• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      基于貝葉斯傅里葉動(dòng)態(tài)模型的橋梁極值應(yīng)力預(yù)測(cè)

      2019-06-24 15:27:11樊學(xué)平屈廣劉月飛
      關(guān)鍵詞:傅里葉監(jiān)測(cè)數(shù)據(jù)極值

      樊學(xué)平 屈廣 劉月飛

      摘? ?要:研究了基于健康監(jiān)測(cè)應(yīng)力數(shù)據(jù)的橋梁極值應(yīng)力動(dòng)態(tài)預(yù)測(cè).考慮到監(jiān)測(cè)應(yīng)力的周期性、隨機(jī)性和動(dòng)態(tài)性等特點(diǎn),首先初次建立了橋梁監(jiān)測(cè)極值應(yīng)力的傅里葉動(dòng)態(tài)非線(xiàn)性模型(Fourier Dynamic Nonlinear Model,F(xiàn)DNM),結(jié)合Taylor級(jí)數(shù)展開(kāi)技術(shù),將FDNM近似轉(zhuǎn)化為傅里葉動(dòng)態(tài)線(xiàn)性模型(Fourier Dynamic Linear Model,F(xiàn)DLM);然后采用貝葉斯方法,基于動(dòng)態(tài)監(jiān)測(cè)極值應(yīng)力數(shù)據(jù),建立了無(wú)先驗(yàn)信息的貝葉斯傅里葉動(dòng)態(tài)線(xiàn)性模型(Bayesian Fourier Dynamic Linear Model: BFDLM),進(jìn)而對(duì)監(jiān)測(cè)極值應(yīng)力的一步向前預(yù)測(cè)分布參數(shù)和后驗(yàn)應(yīng)力狀態(tài)分布參數(shù)進(jìn)行了預(yù)測(cè)分析;最后通過(guò)實(shí)際橋梁監(jiān)測(cè)極值應(yīng)力數(shù)據(jù)對(duì)本文所建模型和方法的合理性及適用性進(jìn)行了驗(yàn)證分析,結(jié)果表明本文所建BFDLM能夠反映橋梁極值應(yīng)力的周期性、隨機(jī)性以及動(dòng)態(tài)性等特點(diǎn).研究成果將為橋梁監(jiān)測(cè)極值應(yīng)力預(yù)測(cè)提供理論基礎(chǔ)和應(yīng)用方法.

      關(guān)鍵詞:橋梁;傅里葉動(dòng)態(tài)非線(xiàn)性模型;Taylor級(jí)數(shù)展開(kāi)技術(shù);貝葉斯方法;橋梁極值應(yīng)力預(yù)測(cè)

      中圖分類(lèi)號(hào):TU391; TU392.5? ? ? ? ? ? ? ? ? 文獻(xiàn)標(biāo)志碼:A

      Abstract: The dynamic prediction of bridge extreme stress based on health monitoring stress data was studied. Considering the monitored stresses periodicity, randomness, dynamic characteristics and so forth,firstly,the Fourier Dynamic Nonlinear Model(FDNM) of bridge monitored extreme stress was built,and, with Taylor series expansion technology, FDNM was approximately transferred into the Fourier Dynamic Linear Model(FDLM);secondly, with Bayes method, the Bayesian FDLM(BFDLM) was built based on the monitored extreme stress data,and the one-step forward prediction distribution parameters of monitored extreme stress and distribution parameters of posterior stress state were dynamically predicted; finally, the monitored extreme stress data of an actual bridge was provided to illustrate the application and feasibility of the proposed models and methods. The results show that the proposed BFDLM can reflect bridge extreme stresses' periodicity, randomness, dynamics and so forth,which can provide the theoretical foundation and application approach for bridge monitoring extreme stress prediction.

      Key words: bridge;Fourier dynamic nonlinear model;Taylor series expansion technology;Bayesian approach; bridge extreme stress prediction

      橋梁健康監(jiān)測(cè)系統(tǒng)在長(zhǎng)期運(yùn)營(yíng)中積累了大量監(jiān)測(cè)數(shù)據(jù),如應(yīng)力、應(yīng)變、撓度、加速度等.發(fā)展至今,監(jiān)測(cè)數(shù)據(jù)合理應(yīng)用的研究主要集中在模態(tài)分析[1]、損傷識(shí)別與評(píng)估[1-2]、模型修正[3]以及可靠性評(píng)估[4-5]等領(lǐng)域,仍難以有效預(yù)測(cè)結(jié)構(gòu)的動(dòng)態(tài)可靠性,因此如何有效利用監(jiān)測(cè)信息預(yù)測(cè)結(jié)構(gòu)可靠性仍是橋梁健康監(jiān)測(cè)領(lǐng)域備受關(guān)注的研究難點(diǎn).而結(jié)構(gòu)可靠性主要跟抗力與荷載效應(yīng)相關(guān),因而合理動(dòng)態(tài)預(yù)測(cè)荷載效應(yīng)就成為結(jié)構(gòu)可靠性預(yù)測(cè)的關(guān)鍵問(wèn)題.

      考慮到橋梁有限元建模和模型更新的復(fù)雜性和困難性,采用無(wú)需模型的分析方法逐漸成為橋梁健康監(jiān)測(cè)領(lǐng)域的研究趨勢(shì).基于實(shí)際監(jiān)測(cè)數(shù)據(jù),采用無(wú)需模型的分析方法預(yù)測(cè)橋梁的荷載效應(yīng)已取得一些研究成果,但多為基于離線(xiàn)監(jiān)測(cè)信息的預(yù)測(cè)研究[5-7],而基于實(shí)時(shí)監(jiān)測(cè)信息的動(dòng)態(tài)預(yù)測(cè)研究相對(duì)較少,且研究成果存在一定的局限性,如:Frangopol等[8-9]提出了基于監(jiān)測(cè)極值一次回歸函數(shù)的橋梁性能的可靠性預(yù)測(cè)方法,并于同年提出了基于貝葉斯更新的橋梁可靠性預(yù)測(cè)方法,兩種方法分析過(guò)程中分別采用一次回歸函數(shù)和常值函數(shù)進(jìn)行荷載效應(yīng)動(dòng)態(tài)預(yù)測(cè),均未考慮監(jiān)測(cè)變量的動(dòng)態(tài)隨機(jī)性和周期性;趙卓[10]采用ARMA模型動(dòng)態(tài)預(yù)測(cè)了長(zhǎng)春伊通河橋構(gòu)件的荷載效應(yīng)(撓度、加速度以及索力等),分析過(guò)程中亦未考慮監(jiān)測(cè)變量的動(dòng)態(tài)隨機(jī)性和周期性,且存在模型長(zhǎng)期預(yù)測(cè)精度不高的問(wèn)題;樊學(xué)平等[11-13]利用監(jiān)測(cè)數(shù)據(jù),研究了基于貝葉斯動(dòng)態(tài)線(xiàn)性模型和貝葉斯動(dòng)態(tài)非線(xiàn)性模型的橋梁構(gòu)件可靠性動(dòng)態(tài)預(yù)測(cè)方法,分析過(guò)程中存在以下兩個(gè)問(wèn)題:a)荷載效應(yīng)的動(dòng)態(tài)預(yù)測(cè)均未考慮監(jiān)測(cè)變量數(shù)據(jù)周期性的特點(diǎn),即貝葉斯動(dòng)態(tài)模型的狀態(tài)方程均未考慮監(jiān)測(cè)變量狀態(tài)的周期性;b)動(dòng)態(tài)模型中監(jiān)測(cè)誤差的方差均為已知.綜上所述,本文作者經(jīng)過(guò)研究發(fā)現(xiàn),存在以下問(wèn)題需要解決:1)如何建立考慮監(jiān)測(cè)數(shù)據(jù)動(dòng)態(tài)性、隨機(jī)性以及周期性等特點(diǎn)的動(dòng)態(tài)模型;2)在監(jiān)測(cè)誤差未知的情況下,如何采用貝葉斯方法對(duì)動(dòng)態(tài)模型進(jìn)行概率遞推.

      鑒于上述問(wèn)題,本文通過(guò)傅里葉函數(shù)來(lái)建立先驗(yàn)信息未知的橋梁監(jiān)測(cè)極值應(yīng)力動(dòng)態(tài)模型,采用貝葉斯方法對(duì)其進(jìn)行概率遞推,實(shí)現(xiàn)橋梁極值應(yīng)力的動(dòng)態(tài)預(yù)測(cè).

      1? ?研究流程及步驟考慮到監(jiān)測(cè)數(shù)據(jù)的動(dòng)態(tài)性、隨機(jī)性以及周期性,本文所提的橋梁極值應(yīng)力動(dòng)態(tài)預(yù)測(cè)的詳細(xì)流程圖如圖1所示.

      結(jié)合圖1可得具體研究步驟為:1)利用橋梁系統(tǒng)歷史監(jiān)測(cè)極值應(yīng)力數(shù)據(jù),本文認(rèn)為其為一個(gè)時(shí)間序列,對(duì)其進(jìn)行五點(diǎn)三次平滑處理,近似得到極值應(yīng)力狀態(tài)數(shù)據(jù),采用傅里葉函數(shù)和Taylor級(jí)數(shù)展開(kāi)技術(shù),近似得到極值應(yīng)力的線(xiàn)性狀態(tài)方程,并將狀態(tài)方程與歷史監(jiān)測(cè)極值應(yīng)力數(shù)據(jù)相結(jié)合得到線(xiàn)性監(jiān)測(cè)方程,進(jìn)而可得橋梁極值應(yīng)力無(wú)先驗(yàn)信息的傅里葉動(dòng)態(tài)線(xiàn)性模型(FDLM);2)基于建立的無(wú)先驗(yàn)信息FDLM和動(dòng)態(tài)監(jiān)測(cè)極值應(yīng)力數(shù)據(jù),采用貝葉斯方法,實(shí)現(xiàn)橋梁極值應(yīng)力的動(dòng)態(tài)概率預(yù)測(cè),并通過(guò)實(shí)際橋梁的監(jiān)測(cè)極值應(yīng)力數(shù)據(jù)驗(yàn)證所提方法的合理性和適用性.

      2? ?橋梁監(jiān)測(cè)極值應(yīng)力無(wú)先驗(yàn)信息的FDLM傅里葉動(dòng)態(tài)線(xiàn)性模型(FDLM)由線(xiàn)性監(jiān)測(cè)方程、基于傅里葉函數(shù)和Taylor級(jí)數(shù)展開(kāi)技術(shù)的線(xiàn)性狀態(tài)方程以及初始狀態(tài)信息三部分組成.狀態(tài)方程反映了監(jiān)測(cè)變量和系統(tǒng)隨時(shí)間變化的水平,監(jiān)測(cè)方程反映了監(jiān)測(cè)變量和狀態(tài)變量之間的關(guān)系.本文所建立的FDLM基于兩點(diǎn)假設(shè)[14-15]:

      1)狀態(tài)變量{θt}的變化是一個(gè)馬爾科夫過(guò)程;

      2)監(jiān)測(cè)變量{yt}相互獨(dú)立,且只與狀態(tài)變量相關(guān).

      2.1? ?狀態(tài)方程的建立本文主要通過(guò)橋梁歷史監(jiān)測(cè)極值應(yīng)力數(shù)據(jù)建立動(dòng)態(tài)線(xiàn)性模型,其中狀態(tài)方程的詳細(xì)建立步驟

      如下:

      1)利用五點(diǎn)三次平滑處理方法[10],對(duì)橋梁歷史監(jiān)測(cè)極值應(yīng)力數(shù)據(jù)進(jìn)行重采樣,近似得到初始極值應(yīng)力狀態(tài)數(shù)據(jù);

      2)采用傅里葉函數(shù)(反映數(shù)據(jù)的周期性)對(duì)初始應(yīng)力狀態(tài)數(shù)據(jù)進(jìn)行回歸分析,得到極值應(yīng)力狀態(tài)的回歸函數(shù);

      3)利用回歸函數(shù),結(jié)合Taylor級(jí)數(shù)展開(kāi)技術(shù),建立傅里葉線(xiàn)性狀態(tài)方程.初始極值應(yīng)力狀態(tài)的回歸函數(shù)為

      4? ?實(shí)橋應(yīng)力預(yù)測(cè)分析(天津富民橋)

      本文選取了天津富民橋作為工程實(shí)例,詳見(jiàn)文獻(xiàn)[13].富民橋總長(zhǎng)340.3 m,寬40 m,主跨157 m,為單塔空間索面自錨式懸索橋.其主跨主纜錨于主梁兩側(cè),邊跨主纜錨于重力式錨碇,形成了一個(gè)獨(dú)特而又穩(wěn)定的結(jié)構(gòu)體系.該結(jié)構(gòu)體系動(dòng)力響應(yīng)較為復(fù)雜,同時(shí)結(jié)構(gòu)受溫度影響較大,故監(jiān)測(cè)應(yīng)力信息通常呈周期性.由文獻(xiàn)[13]可知:D斷面橫梁截面安裝了3個(gè)傳感器(如圖2所示),分別為FBG01012、FBG01015和FBG01005.

      本文定義每一分鐘的監(jiān)測(cè)應(yīng)力極大值為監(jiān)測(cè)極值應(yīng)力,在2009年8月24日和25日對(duì)D斷面進(jìn)行動(dòng)態(tài)監(jiān)測(cè),經(jīng)過(guò)數(shù)據(jù)分析比較可得,期間傳感器FBG01012采集到的監(jiān)測(cè)應(yīng)力值最大,所采集的每一分鐘的監(jiān)測(cè)極值應(yīng)力如圖3所示.因而本文結(jié)合D斷面?zhèn)鞲衅鱂BG01012的歷史動(dòng)態(tài)監(jiān)測(cè)極值應(yīng)力數(shù)據(jù)(1 ~287 min的每分鐘的周期性極值應(yīng)力數(shù)據(jù)如圖3所示)建立FDNM,并對(duì)其進(jìn)行線(xiàn)性化,轉(zhuǎn)化為FDLM,再利用貝葉斯方法,基于287 ~1 149 min的監(jiān)測(cè)極值應(yīng)力數(shù)據(jù),對(duì)第288 ~1 150 min的極值應(yīng)力進(jìn)行動(dòng)態(tài)預(yù)測(cè).

      式中:yt為t時(shí)刻的監(jiān)測(cè)應(yīng)力值;vt為監(jiān)測(cè)誤差;V為常值未知方差,可以通過(guò)St-1 = dt-1 /nt-1近似估計(jì).mt-1 和Ct-1可以通過(guò)前287 min應(yīng)力數(shù)據(jù)經(jīng)過(guò)五點(diǎn)三次平滑處理的數(shù)據(jù)(平滑處理后的初始信息見(jiàn)圖4)近似估計(jì)得到.

      采用式(8)~式(20)和式(22)~式(25),利用1~287 min的監(jiān)測(cè)應(yīng)力數(shù)據(jù)建立的FDLM,對(duì)第288~574 min(后287 min)的應(yīng)力進(jìn)行動(dòng)態(tài)預(yù)測(cè),結(jié)果如圖5~圖7所示.

      由圖5與圖6可知,預(yù)測(cè)應(yīng)力與監(jiān)測(cè)應(yīng)力的大小近似相等,且預(yù)測(cè)應(yīng)力區(qū)間均包含了監(jiān)測(cè)應(yīng)力和預(yù)測(cè)應(yīng)力的所有數(shù)據(jù),證明了本文所建模型是合理的.

      由圖7可知,由式(17)計(jì)算得到的FDLM的預(yù)測(cè)精度隨著監(jiān)測(cè)應(yīng)力的不斷修正越來(lái)越好,進(jìn)一步驗(yàn)證了本文所建模型的合理性.

      5? ?結(jié)? ?論

      本文考慮到橋梁監(jiān)測(cè)信號(hào)的隨機(jī)性、動(dòng)態(tài)性以及周期性等特點(diǎn),首次建立了傅里葉動(dòng)態(tài)線(xiàn)性模型,采用貝葉斯方法對(duì)其進(jìn)行了動(dòng)態(tài)概率遞推,并利用實(shí)際橋梁監(jiān)測(cè)數(shù)據(jù)對(duì)其進(jìn)行了驗(yàn)證分析,結(jié)論如下:

      1)無(wú)先驗(yàn)信息FDLM能夠?qū)蛄簶O值應(yīng)力進(jìn)行合理的預(yù)測(cè),預(yù)測(cè)值和監(jiān)測(cè)值的變化趨勢(shì)一致,大小近似相等,而且能夠有效反映實(shí)時(shí)監(jiān)測(cè)數(shù)據(jù)的變化范圍和趨勢(shì),并且由于模型方差未知,更為符合工程實(shí)際.

      2)無(wú)先驗(yàn)信息FDLM隨著實(shí)時(shí)監(jiān)測(cè)數(shù)據(jù)的不斷修正,預(yù)測(cè)精度越來(lái)越高.說(shuō)明預(yù)測(cè)的客觀性越來(lái)越好.這些成果將為橋梁健康監(jiān)測(cè)提供一定的理論基礎(chǔ).

      參考文獻(xiàn)

      [1]? ? 李順龍. 基于健康監(jiān)測(cè)技術(shù)的橋梁結(jié)構(gòu)狀態(tài)評(píng)估和預(yù)警方法研究[D]. 哈爾濱: 哈爾濱工業(yè)大學(xué)土木工程學(xué)院,2009:18—39.

      LI S L. Approached of condition assessment and damage alarming of bridges based on structural health monitoring[D]. Harbin:School of Civil Engineering,Harbin Institute of Technology,2009:18—39. (In Chinese)

      [2]? ? 宗周紅,鐘儒勉,鄭沛娟,等. 基于健康監(jiān)測(cè)的橋梁結(jié)構(gòu)損傷預(yù)后和安全預(yù)后研究進(jìn)展及挑戰(zhàn)[J]. 中國(guó)公路學(xué)報(bào),2014,27(12):46—57.

      ZONG Z H,ZHONG R M,ZHENG P J,et al. Damage and safety prognosis of bridge structures based on structural health monitoring:progress and challenges [J]. China Journal of Highway and Transport,2014,27(12):46—57. (In Chinese)

      [3]? ? 魏錦輝,任偉新. 基于響應(yīng)面方法的橋梁靜動(dòng)力有限元模型修正[J]. 公路交通科技,2015,32(2):68—73.

      WEI J H,REN W X. Static and dynamic bridge finite element model updating based on response surface method [J]. Journal of Highway and Transportation Research and Development,2015,32(2):68—73. (In Chinese)

      [4]? ? 焦美菊,孫利民,李清富. 基于監(jiān)測(cè)數(shù)據(jù)的橋梁結(jié)構(gòu)可靠度評(píng)估[J]. 同濟(jì)大學(xué)學(xué)報(bào)(自然科學(xué)版),2011,39(10):1452—1457.

      JIAO M J,SUN L M,LI Q F. Bridge structural reliability assessment based on health monitoring data [J]. Journal of Tongji University (Natural Science), 2011, 39(10): 1452—1457.? (In Chinese)

      [5]? FRANGOPOL D M,STRAUSS A,KIM S. Bridge reliability assessment based on monitoring [J]. Journal of Bridge Engineering,2008,13(3):258—270.

      [6]? ? WALSH S B,BORELLO D J,GULDUR B,et al. Data processing of point clouds for object detection for structural engineering applications [J]. Computer-Aided Civil and Infrastructure Engineering,2013,28(7):495—508.

      [7]? ? CATBAS F N,SUSOY M,F(xiàn)RANGOPOL D M. Structural health monitoring and reliability estimation:long span truss bridge application with environmental monitoring data [J]. Engineering Structures,2008,30(9):2347—2359.

      [8]? ? FRANGOPOL D M,STRAUSS A,KIM S Y. Use of monitoring extreme data for the performance prediction of structures:general approach [J]. Engineering Structures,2008,30:3644—3653.

      [9]? ? STRAUSS A,F(xiàn)RANGOPOL D M,Kim S Y. Use of monitoring extreme data for the performance prediction of structures:Bayesian updating [J]. Engineering Structures,2008,30:3654—3666.

      [10]? 趙卓. 基于ARMA模型的伊通河橋監(jiān)測(cè)數(shù)據(jù)建模與可靠度分析[D]. 哈爾濱:哈爾濱工業(yè)大學(xué)土木工程學(xué)院,2012:35—93.

      ZHAO Z. Health monitoring data modeling and reliability analysis for Yitong river bridge based on ARMA model [D]. Harbin:School of Civil Engineering,Harbin Institute of Technology,2012:35—93. (In Chinese)

      [11]? L?譈 D G,F(xiàn)AN X P. Bayesian forecasting of structural bending capacity of aging bridges based on dynamic linear model [J]. Journal of Harbin Institute of Technology,2012,44(12):13—17.

      [12]? 樊學(xué)平,呂大剛. 基于多個(gè)BDLM的橋梁結(jié)構(gòu)可靠度實(shí)時(shí)預(yù)測(cè)[J]. 華南理工大學(xué)學(xué)報(bào)(自然科學(xué)版),2013,41(3):70—75.

      FAN X P,L?譈 D G. Real-time reliability forecast of bridge structures based on multiple BDLMs [J]. Journal of South China University of Technology,2013,41(3):70—75. (In Chinese)

      [13]? 樊學(xué)平. 基于驗(yàn)證荷載和監(jiān)測(cè)數(shù)據(jù)的橋梁可靠性修正與貝葉斯預(yù)測(cè)[D]. 哈爾濱:哈爾濱工業(yè)大學(xué)土木工程學(xué)院,2014:39—84 .

      FAN X P. Bridge reliability updating and Bayesian prediction based on proof loads and monitored data [D]. Harbin:School of Civil Engineering,Harbin Institute of Technology,2014:39—84. (In Chinese)

      [14]? WEST M,HARRISON J. Bayesian forecasting and dynamic models [M]. 2nd ed. New York:Springer Series,1997:32—37.

      [15]? PETRIS G,PETRONE S,CAMPAGNOLI P. Dynamic linear models with R[M]. New York:Springer Series,2009:31—84.

      收稿日期:2018-05-16

      基金項(xiàng)目:國(guó)家自然科學(xué)基金資助項(xiàng)目(51608243),National Natural Science Foundation of China(51608243);甘肅省自然科學(xué)基金資助項(xiàng)目(1606RJYA246),Natural Science Foundation of Gansu Province(1606RJYA246)

      作者簡(jiǎn)介:樊學(xué)平(1983—),男,山西運(yùn)城人,蘭州大學(xué)副教授,博士

      通訊聯(lián)系人,E-mail:fxp_2004@163.com

      猜你喜歡
      傅里葉監(jiān)測(cè)數(shù)據(jù)極值
      極值點(diǎn)帶你去“漂移”
      極值點(diǎn)偏移攔路,三法可取
      GSM-R接口監(jiān)測(cè)數(shù)據(jù)精確地理化方法及應(yīng)用
      雙線(xiàn)性傅里葉乘子算子的量化加權(quán)估計(jì)
      一類(lèi)“極值點(diǎn)偏移”問(wèn)題的解法與反思
      基于小波降噪的稀疏傅里葉變換時(shí)延估計(jì)
      基于傅里葉變換的快速TAMVDR算法
      快速離散傅里葉變換算法研究與FPGA實(shí)現(xiàn)
      匹配數(shù)為1的極值2-均衡4-部4-圖的結(jié)構(gòu)
      GPS異常監(jiān)測(cè)數(shù)據(jù)的關(guān)聯(lián)負(fù)選擇分步識(shí)別算法
      连南| 宣汉县| 东丽区| 阿拉善右旗| 梁平县| 阜康市| 浦城县| 柯坪县| 桃园市| 枣强县| 溧水县| 金湖县| 三明市| 昌邑市| 芦溪县| 巩义市| 弥渡县| 望谟县| 德昌县| 大新县| 洛宁县| 松江区| 盐山县| 普定县| 固始县| 孝义市| 敦煌市| 洪湖市| 兴安盟| 山阳县| 蕲春县| 铁岭县| 五家渠市| 玉溪市| 西乌珠穆沁旗| 敦煌市| 通化市| 措美县| 商丘市| 全椒县| 扎囊县|