(jìn)行再次循環(huán)反應(yīng);當(dāng)二級(jí)返料系統(tǒng)與一級(jí)返料閥連接管路關(guān)閉時(shí),分離出的固體顆粒物經(jīng)除灰裝置排出。
試驗(yàn)運(yùn)行中,需注意觀測(cè)系統(tǒng)溫度與壓力數(shù)據(jù)變化,氣化爐進(jìn)料量與配風(fēng)量保持不變時(shí),當(dāng)氣化爐溫度出現(xiàn)升高趨勢(shì),則需要向爐體內(nèi)補(bǔ)充石英砂床料控制系統(tǒng)溫度;當(dāng)氣化爐底部壓力出現(xiàn)升高趨勢(shì),需要對(duì)氣化爐排渣,并補(bǔ)充石英砂床料保持系統(tǒng)壓力穩(wěn)定。二級(jí)返料系統(tǒng)關(guān)閉狀態(tài)下,循環(huán)流化床中石英砂床料逐漸減少;在二級(jí)返料系統(tǒng)開啟時(shí),系統(tǒng)床料循環(huán)量降低速率變緩,但循環(huán)流化床中石英砂床料也會(huì)逐漸減少;兩種狀態(tài)下,均需要及時(shí)向氣化爐內(nèi)添加補(bǔ)充石英砂床料。補(bǔ)充石英砂床料時(shí),調(diào)節(jié)床料供給絞龍轉(zhuǎn)速,控制石英砂床料補(bǔ)給速度,采用多次間歇式補(bǔ)給方式,保證系統(tǒng)的可控穩(wěn)定運(yùn)行狀態(tài)。
1. 鼓風(fēng)機(jī) 2. 螺旋進(jìn)料系統(tǒng) 3. 流化床氣化爐 4. 一級(jí)返料裝置 5. 二級(jí)返料裝置 6. 返料閥 7. 除灰螺旋絞龍 8. 水蒸氣發(fā)生器 9. 空氣預(yù)熱器 10. 燃?xì)鈽悠啡y(cè)點(diǎn) 11. 燃?xì)鈬娏軆艋?12. 文丘里洗滌器 13. 引風(fēng)機(jī) 14. 流量計(jì) 15. 儲(chǔ)氣柜 16. 流量調(diào)節(jié)閥 17. 床料供給系統(tǒng)
1. Blower 2. Screw feeder 3. Fluidized bed gasifier 4. Primary back-feeding device 5. Secondary back-feeding device 6. Refeed valve 7. Ash handling equipment 8. Steam generator 9. Air preheater 10. Sampling port 11. Spray tower 12. Venturi scrubber tower 13. Draft fan 14. Gas flowmeter 15. Gas tank 16. Regulatingvalve 17. Bed material feed system
注:T1、T2、T3、T4為氣化爐溫度測(cè)點(diǎn),P1、P2、P3、P4為氣化爐壓力測(cè)點(diǎn)。
Note: T1, T2, T3, T4 refer to the temperature measurement points of gasifier. P1, P2, P3, P4 refer to the pressure measurement points of gasifier.
圖1 氣化試驗(yàn)流程示意圖
Fig.1 Schematic diagram of gasification experiment system
空氣當(dāng)量比(ER,equivalence ratio)與水蒸氣配比(S/B,steam/biomass ratio)是影響氣化系統(tǒng)運(yùn)行的重要參數(shù),定義ER為供入氣化爐空氣量與生物質(zhì)原料燃燒完全需要理論空氣量之比,S/B為供入氣化爐水蒸氣質(zhì)量與生物質(zhì)原料質(zhì)量之比。參考已有的研究報(bào)道[23],選取ER在0.20~0.35、S/B在0~0.4范圍進(jìn)行試驗(yàn)。起爐階段氣化爐運(yùn)行基本穩(wěn)定后,逐漸調(diào)整進(jìn)料量保持在氣化爐設(shè)計(jì)額定處理量150kg/h。試驗(yàn)在二級(jí)返料系統(tǒng)開啟與閉合狀態(tài)下分別進(jìn)行,對(duì)比研究在不同ER條件下,二級(jí)返料裝置的啟閉對(duì)氣化反應(yīng)的影響,并在較理想的運(yùn)行狀態(tài)下試驗(yàn)水蒸氣對(duì)氣化反應(yīng)的作用效果,優(yōu)化系統(tǒng)運(yùn)行參數(shù)。
參考文獻(xiàn)[26]設(shè)置取樣裝置,采集的氣體樣品首先經(jīng)過裝有丙酮溶液的冰水浴捕集箱去除焦油,過濾、干燥后連接Micro GC Agilent-3000氣相色譜儀檢測(cè)燃?xì)鈽悠分械腃O、CH4、H2、C2H4、C3H6等主要組分,檢測(cè)器選用氫火焰離子檢測(cè)器與熱導(dǎo)檢測(cè)器,載氣為氦氣、壓力0.5 MPa,毛細(xì)管柱內(nèi)的流速設(shè)為1 mL/min,柱箱溫度90 ℃,汽化室溫度120 ℃,檢測(cè)器室溫度120 ℃[24]。對(duì)取樣得到的含焦油溶劑采用無水硫酸鎂吸收水分并過濾雜質(zhì),利用旋轉(zhuǎn)蒸發(fā)儀蒸發(fā)丙酮溶劑,稱量蒸餾燒瓶中剩余物質(zhì)質(zhì)量,重復(fù)蒸餾與稱量,直至兩次稱量質(zhì)量差≤10 mg,取最后2 組稱量數(shù)據(jù)的平均值為焦油質(zhì)量。為減小試驗(yàn)誤差,燃?xì)馀c焦油樣品在各工況均平行取樣3 組,取平均值為試驗(yàn)結(jié)果,其中每次取樣焦油樣品持續(xù)時(shí)間不少于30 min。燃?xì)馀c焦油取樣裝置如圖2所示。
1. 緩沖瓶 2. 冰水浴焦油捕集瓶 3. 無膠玻璃纖維過濾筒 4. 氣體流量計(jì) 5. 微型真空泵 6. 氣體干燥瓶 7. 氣相色譜儀
1)玉米秸稈燃燒完全需要理論空氣量0,(m3/kg)
式中C、S、H、O分別為玉米秸稈原料中的碳、硫、氫、氧元素的質(zhì)量分?jǐn)?shù),%。
2)燃?xì)鉄嶂祐,MJ/m3
式中CnHm、CO、CH4、H2分別為氣化燃?xì)庵械牟伙柡蜔N類、CO、CH4和H2體積分?jǐn)?shù),%。
3)焦油質(zhì)量濃度(g/m3)
式中為取樣氣體中所含的焦油質(zhì)量,g;為取樣的氣體體積,m3。
4)氣化效率(%)
式中m為取樣時(shí)間段的氣化氣體產(chǎn)量,m3;v為燃?xì)鉄嶂?,MJ/m3;¢為取樣時(shí)間段氣化爐的原料供給量,kg;LHV為玉米秸稈原料發(fā)熱量,MJ/kg。
5)碳轉(zhuǎn)化率C(%)
選用經(jīng)過粉碎與干化預(yù)處理的玉米秸稈原料,設(shè)定進(jìn)料量為氣化爐設(shè)計(jì)額定值150 kg/h,關(guān)閉水蒸氣向氣化爐供給管路,分別在二級(jí)返料系統(tǒng)開啟與閉合條件下,改變配風(fēng)量,試驗(yàn)測(cè)試ER對(duì)氣化特性的影響。
調(diào)節(jié)氣化爐工作參數(shù)時(shí),均待系統(tǒng)運(yùn)行穩(wěn)定后在燃?xì)鈽悠啡y(cè)點(diǎn)進(jìn)行氣體與焦油樣品取樣,運(yùn)行過程中每隔15 min記錄各測(cè)點(diǎn)的實(shí)時(shí)溫度與壓力。
在二級(jí)返料系統(tǒng)開啟與閉合狀態(tài)下,試驗(yàn)均進(jìn)行了約24 h,測(cè)試空氣當(dāng)量比對(duì)氣化特性的影響。
圖3a、3b分別為二級(jí)返料系統(tǒng)閉合與開啟狀態(tài)下,在0.20~0.35范圍內(nèi)不同ER時(shí)的氣化爐溫度變化曲線。調(diào)節(jié)ER時(shí),系統(tǒng)基本可在1 h內(nèi)達(dá)到穩(wěn)定運(yùn)行狀態(tài)。T1測(cè)點(diǎn)位于氣化爐底部配風(fēng)與生物質(zhì)原料首先結(jié)合處,此處劇烈的氧化燃燒反應(yīng)使得T1高于其他測(cè)點(diǎn)溫度。圖3c、3d分別為二級(jí)返料系統(tǒng)閉合與開啟狀態(tài)下,不同ER時(shí)的氣化爐壓力變化曲線。P1測(cè)點(diǎn)壓力主要受氣化爐底部風(fēng)帽出口風(fēng)壓及氣化爐底部密相區(qū)生物質(zhì)原料與石英砂床料對(duì)風(fēng)阻壓力控制,其壓力基本穩(wěn)定在2.5~3.5 kPa,當(dāng)P1壓力較高時(shí)可通過適度排渣減少氣化爐底部灰渣堆積量,進(jìn)而調(diào)節(jié)氣化爐主爐底部壓力保持在穩(wěn)定運(yùn)行狀態(tài)。氣化爐中上部各測(cè)點(diǎn)的運(yùn)行壓力基本穩(wěn)定,P3與P4測(cè)點(diǎn)位置基本處于微正壓或微負(fù)壓運(yùn)行狀態(tài)。
記取樣過程中各溫度測(cè)點(diǎn)記錄數(shù)據(jù)的平均值為該取樣工況條件下的氣化爐溫度。圖4為二級(jí)返料系統(tǒng)開啟及閉合狀態(tài)下,ER對(duì)氣化爐溫度及氣化燃?xì)饨褂秃康挠绊懽兓€。由圖4可以發(fā)現(xiàn),兩種工況下氣化爐溫度均隨著ER增大呈上升趨勢(shì),而氣化燃?xì)庵械慕褂秃縿t不斷降低。ER增大提高了氣化爐內(nèi)所含的氧氣量,促進(jìn)氧化反應(yīng)釋放較多的熱量,從而提高氣化爐爐膛溫度,并促進(jìn)氣化燃?xì)庵械慕褂偷却蠓肿游镔|(zhì)裂解而降低其含量。
由圖3和圖4中的試驗(yàn)結(jié)果可知,ER增大,氣化爐內(nèi)的氧含量升高,爐內(nèi)的氧化與燃燒反應(yīng)增強(qiáng),提高了爐體溫度,加劇了焦油的氧化裂解,氣化燃?xì)庵械慕褂秃砍霈F(xiàn)較明顯的下降。當(dāng)ER相同時(shí),二級(jí)返料系統(tǒng)開啟狀態(tài)下的氣化反應(yīng)溫度高、焦油含量低。
與二級(jí)返料系統(tǒng)閉合狀態(tài)相比,其開啟時(shí)未完全反應(yīng)的部分生物質(zhì)原料可以重新返回至主氣化爐參與循環(huán)反應(yīng),帶有顯熱的顆粒生物質(zhì)半焦與新供入氣化爐內(nèi)的生物質(zhì)原料間進(jìn)行熱傳遞,使得新生物質(zhì)原料加快了升溫速率,快速進(jìn)入到氧化反應(yīng)狀態(tài),提高了反應(yīng)強(qiáng)度與氣化爐內(nèi)的平均反應(yīng)溫度,高溫更有利于焦油類物質(zhì)的裂解轉(zhuǎn)化并降低燃?xì)庵械慕褂秃?;另一方面,未完全反?yīng)的原料是含有殘?zhí)颗c金屬氧化物的半焦灰粒,已有的研究表明半焦與金屬氧化物對(duì)于焦油均有較好的催化轉(zhuǎn)化作用[22, 27-29],二級(jí)返料系統(tǒng)的開啟增大了循環(huán)倍率,增加了重新返回至流化床主爐內(nèi)的生物質(zhì)原料和石英砂床料量,提高了半焦及金屬氧化物與焦油之間的反應(yīng)機(jī)率與持續(xù)時(shí)間,進(jìn)而降低了氣化燃?xì)庵械慕褂秃俊?/p>
當(dāng)ER為0.26時(shí),二級(jí)返料系統(tǒng)閉合與開啟狀態(tài)下燃?xì)庵械慕褂唾|(zhì)量濃度分別為7.5與4.5 g/m3,二級(jí)返料系統(tǒng)開啟時(shí)的焦油質(zhì)量濃度降低了40%,且兩種狀態(tài)下的焦油質(zhì)量濃度差異顯著(<0.05),驗(yàn)證了二級(jí)返料系統(tǒng)對(duì)于降低燃?xì)庵薪褂秃康淖饔眯Ч?/p>
二級(jí)返料系統(tǒng)開啟及閉合工況下,ER對(duì)氣化燃?xì)饨M分與燃?xì)鉄嶂档挠绊懽兓瘮?shù)據(jù)列于表2。由表2試驗(yàn)數(shù)據(jù)可以得出,隨著ER增大,二級(jí)返料系統(tǒng)啟閉兩種狀態(tài)下都出現(xiàn)了CO減小、CO2增大的現(xiàn)象,氧化或分解反應(yīng)的增強(qiáng)致使CnHm含量下降,而CH4與H2含量均具有先升后降的趨勢(shì)。ER增大,氣化系統(tǒng)中氧氣供給量增加,氧化反應(yīng)的增強(qiáng)促進(jìn)了不飽和烴類大分子分解,使得更多的揮發(fā)分從原料中析出,但同時(shí)加劇原料及氣體可燃組分燃燒,部分CO被氧化成CO2;生成CH4的反應(yīng)多伴有放熱[17],ER增大時(shí)氣化爐溫度升高,CH4生成受到抑制。
注:S/B=0;T1、T2、T3、T4為二級(jí)返料裝置關(guān)閉狀態(tài)下氣化爐測(cè)點(diǎn)溫度,T1¢、T2¢、T3¢、T4¢為二級(jí)返料裝置開啟狀態(tài)下氣化爐測(cè)點(diǎn)溫度,P1、P2、P3、P4為二級(jí)返料裝置關(guān)閉狀態(tài)下氣化爐測(cè)點(diǎn)壓力,P1¢、P2¢、P3¢、P4¢為二級(jí)返料裝置開啟狀態(tài)下氣化爐測(cè)點(diǎn)壓力。
注:S/B=0。Note: S/B=0.
對(duì)比表2二級(jí)返料系統(tǒng)開啟前后氣化產(chǎn)氣各組分含量變化數(shù)據(jù)還可以得出,在ER相同條件下,除CO2外,二級(jí)返料系統(tǒng)開啟時(shí)的氣化產(chǎn)氣各組分含量均不低于二級(jí)返料系統(tǒng)閉合時(shí)相應(yīng)組分的體積分?jǐn)?shù)。可能原因是,在相同ER條件下,二級(jí)返料系統(tǒng)的開啟使得較大粒徑顆粒物質(zhì)重新返回氣化爐,延長(zhǎng)生物質(zhì)原料在氣化爐內(nèi)停留和反應(yīng)的時(shí)間,促進(jìn)生物質(zhì)原料的氣相轉(zhuǎn)化反應(yīng)更充分,產(chǎn)生更多可燃?xì)怏w。燃?xì)鉄嶂等Q于其中可燃?xì)怏w組分的含量,氣化燃?xì)鉄嶂惦SER增大出現(xiàn)下降趨勢(shì)。
表2 二級(jí)返料系統(tǒng)啟閉,空氣當(dāng)量比ER對(duì)產(chǎn)氣組分及燃?xì)鉄嶂档挠绊?/p>
注:v為燃?xì)鉄嶂?,S/B=0。Note:vrefer to gas calorific value. S/B=0.
二級(jí)返料系統(tǒng)的啟閉對(duì)于玉米秸稈碳轉(zhuǎn)化率及氣化效率的影響變化曲線見圖5。由圖5所示的試驗(yàn)結(jié)果可以判斷,增大ER促進(jìn)了氣化爐內(nèi)的氧化燃燒,促使玉米秸稈原料與過程半焦氣相轉(zhuǎn)化,以及不飽和烴與焦油等大分子物質(zhì)裂解成小分子氣體,從而提高原料碳轉(zhuǎn)化率;當(dāng)ER較小時(shí),氣化反應(yīng)強(qiáng)度弱,進(jìn)入氣化爐內(nèi)的生物質(zhì)原料難以反應(yīng)充分,雖然氣化燃?xì)鉄嶂递^高,但受限于產(chǎn)氣量小導(dǎo)致氣化效率仍然偏低;隨著ER增大,燃?xì)鉄嶂惦m有下降,但氣化產(chǎn)氣量增加,氣化效率整體上呈現(xiàn)出了先升后降的變化;在相同ER條件下,二級(jí)返料系統(tǒng)的開啟增加了玉米秸稈原料在氣化爐內(nèi)的循環(huán)反應(yīng)時(shí)間,促使氣化殘?jiān)敖褂椭械母嘤袡C(jī)質(zhì)轉(zhuǎn)化到氣相產(chǎn)物中。
注:S/B=0。Note: S/B=0.
由圖5還可以得出,當(dāng)二級(jí)返料系統(tǒng)閉合時(shí),ER為0.20~0.35時(shí)的氣化效率為63.52%~72.95%,碳轉(zhuǎn)化率為77.34%~91.19%,較理想的ER為0.26,此時(shí)氣化效率達(dá)到最大值72.95%,對(duì)應(yīng)的燃?xì)鉄嶂禐?.22 MJ/m3,與于杰等[15]采用循環(huán)流化床對(duì)玉米秸稈進(jìn)行氣化試驗(yàn)ER為0.20~0.35時(shí)的氣化效率63%~70%,以及Guo 等[23]采用循環(huán)流化床對(duì)中藥渣進(jìn)行氣化試驗(yàn)ER為0.25~0.35時(shí)的氣化效率60%~68%、碳轉(zhuǎn)化率75%~90%的研究結(jié)果基本是一致的。當(dāng)二級(jí)返料系統(tǒng)開啟時(shí),系統(tǒng)氣化效率為66.99%~77.06%,碳轉(zhuǎn)化率為79.86%~93.54%,較理想的ER為0.26,此時(shí)氣化效率達(dá)到最大值77.06%,對(duì)應(yīng)的燃?xì)鉄嶂?.43 MJ/m3。即二級(jí)返料系統(tǒng)開啟與閉合兩種狀態(tài)均在ER為0.26時(shí)取得較優(yōu)氣化效果。在ER為0.26條件下,二級(jí)返料系統(tǒng)開啟比其閉合時(shí)的燃?xì)鉄嶂堤岣吡?.02%、氣化效率提高了5.63%,且二級(jí)返料系統(tǒng)開啟與閉合兩種狀態(tài)的燃?xì)鉄嶂?、氣化效率均具有顯著差異(<0.05),驗(yàn)證了二級(jí)返料系統(tǒng)對(duì)于氣化效果的提升作用。
在S/B對(duì)玉米秸稈氣化作用效果的試驗(yàn)中,設(shè)定原料供給量150 kg/h,保持二級(jí)返料系統(tǒng)開啟、ER為0.26,研究玉米秸稈在不同水蒸氣配比S/B條件下的氣化反應(yīng)特性。
S/B對(duì)氣化爐溫度及燃?xì)庵薪褂秃康挠绊懽兓€見如圖6。氣化過程中,進(jìn)入爐體內(nèi)部較低溫度的蒸氣首先需要升溫達(dá)到氣化爐內(nèi)的反應(yīng)溫度。隨著S/B增大,水蒸氣進(jìn)入氣化爐增多,水分升溫吸熱量增加,導(dǎo)致氣化爐內(nèi)的反應(yīng)溫度出現(xiàn)下降;當(dāng)S/B由0.2繼續(xù)增大時(shí)氣化爐溫度下降幅度變大。與溫度的下降趨勢(shì)相反,在S/B由0增大到0.2過程中,氣化燃?xì)庵械慕褂秃砍霈F(xiàn)小幅上升,當(dāng)S/B繼續(xù)增大時(shí)焦油含量快速升高。
注:生物質(zhì)原料供給量150 kg·h-1,空氣當(dāng)量比保持為0.26,二級(jí)返料系統(tǒng)開啟,下同。
不同S/B條件下氣化燃?xì)庵饕M分變化數(shù)據(jù)列于表3。由表3結(jié)果可知,S/B增大過程中,燃?xì)庵械腍2含量出現(xiàn)先升后降的變化,在S/B為0.2時(shí)達(dá)到了最大值。水蒸氣含量增加,為氣化爐內(nèi)的反應(yīng)環(huán)境提供了更多的氫元素,促使水蒸氣重整反應(yīng)及還原反應(yīng)增強(qiáng),促進(jìn)了水與碳元素間的反應(yīng)生成CO與H2,同時(shí)也會(huì)促進(jìn)水煤氣變換反應(yīng)消耗部分CO,但過量的水蒸氣會(huì)使氣化爐溫度下降,導(dǎo)致重整反應(yīng)減弱,產(chǎn)氣質(zhì)量下降。
表3 水蒸氣配比S/B對(duì)燃?xì)饨M分的影響
圖7為S/B對(duì)玉米秸稈氣化燃?xì)鉄嶂蹬c氣化效率的影響變化曲線。水蒸氣的添加對(duì)玉米秸稈氣化燃?xì)鉄嶂蹬c氣化效率均有較明顯的影響,過量的水蒸氣會(huì)降低燃?xì)鉄嶂导皻饣?。燃?xì)鉄嶂蹬c氣化效率均在S/B為0.2時(shí)達(dá)到最大值5.89 MJ/m3與81.45%,與S/B為0時(shí)相比,分別提高了8.47%、5.70%,且S/B為0.2與S/B為0兩種工況的燃?xì)鉄嶂?、氣化效率均具有顯著差異(<0.05),驗(yàn)證了水蒸氣作為輔助氣化劑對(duì)氣化效果的提升作用。
圖7 S/B對(duì)燃?xì)鉄嶂蹬c氣化效率的影響
根據(jù)焦油各組分沸點(diǎn)不同,將焦油樣品分為輕油、酚油、洗油、蒽油和瀝青5個(gè)主要餾分[17]。選取3 種典型工況下,具有較優(yōu)氣化參數(shù)條件時(shí)取樣得到的焦油樣品,進(jìn)行餾分分析,不同工況下得到焦油樣品的主要餾分含量列于表4。
在工況1的焦油樣品中,沸點(diǎn)>300 ℃的蒽油、瀝青含量占比高達(dá)57.2%,而低沸點(diǎn)的輕質(zhì)油和酚油含量較少,表明焦油樣品中重質(zhì)成分含量較高。對(duì)于工況3的焦油樣品,輕質(zhì)油和酚油的含量急劇增加,蒽油和瀝青重質(zhì)成分的含量占比降至14.2%。
由3種典型工況條件下的焦油蒸餾餾分結(jié)果可知,提高氣化爐溫度,并保持一定的水蒸氣氣化環(huán)境,可促進(jìn)氣化過程中的副產(chǎn)物焦油裂解轉(zhuǎn)化。這與Minkova等[30]與Wang等[31]的研究結(jié)果是一致的:在較高溫度下,生成的H2和CO等還原氣體,將加速焦油類重質(zhì)組分的裂化和重整反應(yīng),減小瀝青和蒽油的含量,從而增加輕油的含量。此外,蒸氣的引入可以產(chǎn)生大量的H自由基,促進(jìn)焦油中重質(zhì)組分的重組反應(yīng),并為轉(zhuǎn)化中間體提供了穩(wěn)定劑阻止重聚合反應(yīng),從而生成更多的輕質(zhì)組分。
表4 不同餾程范圍的焦油樣品含量
增加二級(jí)返料裝置一定程度上增加了系統(tǒng)復(fù)雜性,但其復(fù)雜性主要體現(xiàn)在對(duì)于不同種類生物質(zhì)原料或不同運(yùn)行工況的調(diào)試階段,需要探索分析運(yùn)行規(guī)律。由圖3可以看出,二級(jí)返料系統(tǒng)開啟或閉合狀態(tài)下,對(duì)于同種生物質(zhì)原料,調(diào)整空氣當(dāng)量比等氣化運(yùn)行參數(shù)時(shí),系統(tǒng)均能在1 h 內(nèi)達(dá)到穩(wěn)定運(yùn)行,且系統(tǒng)達(dá)到穩(wěn)定運(yùn)行工況后,如果以保持穩(wěn)定運(yùn)行為目的,該系統(tǒng)與循環(huán)流化床的操控復(fù)雜性基本是一致的。
在系統(tǒng)運(yùn)行能耗方面,主要體現(xiàn)在鼓風(fēng)機(jī)電耗,由試驗(yàn)結(jié)果可知,二級(jí)返料系統(tǒng)開啟或閉合,系統(tǒng)具有較好氣化效果時(shí)的配風(fēng)總量是相同的,而二級(jí)返料系統(tǒng)可以與氣化爐、一級(jí)返料系統(tǒng)共用風(fēng)機(jī),因此二級(jí)返料的設(shè)置對(duì)于系統(tǒng)配置風(fēng)機(jī)的選型及運(yùn)行能耗均不會(huì)產(chǎn)生大的影響。
該技術(shù)對(duì)于循環(huán)流化床氣化排放灰渣殘?zhí)枯^高、氣化效率低等傳統(tǒng)生物質(zhì)氣化工藝具有改善效果,可為秸稈類生物質(zhì)類原料的高效清潔氣化轉(zhuǎn)化利用提供一條思路。
1)采用具有二級(jí)返料系統(tǒng)的循環(huán)流化床對(duì)玉米秸稈進(jìn)行氣化試驗(yàn),通過調(diào)節(jié)空氣當(dāng)量比,可以達(dá)到較理想的氣化反應(yīng)狀態(tài)。當(dāng)二級(jí)返料系統(tǒng)閉合時(shí),理想的空氣當(dāng)量比為0.26,該工況下對(duì)應(yīng)的燃?xì)鉄嶂?.22 MJ/m3、氣化效率72.95%;二級(jí)返料系統(tǒng)開啟時(shí)具有較好的氣化 反應(yīng)特性,較優(yōu)的ER為0.26,該工況下的燃?xì)鉄嶂?.43 MJ/m3、氣化效率77.06%。
2)二級(jí)返料系統(tǒng)開啟狀態(tài)下,以空氣為主氣化介質(zhì),輔助水蒸氣氣化,當(dāng)空氣當(dāng)量比為0.26、水蒸氣配比為0.2時(shí),燃?xì)鉄嶂导皻饣示_(dá)到最大值5.89 MJ/m3與81.45%。
3)通過增設(shè)二級(jí)返料系統(tǒng),提高氣化爐反應(yīng)溫度,并在氣化爐內(nèi)保持一定的水蒸氣環(huán)境,可促進(jìn)焦油裂解轉(zhuǎn)化,提高氣化產(chǎn)氣中可燃組分含量與燃?xì)鉄嶂担嵘衩捉斩掝惿镔|(zhì)原料的氣化效率。
[1] 王曉玉,薛帥,謝光輝. 大田作物秸稈量評(píng)估中秸稈系數(shù)取值研究[J]. 中國(guó)農(nóng)業(yè)大學(xué)學(xué)報(bào),2012,17(1):1-8. Wang Xiaoyu, Xue Shuai, Xie Guanghui. Value-taking for residue factor as a parameter to assess the field residue of field crops[J]. Journal of China Agricultural University, 2012, 17 (1): 1-8. (in Chinese with English abstract)
[2] 國(guó)家統(tǒng)計(jì)局. 2016年中國(guó)統(tǒng)計(jì)年鑒[M]. 北京:中國(guó)統(tǒng)計(jì)出版社,2016.
[3] 劉朝霞,牛文娟,楚合營(yíng),等. 秸稈熱解工藝優(yōu)化與生物炭理化特性分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(5):196-203. Liu Zhaoxia, Niu Wenjuan, Chu Heying, et al. Process optimization for straws pyrolysis and analysis of biochar physiochemical properties[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(5): 196-203. (in Chinese with English abstract)
[4] 石祖梁,劉璐璐,王飛,等. 我國(guó)農(nóng)作物秸稈綜合利用發(fā)展模式及政策建議[J]. 中國(guó)農(nóng)業(yè)科技導(dǎo)報(bào),2016,18(6):16-22. Shi Zuliang, Liu Lulu, Wang Fei, et al. Development model and policy proposal for comprehensive utilization of crop straw in China[J]. Journal of Agricultural Science and Technology, 2016, 18(6): 16-22. (in Chinese with English abstract)
[5] 張齊生,馬中青,周建斌. 生物質(zhì)氣化技術(shù)的再認(rèn)識(shí)[J]. 南京林業(yè)大學(xué)學(xué)報(bào):自然科學(xué)版,2013,37(1):1-10. Zhang Qisheng, Ma Zhongqing, Zhou Jianbin. History, challenge and solution of biomass gasification: A review[J]. Journal of Nanjing Forestry University: Natural Science Edition, 2013, 37(1): 1-10. (in Chinese with English abstract)
[6] Meng Xiaoxiao, Sun Rui, Ismail T M, et a1. Assessment of primary air on corn straw in a fixed bed combustion using Eulerian-Eulerian approach[J]. Energy, 2018, 151: 501-519.
[7] Widjaya E R, Chen Guangnan, Bowtell L, et al. Gasification of non-woody biomass: A literature review[J]. Renewable and Sustainable Energy Reviews, 2018, 89: 184-193.
[8] Watsona J, Zhang Yuanhui, Si Buchun, et al. Gasification of biowaste: A critical review and outlooks[J]. Renewable and Sustainable Energy Reviews, 2018, 83: 1-17.
[9] Molino A, Chianese S, Musmarra D. Biomass gasification technology: The state of the art overview[J]. Journal of Energy Chemistry, 2016, 25(1): 10-25.
[10] Gai Chao, Dong Yuping. Experimental study on non-woody biomass gasification in a downdraft gasifier[J]. International Journal of Hydrogen Energy, 2012, 37(6): 4935-4944.
[11] Yin Renzhan, Liu Ronghou, Wu Jinkai, et al. Influence of particle size on performance of a pilot-scale fixed-bed gasification system[J]. Bioresource Technology, 2012, 119: 15-21.
[12] Guo Feiqiang, Dong Yuping, Dong Lei, et al. Effect of design and operating parameters on the gasification process of biomass in a downdraft fixed bed: An experimental study[J]. International Journal of Hydrogen Energy, 2014, 39(11): 5625-5633.
[13] 亞力昆江·吐爾遜,潘岳,別爾德汗·瓦提汗,等. 基于熱解-重整-燃燒解耦三床氣化系統(tǒng)的生物質(zhì)催化制富氫氣體[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(17):222-228. Yalkunjan Tursun, Pan Yue, Bieerdehan Watihan, et al. Catalytic biomass gasification for hydrogen rich gas production in decoupled-triple-bed gasification system[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(17): 222-228. (in Chinese with English abstract)
[14] 曾曦,敖先權(quán),曹陽,等. 空氣-水蒸氣對(duì)玉米秸稈與煤流化床共氣化的影響[J]. 過程工程學(xué)報(bào),2017,17(3):551-557. Zeng Xi, Ao Xianquan, Cao Yang, et al. Effect of air vapor on co-gasification of corn stalks and coal in fluidized-bed[J]. The Chinese Journal of Process Engineering, 2017, 17(3): 551-557. (in Chinese with English abstract)
[15] 于杰,董玉平,常加富,等. 玉米秸稈循環(huán)流化床氣化中試試驗(yàn)[J]. 化工進(jìn)展,2018,37(8):2970-2975. Yu Jie, Dong Yuping, Chang Jiafu, et al. Pilot experiment of gasification of corn straw in circulating fluidized bed[J]. Chemical Industry and Engineering Progress, 2018, 37(8): 2970-2975. (in Chinese with English abstract)
[16] 范鵬飛,李景東,劉艷濤,等. 感冒清熱顆粒中藥渣中試規(guī)模循環(huán)流化床氣化實(shí)驗(yàn)[J]. 化工進(jìn)展,2014,33(8):1979-1985,1991. Fan Pengfei, Li Jingdong, Liu Yantao, et al. Experimental study of gasification of herb residues of ganmaoqingre granules in pilot-scale dual-loop circulating fluidized bed[J]. Chemical Industry and Engineering Progress, 2014, 33(8): 1979-1985, 1991. (in Chinese with English abstract)
[17] 董玉平,張彤輝,常加富,等. 中藥渣雙回路循環(huán)流化床氣化試驗(yàn)[J]. 天然氣工業(yè),2013,33(10):127-133. Dong Yuping, Zhang Tonghui, Chang Jiafu, et al. An experimental study of gasification of herb residues in a circulating fluidized bed with a secondary back feeding device[J]. Natural Gas Industry, 2013, 33(10): 127-133. (in Chinese with English abstract)
[18] 楊帥,張兆玲,孟劍峰,等. 循環(huán)流化床中菌渣熱解氣化特性的研究[J]. 高校化學(xué)工程學(xué)報(bào),2015,29(4):997-1002. Yang Shuai, Zhang Zhaoling, Meng Jianfeng, et al. Study on pyrolysis gasification of fungus residues in circulating fluidized beds[J]. Journal of Chemical Engineering of Chinese University, 2015, 29(4): 997-1002. (in Chinese with English abstract)
[19] 胡二峰,趙立欣,吳娟,等. 生物質(zhì)熱解影響因素及技術(shù)研究進(jìn)展[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(14):212-220. Hu Erfeng, Zhao Lixin, Wu Juan, et al. Research advance on influence factors and technologies of biomass pyrolysis[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(14): 212-220. (in Chinese with English abstract)
[20] 孫佳偉. 稻殼/木屑焦水蒸氣高溫氣化反應(yīng)特性[D]. 哈爾濱:哈爾濱理工大學(xué),2016. Sun Jiawei. The Characteristic Research on Rice Husk and Sawdust Char High-temperature Gasification Reaction with Steam[D]. Harbin: Harbin University of Science and Technology, 2016. (in Chinese with English abstract)
[21] Zeng Xi, Shao Ruyi, Wang Fang, et al. Industrial demonstration plant for the gasification of herb residue by fluidized bed two-stage process[J]. Bioresource Technology, 2016, 206: 93-98.
[22] Zeng Xi, Dong Yuping, Wang Fang, et al. Fluidized bed two-stage gasification process for clean fuel gas production from herb residue: Fundamentals and demonstration[J]. Energy Fuels, 2016, 30(9): 7277?7283.
[23] Guo Feiqiang, Dong Yuping, Zhang Tonghui, et al. Experimental study on herb residue gasification in an air- blown circulating fluidized bed gasifier[J]. Industrial & Engineering Chemistry Research, 2014, 53(34): 13264-13273.
[24] 于杰,王成泉,于圣濤,等. 玉米秸稈循環(huán)流化床熱解氣化試驗(yàn)[J]. 新能源進(jìn)展,2018,6(1):14-20. Yu Jie, Wang Chengquan, Yu Shengtao, et al. Experimental study on gasification of corn straw in circulating fluidized bed[J]. Advances in New and Renewable Energy, 2018, 6(1): 14-20. (in Chinese with English abstract)
[25] 車德勇,李少華,韓寧寧,等. 生物質(zhì)流化床空氣—水蒸氣氣化模擬[J]. 中國(guó)電機(jī)工程學(xué)報(bào),2012,32(35):101-107. Che Deyong, Li Shaohua, Han Ningning, et al. Numerical simulation of biomass gasification with air and steam as the agent in fluidized bed gasifiers[J]. Proceedings of the Chinese Society for Electrical Engineering (Proceedings of the CSEE), 2012, 32(35): 101-107. (in Chinese with English abstract)
[26] 常加富,董玉平,劉慶磊,等. 文丘里洗滌器凈化生物質(zhì)燃?xì)饬鲌?chǎng)數(shù)值模擬及試驗(yàn)研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(21):186-192. Chang Jiafu, Dong Yuping, Liu Qinglei, et al, Experimental study and numerical simulation on flow field of venture scrubber purifying biomass gas[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(21): 186-192. (in Chinese with English abstract)
[27] Palma C F. Modelling of tar formation and evolution for biomass gasification: A review[J]. Applied Energy, 2013, 111: 129-141.
[28] Zhang Yunliang, Wu Wenguang, Zhao Shanhui, et al. Experimental study on pyrolysis tar removal over rice straw char and inner pore structure evolution of char[J]. Fuel Processing Technology, 2015, 134: 333-344.
[29] Duman G, Uddin M, Yanik J. The effect of char properties on gasification reactivity[J]. Fuel Processing Technology, 2014, 118: 75-81.
[30] Minkova V, Razvigorova M, Bjornbom E, et al. Effect of water vapour and biomass nature on the yield and quality of the pyrolysis products from biomass[J]. Fuel Processing Technology, 2001, 70(1): 53-61.
[31] Wang Pengfei, Jin Lijun, Liu Jiahe, et al. Analysis of coal tar derived from pyrolysis at different atmospheres[J]. Fuel, 2013, 104: 14-21.
Process parameter optimization for gasification of corn stalk in circulating fluidized bed gasifier
Chang Jiafu1,2, Xu Pengju1, Liu Zhaoyuan1, Dong Yuping3※, Yu Jie1, Dong Lei1
(1.250101; 2.250061,; 3.250061)
Large quantities of crop stalk resources are produced in China every year, and some of the stalks are incinerated, which pollutes the environment. Biomass gasification is attracting a great deal of attention as a way of utilizing biomass waste. In this study, a circulating fluidized bed experimental systemwas designed and constructed with a treating capacity of 150 kg/h, which equipped with secondary back-feeding device, steam generator and air preheater. The influences of secondary back-feeding device on the gasification performance were investigated with corn stalk after crushing and drying pretreatment as biomass feedstock. The effects of air equivalence ratio (ER) within 0.20~0.35 on gasifier temperature, tar content, gas composition, carbon conversion rate and gasification efficiency were investigated when the secondary back-feeding device was closed and open. The gasification reaction was promoted by increasing ER, and gasification efficiency and carbon conversion showed a trend of increasing firstly and then decreasing. The results showed that good gasification results were both obtained at ER of 0.26. When the secondary back-feeding device was closed, the maximum carbon conversion rate and gasification efficiency were 91.19% and 72.95%, respectively. Whereas the carbon conversion rate and gasification efficiency were higher when the secondary back-feeding device was open, which was up to 93.54% and 77.06%, respectively. The experimental results also showed that secondary back-feeding device had a good effect on tar cracking. When the secondary back-feeding device was closed and open, the tar content in gas was 7.5 g/m3and 4.5 g/m3at ER of 0.26, respectively, which meant that tar content can be decreased by 40% when secondary back-feeding system was open. The effects of steam/biomass ratio (S/B) on gasification characteristics were investigated when the secondary back-feeding device was open. The results showed that gas quality and gasification efficiency were improved with air as main gasifying agent and steam assisted. The better operation conditions of the corn stalk gasification were 0.26 of ER and 0.2 of S/B, and gas calorific value and gasification efficiency reached to maximum value of 5.89 MJ/m3and 81.45%, respectively. The results of tar distillation analysis under typical operating conditions indicated that the pyrolysis conversion of tar was promoted by increasing the reaction temperature of gasifier and maintaining a certain amount of water vapor in the gasifier. The experiment can provide reference for efficient and clean transformation and utilization of straw biomass.
biomass; gasification; optimization; corn stalk; circulating fluidized bed; air equivalence ratio; steam; secondary back-feeding device
2018-08-31
2018-11-25
公益性行業(yè)(農(nóng)業(yè))科研專項(xiàng)(201503135-07)
常加富,工程師,研究方向?yàn)樯镔|(zhì)熱解氣化技術(shù)研究及工程轉(zhuǎn)化應(yīng)用。Email:cjf6886@126.com
董玉平,教授,研究方向?yàn)樯镔|(zhì)能高效清潔轉(zhuǎn)換技術(shù)。Email:dongyp@sdu.edu.cn。
10.11975/j.issn.1002-6819.2019.05.028
TK6
A
1002-6819(2019)-05-0226-08
常加富,徐鵬舉,劉兆遠(yuǎn),董玉平,于 杰,董 磊. 玉米秸稈循環(huán)流化床氣化爐氣化工藝參數(shù)優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(5):226-233.doi:10.11975/j.issn.1002-6819.2019.05.028 http://www.tcsae.org
Chang Jiafu, Xu Pengju, Liu Zhaoyuan, Dong Yuping, Yu Jie, Dong Lei. Process parameter optimization for gasification of corn stalk in circulating fluidized bed gasifier[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(5): 226-233. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.05.028 http://www.tcsae.org