宋騰飛 劉慧娟 張振洋 劉威
關鍵詞:內(nèi)置式永磁電機;電動汽車;弱磁能力;過載能力;調(diào)速范圍
DOI:10.15938/j.emc.2019.06.000
中圖分類號文獻標志碼:A 文章編號:1007 -449X(2019)06 -0000 -00
Abstract:In order to meet the performance requirements of the electric vehicles (EVs) to the interior permanent magnet synchronous motor (IPMSM) with high power density and wide speed range, the design requirements of the drive motor for EVs have been analyzed by taking a 60kW IPMSM as an example. And the factors that affect the overload capacity and speed range of IPMSM are also analyzed by theoretical research. Then, the influence of d, q axis inductances, saliency ratio and fieldweakening magnetic rate on the motor performances under different topology structures are calculated and compared by the 2D FEM model. Furthermore, the topological structure of stator and rotor are optimized. All the results show that Vshape IPMSM has the advantages of high overload capacity and wide speed range and has potential to apply in the EVs applications.
Keywords:interior permanent magnet synchronous motor;electric vehicles;fluxweakening;overload capacity;speed range
0 引 言
隨著環(huán)境污染的日益惡化和新能源產(chǎn)業(yè)的蓬勃發(fā)展,電動汽車以其低排量、高效率、低成本的優(yōu)勢逐漸取代傳統(tǒng)燃油車,在乘用、商用車領域得到了廣泛的推廣[1-3]。其中,永磁同步調(diào)速電機以其效率高、調(diào)速性能好、功率密度高、性能優(yōu)異等特點已成為車用驅(qū)動電機的首選方案[4-5],各國電動汽車研發(fā)人員對其進行了大量研究。
在不同轉(zhuǎn)子結(jié)構(gòu)的研究方面,Vagati[6]等對內(nèi)置式和表貼式兩種轉(zhuǎn)子沖片結(jié)構(gòu)對電機性能的影響進行研究,發(fā)現(xiàn)表貼式結(jié)構(gòu)雖然易于制造但其過載能力、調(diào)速性能都遠低于內(nèi)置式結(jié)構(gòu)。對于內(nèi)置式轉(zhuǎn)子沖片結(jié)構(gòu),劉向東等[7]發(fā)現(xiàn)V型轉(zhuǎn)子結(jié)構(gòu)具有較為全面的電磁性能優(yōu)勢,能夠很好的滿足車用驅(qū)動電機的性能要求。文獻的研究者們[8-11]也對不同磁極結(jié)構(gòu)的內(nèi)置式轉(zhuǎn)子電機進行了性能對比,并做出類似的判斷。
在定子結(jié)構(gòu)的研究方面,王艾萌[12]等分析比較了定子采用整數(shù)槽和分數(shù)槽時永磁電機的性能,得出定子采用分數(shù)槽可以降低齒槽轉(zhuǎn)矩,減小空載反電動勢諧波含量的結(jié)論。文獻[13]發(fā)現(xiàn)分數(shù)槽定子集中繞組結(jié)構(gòu)可減小繞組端部長度和定子鐵心損耗,而采用整數(shù)槽分布式繞組結(jié)構(gòu),電機具有較高磁阻轉(zhuǎn)矩以及處于高速區(qū)時較小轉(zhuǎn)子損耗等優(yōu)勢。
4 結(jié) 論
本文以一臺商務車用60 kW內(nèi)置式V型夾角永磁同步電機的電磁設計為例,首先通過理論研究分析了影響永磁調(diào)速電機弱磁能力和調(diào)速范圍的因素;然后建立了電機的有限元模型,從d、q軸電感、凸極率等方面計算研究了不同定轉(zhuǎn)子磁路結(jié)構(gòu)對電機電磁性能的影響,并對電機的拓撲結(jié)構(gòu)進行了相應的優(yōu)化;最后,制造了樣機,搭建樣機及其控制系統(tǒng)的實驗平臺,試驗測試了樣機在不同工況下的性能,并與仿真結(jié)果進行了對比分析,得出如下結(jié)論:
(1) 當電機定子端電壓和線電流受逆變器容量限制時,永磁同步電機的過載能力主要取決于凸極率ρ和永磁體磁鏈,而調(diào)速范圍主要取決于弱磁率ξ;為了提高內(nèi)置式永磁同步電機的調(diào)速能力,應使弱磁率ξ大于1且接近于1;而為了提高內(nèi)置式永磁同步電機的過載能力,應使電機的凸極率ρ和永磁體磁鏈ψf盡量大;
(2) 在保證電機效率和定子槽滿率不變的情況下,可以通過增加定子齒部寬度或定子軛部厚度的方式來增加電機的凸極率,從而提高永磁同步電機的過載能力,同時還可減小電機的有效銅用量;
(3) 增大轉(zhuǎn)子中的兩相鄰V型磁鋼距離Rib時,電機電磁輸出轉(zhuǎn)矩和永磁體利用率增大,同時也調(diào)節(jié)了電機的弱磁率ξ大小,可增大了電機的調(diào)速范圍,但過大的Rib值會使磁鋼盛放空間變小且氣隙磁密發(fā)生畸變。
參 考 文 獻:
[1] 唐任遠. 現(xiàn)代永磁電機:理論與設計 theory and design[M]. 機械工業(yè)出版社, 2016.
[2] 符榮, 竇滿峰. 電動汽車驅(qū)動用內(nèi)置式永磁同步電機直交軸電感參數(shù)計算與實驗研究[J]. 電工技術學報, 2014, 29(11):30.
FU Rong, DOU Manfeng. Daxis and qaxis inductance calculation and experimental research on interior permanent magnet synchronous motors for EV[J]. Transactions of China Electrotechnical Society, 2014, 29(11):30.
[3] 張岳, 曹文平, John.電動車用內(nèi)置式永磁電機(PMSM)設計[J]. 電工技術學報, 2015, 30(14):108.
ZHANG Yue, CAO Wenping. Design of an interior permanent magnet synchronous motor(PMSM)for EV traction[J]. Transactions of China Electrotechnical Society, 2015, 30(14):108.
[4] 馮桂宏, 李慶旭, 張炳義,等. 電動汽車用永磁電機弱磁調(diào)速能力[J]. 電機與控制學報, 2014, 18(8):55.
FENG Guihong, LI Qinxu, ZHANG Binyi.Speed adjusting ability with field weakening of permanent magnet motor for electric vehicle [J]. Electric Machines and Control, 2014, 18(8):55.
[5] WANG Aimeng,JIA Yihua,DONG Shuhui.Design and analysis of a novel interior permanent magnet machine for hybrid electric vehicle traction[C]// International Conference on Electrical Machines and Systems. IEEE, 2011:1.
[6] VAGATI A,PELLEGRINO G,GUGLIELMI P.Comparison between SPM and IPM motor drives for EV application[C]// Xix International Conference on Electrical Machines. IEEE, 2010:1.
[7] LIU Xiangdong,CHEN Hao,ZHAO Jing.Research on the Performances and Parameters of Interior PMSM Used for Electric Vehicles [J]. IEEE Transactions on Industrial Electronics, 2016, 63(6): 3533.
[8] YANG Yinye,CASTANO S, YANG Rong,et al. Design and comparison of interior permanent magnet motor topologies for traction applications[J]. IEEE Transactions on Transportation Electrification, 2017, PP(99):1.
[9] KIM B, LEE J, JEONG Y, et al. Development of 50 kW traction induction motor for electric vehicle (EV)[C]// Vehicle Power and Propulsion Conference. IEEE, 2012:142.
[10] 王曉遠, 高鵬, 趙玉雙. 電動汽車用高功率密度電機關鍵技術[J]. 電工技術學報, 2015, 30(6):53.
WANG Xiaoyuan, GAO Peng, ZHAO Yushuang. Key technology of high power density motors in electric vehicles[J]. Transactions of China Electrotechnical Society, 2015, 30(6):53.
[11] DAJAKU G, HOFMANN H, HETEMI F,et al. Comparison of two different IPM traction machines with concentrated winding[J].IEEE Transactions on Industrial Electronics,2016,63(7):4137.
[12] WANG A, LI H, LU W, et al. Influence of skewed and segmented magnet rotor on IPM machine performance and ripple torque for electric traction[C]// Electric Machines and Drives Conference,2009.IEMDC'09.IEEE International.IEEE,2009:305.
[13] TANGUDU J K,JAHNS T M. Comparison of interior PM machines with concentrated and distributed stator windings for traction applications[C]// Vehicle Power and Propulsion Conference. IEEE, 2011:1.
(編輯:賈志超)