趙宇洋 姚健 萬東瑜 吳學(xué)禮
摘要:為實(shí)現(xiàn)人體血液流速分布的非侵入式測量,對(duì)重大心血管疾病進(jìn)行預(yù)判,將多電極電磁流量計(jì)應(yīng)用于人體肢體血液速度剖面測量,將傳統(tǒng)Shercliff權(quán)函數(shù)改進(jìn)為區(qū)域權(quán)函數(shù),模仿人體肢體結(jié)構(gòu)建立COMSOL仿真模型,將測量截面劃分為不同區(qū)域,通過多對(duì)電極獲取不同位置的弦端電壓,確定肢體截面上不同測量區(qū)域的權(quán)函數(shù),進(jìn)而計(jì)算各測量區(qū)域的局部軸向平均速度。針對(duì)動(dòng)脈、靜脈所在位置范圍內(nèi)進(jìn)行不同區(qū)域劃分并進(jìn)行血液流速分布測量,仿真驗(yàn)證了多電極電磁測量系統(tǒng)對(duì)動(dòng)脈、靜脈血管中互為逆向流動(dòng)的速度信息測量的可行性。三維有限元仿真和計(jì)算結(jié)果表明,所提出的測量方法能夠?qū)崿F(xiàn)肢體測量截面處不同方向的流速測量,并且具有較高的速度分布重構(gòu)精度,對(duì)于人體血液流速測量和血流變異常監(jiān)測具有參考價(jià)值。
關(guān)鍵詞:計(jì)算機(jī)仿真;多電極電磁測量;區(qū)域權(quán)函數(shù);速度重構(gòu);肢體血液流速分布
中圖分類號(hào):TP391.9文獻(xiàn)標(biāo)志碼:A
ZHAO Yuyang, YAO Jian, WAN Dongyu, et al.Measurement mechanism study of limb blood vessel velocity profile based on multi-electrode electromagnetic flow meter[J].Journal of Hebei University of Science and Technology,2019,40(1):60-66.Measurement mechanism study of limb blood vessel velocity profile
based on multi-electrode electromagnetic flow meter
ZHAO Yuyang1, YAO Jian1, ?WAN Dongyu1, WU Xueli1,2
(1.School of Electrical Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, China; 2.Hebei Province Production Process Automation Engineering Technology Research Center,Shijiazhuang, Hebei 050018, China)
Abstract:In order to measure the velocity profile of arterial and venous blood flow of human body and predict major cardiovascular diseases, the multi-electrode electromagnetic flow meter based on region weight function theory is proposed in this paper. The region weight function theory has been derived from traditional Shercliff theory and COMSOL model has been established to simulate the human limb according to the layout and relative position of skin, fat, bone, muscle, artery and vein. The cross section has been divided in to several regions and the induced voltages at different positions along the skin surface have been obtained by the electrode array. The local mean axial velocity profile of the vessel cross section is calculated, and the velocity information of the reverse flow in the arteries and veins is reconstructed. The results of three-dimensional finite element model simulation demonstrate that multi-electrode electromagnetic flow meter based on region weight function is feasible to characterize the velocity profile of arteries and veins with high accuracy. Region weight function based multi-electrode electromagnetic measurement method has some reference value for vessel blood flow velocity measurement and hemorheology anomaly monitoring of human body.
Keywords:computer simulation; multi-electrode electromagnetic measurement; region weight function; velocity reconstruction; limb vessel blood flow velocity profile
現(xiàn)代醫(yī)學(xué)研究表明,監(jiān)測血液流速變化可以提前預(yù)防和控制困擾人類的重大心血管疾病,如冠狀動(dòng)脈狹窄、冠心病等。針對(duì)哺乳動(dòng)物血液流動(dòng)的不對(duì)稱性和多電極電磁測量方式的非侵入性,將多電極電磁測量方式應(yīng)用于人體肢體血液流速的測量已有過有益嘗試[1-2]。通過多電極獲取肢體截面處的不同弦端電壓,利用任意流型下的平均流速表達(dá)式實(shí)現(xiàn)速度分布測量已在多相流領(lǐng)域取得廣泛應(yīng)用[3]。1983年,BEVIR,O'SULLIVAN等研制出了應(yīng)用于醫(yī)學(xué)上測量血液流量的6電極電磁流量計(jì)[4]。20世紀(jì)90年代,南京醫(yī)學(xué)院第一附屬醫(yī)院采用電磁流量計(jì)成功地測定了門靜脈血流量[5]。之后,張小章、徐立軍等對(duì)流場重建方面進(jìn)行了深入研究[6-7]。2008年,清華大學(xué)利用人體皮膚和接觸導(dǎo)體間的熱傳遞來無創(chuàng)測量局部皮膚組織中血液的流速[8]。2010年,南京航空航天大學(xué)提出了一種基于視頻圖像序列的人體微小管狀血管血液流速自動(dòng)測量方法[9]。2012年,PENG等[10]研究了電磁流量計(jì)安裝角度對(duì)測量精度的影響。2016年,浙江大學(xué)從血液兩相流動(dòng)的角度出發(fā),針對(duì)通過CT掃描圖像逆向重構(gòu)得到的主動(dòng)脈夾層三維幾何模型,進(jìn)行血液兩相流動(dòng)數(shù)值模擬[11]。2017年,董會(huì)武等[12]通過彩色多普勒超聲無創(chuàng)探測主動(dòng)脈及其各主要出入口的血流動(dòng)力學(xué)參數(shù),計(jì)算出國人青年的主動(dòng)脈血流量分配比例的正常值,對(duì)主動(dòng)脈的血流動(dòng)力學(xué)研究有重要意義。2018年,哈德斯菲爾德大學(xué)用電磁感應(yīng)流層析技術(shù)測量瞬態(tài)單相流和多相流中的速度分布[13-14]。
河北科技大學(xué)學(xué)報(bào)2019年第1期趙宇洋,等:多電極電磁流量計(jì)肢體血液流速分布測量研究針對(duì)在血液流速測量方面的研究,本文基于電磁流量計(jì)權(quán)函數(shù)理論,將多電極電磁測量方式應(yīng)用于人體肢體動(dòng)脈、靜脈血液流速測量。采用有限元分析法,利用COMSOL Multiphysics 多物理場仿真軟件建立多電極肢體血液測量系統(tǒng)的三維模型,并對(duì)勵(lì)磁系統(tǒng)進(jìn)行仿真優(yōu)化。通過多個(gè)電極測得人體上肢不同位置的弦端電壓,結(jié)合區(qū)域權(quán)函數(shù)理論,計(jì)算動(dòng)脈和靜脈中的血液速度在不同血管區(qū)域中的分布剖面。通過對(duì)動(dòng)脈和靜脈進(jìn)行高分辨率的測量區(qū)域劃分,便可反映出動(dòng)脈、靜脈的流速變化和堵塞情況。此外,針對(duì)人體特征差異,如胖瘦不同,動(dòng)脈、靜脈在皮下的位置亦有所不同,在人體肢體動(dòng)脈、靜脈所處皮下位置的一定范圍內(nèi)進(jìn)行仿真驗(yàn)證,通過速度重構(gòu)得到的速度信息具有較高的精度,證明多電極電磁肢體血液流量計(jì)可應(yīng)用于不同個(gè)體的血液流速測量。
1區(qū)域權(quán)函數(shù)與速度重構(gòu)基本理論
1.1區(qū)域權(quán)函數(shù)理論
SHERCLIFF得到傳統(tǒng)兩電極長筒型流量計(jì)的權(quán)函數(shù)表達(dá)式[15]如式(1)所示:W(x,y)=r4+r2(y2-x2)r4+2r2(y2-x2)+(y2+x2),(1)式中:r為管道半徑;x,y為測量截面的坐標(biāo)。
依據(jù)Shercliff權(quán)函數(shù)理論得到的權(quán)函數(shù)分布特點(diǎn)提出了區(qū)域權(quán)函數(shù)的概念。區(qū)域權(quán)函數(shù)不再是以單獨(dú)的流體質(zhì)點(diǎn)作為研究對(duì)象,而是根據(jù)二重積分的微元求合法,將積分區(qū)域劃分為許多微元,則有界函數(shù)的二重積分可轉(zhuǎn)換為對(duì)微元的近似求和計(jì)算,所以將流動(dòng)截面劃分為i個(gè)區(qū)域,在圓周上布置j對(duì)電極。
多電極電磁肢體血液流量計(jì)的區(qū)域權(quán)函數(shù)表達(dá)式如式(2)所示:Wij=Ujπr2 1ViAi,(2)式中:Uj為第j對(duì)電極測量的感應(yīng)電壓;Vi為第i個(gè)區(qū)域的平均速度;Wij為第i個(gè)區(qū)域?qū)Φ趈對(duì)電極感應(yīng)電壓的影響,其大小表示不同區(qū)域的流體對(duì)各個(gè)感應(yīng)電壓的貢獻(xiàn)大小;Ai為各個(gè)區(qū)域的面積值。
1.2速度重構(gòu)方法
多電極電磁肢體血液流量計(jì)的速度重構(gòu)過程是一個(gè)矩陣逆運(yùn)算的過程,因此,速度重構(gòu)的難點(diǎn)就是如何選取適合多電極肢體血液測量系統(tǒng)三維模型的矩陣求逆方法[16]。常用的矩陣求逆方法為直接求逆法、迭代求逆法以及正則化方法。針對(duì)多電極肢體血液測量系統(tǒng)的三維模型和仿真數(shù)據(jù),本文采用正則化算法取得了較精確的速度重構(gòu)結(jié)果。
對(duì)仿真數(shù)據(jù)做進(jìn)一步的提取和處理,代入式(2),求出區(qū)域權(quán)函數(shù)Wij,之后便可求取肢體截面各個(gè)測量區(qū)域的局部軸向平均速度,此過程稱為速度重構(gòu)。速度重構(gòu)表達(dá)式如式(3)所示:V=πr2[WA]-1U,(3)式中:V為包含i個(gè)區(qū)域軸向平均速度的速度矩陣;U為包含j對(duì)電極感應(yīng)電壓的列矩陣;W為i×j維的區(qū)域權(quán)函數(shù)矩陣;A為i維以i個(gè)區(qū)域的面積為對(duì)角元素的對(duì)角矩陣。在本文利用多電極電磁流量計(jì)測量人體血液速度分布的探索研究工作中設(shè)置i=j。
2人體上臂血液測量模型構(gòu)建與仿真
2.1模型建立及區(qū)域劃分
利用有限元分析軟件COMSOL Multiphy-sics53a進(jìn)行多物理場仿真,構(gòu)建多電極電磁肢體血液測量仿真模型。按照解剖學(xué)特性[17],將人體上臂等效為由皮膚脂肪、肌肉、骨骼、動(dòng)脈和靜脈構(gòu)成的幾何模型。在幾何模型中,皮膚脂肪厚度為3 mm,骨骼半徑為8 mm,動(dòng)脈、靜脈半徑為5 mm,如圖1所示。
針對(duì)3種模型進(jìn)行仿真,比較不同電極數(shù)目、布置方式和區(qū)域劃分方式的仿真結(jié)果。
1)動(dòng)、靜脈位置固定的仿真模型1
研究表明,多電極電磁系統(tǒng)測量流動(dòng)方向相同、但軸向平均速度不同的流型,能夠獲得較高的測量精度。如果將該系統(tǒng)用于測量同一截面處軸向流向相反的2個(gè)流速,需要驗(yàn)證該系統(tǒng)對(duì)于測量截面固定位置處流速互逆的可行性。模型1測量互為逆向的動(dòng)脈、靜脈血液的軸向平均流速,該仿真采用3電極均勻分布在管道內(nèi)壁,此時(shí)以e1作基準(zhǔn)端可獲得2對(duì)測量電壓值,將動(dòng)脈、靜脈血管作為2個(gè)測量區(qū)域,通過仿真驗(yàn)證3電極測量動(dòng)、靜脈逆向平均流速的準(zhǔn)確性。測量電壓區(qū)域?qū)?yīng)表見表1。區(qū)域劃分及電極布置如圖2所示。
2)動(dòng)、靜脈位置沿y軸方向偏移的仿真模型2
人體肢體動(dòng)脈、靜脈存在個(gè)體差異,一般在皮下位置的一定范圍內(nèi),為了驗(yàn)證多電極電磁肢體血液流量計(jì)可應(yīng)用于不同個(gè)體的血液流速測量,建立模型2。測量電壓區(qū)域?qū)?yīng)表見表2。區(qū)域劃分及電極布置如圖3所示。模型2采用5電極均勻分布在管道內(nèi)壁,以e1作基準(zhǔn)可獲得4對(duì)測量電壓值,針對(duì)這4對(duì)測量值,利用區(qū)域權(quán)函數(shù)重構(gòu)4個(gè)區(qū)域a1-a4的平均速度,驗(yàn)證血管在測量截面處不同位置時(shí)系統(tǒng)對(duì)于軸向平均速度的測量精度。
3)動(dòng)、靜脈血管進(jìn)行區(qū)域剖分的仿真模型3
對(duì)于心血管疾病的預(yù)判需要準(zhǔn)確掌握血管中的實(shí)際流動(dòng)情況,特別是對(duì)同一對(duì)象、同一測量位置長期監(jiān)測的前提下,動(dòng)、靜脈中血液流速分布的變化能夠較為準(zhǔn)確地體現(xiàn)被測對(duì)象血管變形和淤堵情況。為研究不同位置的血管內(nèi)流速分布的測量,建立模型3將動(dòng)脈、靜脈的測量區(qū)域進(jìn)行高分辨率的區(qū)域劃分,通過速度重構(gòu)分別實(shí)現(xiàn)對(duì)動(dòng)脈、靜脈2個(gè)逆向流動(dòng)管道的速度剖面測量,對(duì)比同一被測者長期測量的結(jié)果,可以直接表征動(dòng)脈、靜脈血管的堵塞情況。模型3分別將動(dòng)脈、靜脈橫截面按照45°圓心角均勻分為8個(gè)扇形區(qū)域,采用扇形劃分方式是為了更好地體現(xiàn)脂質(zhì)在血管壁積聚的程度。該仿真采用18電極均勻分布在模型外壁,y軸正方向的上半弧以e5作基準(zhǔn)、下半弧以e14作基準(zhǔn),可獲得16對(duì)測量電壓值。測量電壓區(qū)域?qū)?yīng)表見表3。區(qū)域劃分及電極布置如圖4所示。
2.2COMSOL多物理場仿真結(jié)果
2.2.1勵(lì)磁系統(tǒng)磁場強(qiáng)度及均勻性仿真
采用有限元分析法,利用COMSOL Multiphysics 多物理場仿真軟件建立多電極肢體血液測量系統(tǒng)的三維模型,如圖5所示。
在仿真軟件的材料選項(xiàng)中分別添加空氣、線圈、硅鋼片、皮膚脂肪、骨骼、肌肉和血液的電導(dǎo)率、相對(duì)介電常數(shù)和相對(duì)磁導(dǎo)率等。設(shè)置磁場和電場的邊界條件,進(jìn)行網(wǎng)格的劃分和求解器的選擇。Helmholtz 線圈和C型線圈均可以產(chǎn)生相對(duì)均勻的磁場,只是產(chǎn)生的機(jī)理不同,本文在對(duì)文獻(xiàn)[18]和文獻(xiàn)[19]的研究結(jié)果進(jìn)行分析后,選擇C型線圈作為本文的勵(lì)磁線圈。對(duì)C型線圈勵(lì)磁系統(tǒng)的磁場進(jìn)行仿真,如圖6所示。由仿真結(jié)果得出,C型線圈勵(lì)磁系統(tǒng)的磁場可視為0.15 T。
利用COMSOL Multiphysics 多物理場仿真軟件建立多電極肢體血液監(jiān)測系統(tǒng)的三維模型,仿真時(shí)分別將指定區(qū)域1、區(qū)域2賦予500 m/s的均勻速度,其他區(qū)域中的速度設(shè)置為0。需要說明的是區(qū)域權(quán)函數(shù)的計(jì)算值是一個(gè)與電磁流量計(jì)有關(guān)的數(shù)值,與區(qū)域中設(shè)置的速度大小無關(guān),之所以仿真中設(shè)置如此大的速度值是為了獲得數(shù)值較高且精度較高的感應(yīng)電動(dòng)勢,提高區(qū)域權(quán)函數(shù)的計(jì)算精度。磁感應(yīng)強(qiáng)度設(shè)置為0.15 T,在此種流動(dòng)情況下啟動(dòng)仿真,仿真得到感應(yīng)電動(dòng)勢。通過MATLAB軟件對(duì)仿真數(shù)據(jù)進(jìn)行提取與處理,得到不同電極對(duì)的感應(yīng)電壓,代入式(2),便可求得區(qū)域權(quán)函數(shù)。
1)動(dòng)、靜脈位置固定的仿真結(jié)果
按照模型1幾何結(jié)構(gòu)建立模型模擬動(dòng)脈、靜脈(區(qū)域1、區(qū)域2)的流動(dòng)仿真模型,由于人體肢體動(dòng)脈血液平均流速約為0.23 m/s,靜脈血液平均流速約為0.035 m/s,而且動(dòng)脈、靜脈血液流速方向相反,故分別按照10∶1的比例賦予期望速度,仿真得到感應(yīng)電動(dòng)勢如圖7所示。提取e1-e3坐標(biāo)處感應(yīng)電動(dòng)勢仿真結(jié)果與理論計(jì)算值進(jìn)行對(duì)比,3個(gè)電極的仿真結(jié)果與理論計(jì)算結(jié)果相對(duì)誤差均小于0.1%。
將仿真所得感應(yīng)電動(dòng)勢按照式(3)進(jìn)行速度重構(gòu),動(dòng)脈、靜脈中軸向平均速度仿真結(jié)果見圖8。仿真結(jié)果表明,在模型1中電極布置方式及二區(qū)域劃分方式下,多電極電磁肢體血液流量計(jì)可測量互為逆向的動(dòng)脈、靜脈血液流速,且相對(duì)誤差范圍在0.01%內(nèi)。
2)動(dòng)、靜脈位置沿y軸方向偏移的仿真結(jié)果
按照上一節(jié)描述的方法依照式(2)計(jì)算區(qū)域權(quán)函數(shù)值,模型2對(duì)區(qū)域1-4進(jìn)行3種條件的流動(dòng)仿真:區(qū)域1,3分別和區(qū)域2,4速度向量值完全相同;區(qū)域1,3分別和區(qū)域2,4速度方向一致、流速值差距較大(50倍以上);區(qū)域1,3分別和區(qū)域2,4速度方向一致、流速值接近(5倍以內(nèi))。其中3種條件仿真結(jié)果基本一致,僅以條件3相鄰區(qū)域速度方向一致且流速接近為例進(jìn)行說明,區(qū)域1-4仿真時(shí)軸向平均速度設(shè)定值分別為20,10,-5,-1 m/s。仿真得到的感應(yīng)電動(dòng)勢如圖9所示。
模型2在相鄰區(qū)域速度方向一致且流速接近的條件下,動(dòng)、靜脈軸向平均速度重構(gòu)結(jié)果見圖10,仿真速度測量相對(duì)誤差小于0.01%。仿真結(jié)果表明,基于區(qū)域權(quán)函數(shù)的多電極電磁血液流速測量結(jié)果對(duì)肢體動(dòng)脈、靜脈位置差異不敏感,多電極電磁肢體血液流量計(jì)可應(yīng)用于不同個(gè)體的血液流速測量。
3)動(dòng)、靜脈血管進(jìn)行8區(qū)域剖分的仿真結(jié)果
模型3將動(dòng)脈、靜脈血管截面再次進(jìn)行劃分,通過仿真研究人體肢體血管微小尺寸流的速度分布測量機(jī)理,將之前仿真中只測量動(dòng)脈和靜脈軸向速度平均值,轉(zhuǎn)換為測量各個(gè)血管中的速度分布值。通過長期監(jiān)測數(shù)據(jù),對(duì)比動(dòng)、靜脈中速度分布結(jié)果,對(duì)流動(dòng)速度剖面發(fā)生異常的區(qū)域進(jìn)行重點(diǎn)關(guān)注,進(jìn)而預(yù)測動(dòng)脈狹窄、堵塞和硬化等情況。
由于權(quán)函數(shù)在二維平面上的對(duì)稱性質(zhì)[20],在模型3中只需仿真區(qū)域1至區(qū)域4(區(qū)域劃分見圖4)的感應(yīng)電動(dòng)勢,便可求出系統(tǒng)16區(qū)域權(quán)函數(shù)值Wij,其中i=j=16,仿真結(jié)果見圖11。
如圖4所示區(qū)域1至8模擬動(dòng)脈流動(dòng)仿真模型,為模擬動(dòng)脈血管部分堵塞的情況,將區(qū)域1和區(qū)域5模擬設(shè)置10 m/s的流速,其余區(qū)域均為20 m/s。區(qū)域9至16模擬靜脈流動(dòng)仿真模型,其中區(qū)域9和區(qū)域13模擬靜脈中血管堵塞的情況,速度值為-1 m/s;其余區(qū)域均為-5 m/s。仿真得到感應(yīng)電動(dòng)勢如圖12所示。
按照式(3)進(jìn)行速度重構(gòu),重構(gòu)得出的速度分布與仿真設(shè)定值見圖13。重構(gòu)速度與仿真設(shè)定速度相對(duì)誤差小于0.01%,基于區(qū)域權(quán)函數(shù)計(jì)算的多電極電磁測量能夠準(zhǔn)確反應(yīng)動(dòng)脈、靜脈逆向流動(dòng)的小尺寸血管中速度分布的結(jié)果,可以針對(duì)動(dòng)脈、靜脈的堵塞或其他異常情況進(jìn)行特征描述。
3結(jié)論
1) 利用區(qū)域權(quán)函數(shù)理論針對(duì)不同情況建立不同測量模型并進(jìn)行速度重構(gòu),通過仿真驗(yàn)證,多電極電磁測量方式可用于動(dòng)脈、靜脈逆向血液流速測量;
2)建立模型驗(yàn)證人體肢體動(dòng)脈、靜脈在所處皮下位置一定范圍內(nèi)變化時(shí)的測量情況,根據(jù)仿真結(jié)果計(jì)算的速度信息是準(zhǔn)確的,表明多電極電磁肢體血液流量計(jì)對(duì)血管位置不敏感,可應(yīng)用于不同個(gè)體的血液流速測量;
3)通過對(duì)動(dòng)脈、靜脈的測量區(qū)域高分辨率的區(qū)域劃分,仿真結(jié)果準(zhǔn)確實(shí)現(xiàn)了各血管內(nèi)速度分布情況的測量,表明電磁測量機(jī)理適用于動(dòng)脈、靜脈堵塞判斷;
4)關(guān)于多電極電磁測量機(jī)理對(duì)于個(gè)體差異的適用性驗(yàn)證工作還需進(jìn)一步開展,今后將對(duì)此進(jìn)行深入探索。
參考文獻(xiàn)/References:
[1]KOLIN A, An electromagnetic flowmeter: Principle of the method and its applications to blood measurements[J]. Proc Soc Exp Biol Med, 1936(35):53-56.
[2]CHENG Z, WOOD N B, GIBBS R G J,et al. Geometric and flow features of type B aortic dissection: Initial findings and comparison of medically treated and stented cases[J]. Annals of Biomedical Engineering, 2015,43(1):177-189.
[3]ZHAO Y Y, LUCAS G, LEEUNGCULSATIEN T. Measurement and control systems for an imaging electromagnetic flow metre[J]. ISA Transactions, 2014, 53(2):423-432.
[4]BEVIR M K, O'SULLIVAN V T, WYATT D G. Computing of electromagnetic flowmeter characteristics from magnetic field data[J]. Phys.D: Appl. Phys.1981(14): 373-388.
[5]陳國玉, 蔣振善. 電磁流量計(jì)測定門靜脈血流的臨床應(yīng)用[J]. 江蘇醫(yī)藥, 1991(6):299-300.
CHEN Guoyu, JIANG Zhenshan. Clinical application of electromagnetic flowmeter for measuring portal blood flow[J]. Jiangsu Medicine,1991(6):299-300.
[6]張小章. 基于流動(dòng)電磁測量理論的流場重建[J]. 計(jì)量學(xué)報(bào), 1998, 19(1):40-44.
ZHANG Xiaozhang. Flow field reconstruction based on flow electromagnetic measurement theory[J]. Journal of Metrology,1998,19(1):40-44.
[7]徐立軍,王亞,董峰,等.基于多電極電磁流量計(jì)的流速場重建[J].自然科學(xué)進(jìn)展, 2002,12(5):524-528.
XU Lijun, WANG Ya, DONG Feng, et al. Velocity field reconstruction based on multi-electrode electromagnetic flowmeter[J]. Advances in Natural Science, 2002, 12(5):524-528.
[8]唐飛, 王曉浩, 王東生. 熱擴(kuò)散法測量血液流速[J]. 儀器儀表學(xué)報(bào), 2008, 29(5):978-981.
TANG Fei, WANG Xiaohao, WANG Dongsheng. Measurement of blood flow rate by thermal diffusion method [J].Jurnal of Instnoment and Measurement, 2008,29(5): 978-981
[9]陳遠(yuǎn), 趙志敏, 鄭敏,等.人體微小管狀血管血液流速自動(dòng)測量方法研究[J].計(jì)量學(xué)報(bào), 2010, 31(2):123-126.
CHEN Yuan, ZHAO Zhimin, ZHENG Min, et al. An automated detection method for human micro-vessel blood velocity[J].Journal of Metrology, 2010, 31(2):123-126.
[10]PENG Z, CAO Z, XU L, et al. Influence of installation angle of electromagnetic flowmeter on measurement accuracy[C]// The 8th IEEE International Symposium on Instrumentation and Control Technology.UK:IEEE, 2012:195-199.
[11]曾宇杰, 羅坤, 樊建人,等.主動(dòng)脈夾層血液兩相流動(dòng)數(shù)值模擬分析[J]. 工程熱物理學(xué)報(bào), 2016, 37(4):780-784.
ZENG Yujie, LUO Kun, FAN Jianren, et al. Aortic dissection blood two-phase flow numerical simulation study[J]. Journal of Engineering Thermophysics, 2016, 37(04):780-784.
[12]董會(huì)武, 陳端端, 熊江. 國人青年主動(dòng)脈血流分配比例正常值的超聲測定[J]. 中國普通外科雜志, 2017,26(12):1633-1636.
DONG Huiwu, CHEN Duanduan, XIONG Jiang. Ultrasonic determination of normal aortic blood flow distribution ratio in Chinese youth[J]. Chinese Journal of General Surgery, 2017,26(12):1633-1636.
[13]AGOLOM M O, LUCAS G, WEBILOR R O. Measurement of velocity profiles in transient single and multiphase flows using inductive flow tomography [J]. Flow Measurement and Instrumentation, 2018, 62:246-254.
[14]MENG Y. Imaging of the water velocity distribution in water continuous multiphase flows using inductive flow tomography(IFT)[D]. Huddersfield:University of Huddersfield, 2016.
[15]SHERCLIFF J A. The Theory of Electromagnetic Flow-Measurement [M]. UK: 1962.NeW York: Cambrideg University Press,
[16]LEHTIKANGAS O, KARHUNEN K, VAUHKONEN M. Reconstruction of velocity fields in electromagnetic flow tomography[J]. Philosophical Transactions of the Royal Society, 2016,374(2070):1173-1180.
[17]高躍明, 潘少恒, 麥炳源,等.微弱電流耦合信號(hào)在人體上臂傳輸?shù)慕Ec分析[J].中國組織工程研究與臨床康復(fù), 2011,15(52):9738-9741.
GAO Yueming, PAN Shaoheng, MAI Bingyuan, et al. Model establishment and analysis of feeble current coupling signal transmitting through human limb[J]. Journal of Clinical Rehabilitative Tissue Engineering Research, 2011,15(52):9738-9741.
[18]TSE K M,CHIU P,LEE H P,et al. Investigation of hemodynamics in the development of dissecting aneurysm with in patient-specific dissecting aneurismal aortas using computational fluid dynamics simulation[J]. Journal of Biomechanics, 2011,44(5):827-836.
[19]LEEUNGCULSATIEN T, LUCAS G. Measurement of velocity profiles in multiphase flow using a multi-electrode electromagnetic flow meter[J]. Flow Measurement and Instrumentation, 2013, 31:86-95.
[20]CHA J E, AHN Y C, KIM M H. Flow measurement with an electromagnetic flowmeter in two-phase bubbly and slug flow regimes[J]. Flow Measurement & Instrumentation, 2002, 12(5):329-339.第40卷第1期河北科技大學(xué)學(xué)報(bào)Vol.40,No.1
2019年2月Journal of Hebei University of Science and TechnologyFeb. 2019