賈一飛 董增川 卞佳琪 鐘敦宇 林夢然
摘要:為了使黃河上游梯級水庫群在豐、平、枯水年的實際調度中最大限度地發(fā)揮效益,建立黃河上游水庫群的多目標優(yōu)化調度模型,選擇1989-2008年共20 a的實測徑流長系列資料,利用改進的快速非劣排序遺傳算法(NSGA-Ⅱ)對模型進行求解。從水庫發(fā)電、運行情況、供水滿足度、防凌、生態(tài)等方面對模型計算結果進行分析,結果表明:在充分滿足防凌和生態(tài)前提下,模型優(yōu)化后的整個梯級水庫群總發(fā)電量比“實際”發(fā)電量提高了2.07%、總缺水率平方和比實際降低了5.98%。
關鍵詞:水庫調度;多目標;改進NSGA-Ⅱ算法;黃河上游
中圖分類號:TV697.1+2;TV882.1
文獻標志碼:A
doi: 10.3969/j.issn.1000-1379.2019.01.010
以龍羊峽水庫和劉家峽水庫為代表的黃河上游梯級水庫,控制著黃河來水量的一半以上,擔負著黃河重要的年際和年內水量調節(jié)、發(fā)電、防凌、生態(tài)供水、灌溉等任務,如何滿足多個目標的需求,使水庫群最大程度地發(fā)揮其綜合效益,成為水庫群優(yōu)化調度的研究熱點[1]。當前采用的傳統(tǒng)水庫群優(yōu)化調度模型沒有考慮天然徑流長系列存在豐、平、枯水年交替的問題,為此需要建立黃河上游水庫群的長系列、多目標優(yōu)化調度模型,以期實現黃河水資源的合理配置,滿足地區(qū)經濟社會發(fā)展的需要。
1 研究區(qū)水系統(tǒng)概化
研究區(qū)域為黃河干流上游唐乃亥至頭道拐河段。以水文節(jié)點、水利工程節(jié)點、計算單元為基本要素,按照流域水系和自然地理的拓撲關系,把水源與用水戶連接起來,對水量傳輸關系進行概化,見圖1。
2 梯級水庫群多目標優(yōu)化調度模型
選擇龍羊峽、拉西瓦、李家峽、公伯峽、蘇只、積石峽、劉家峽、鹽鍋峽、八盤峽和青銅峽水庫組成的水庫群作為研究對象,其中:龍羊峽水庫為多年調節(jié)水庫,劉家峽水庫為年調節(jié)水庫,兩庫的調節(jié)能力都較強,因而考慮龍劉(龍羊峽和劉家峽)水庫的調節(jié)作用;其他水庫為日調節(jié)水庫,調節(jié)能力較弱,按徑流式處理,只考慮利用水頭發(fā)電,不考慮調蓄作用。黃河上游梯級水庫群的調度為多目標均衡優(yōu)化問題,各目標之間存在矛盾。協(xié)調黃河上游梯級水庫群各個目標間的關系,建立黃河上游水庫群多目標優(yōu)化調度模型具有現實意義。
2.1 目標函數
(1)發(fā)電目標。以梯級水庫群調度周期內發(fā)電量最大為目標,其數學表達式為
(3)生態(tài)及防凌目標。生態(tài)目標為必須滿足河道生態(tài)需水要求,即任意時段水庫下泄到下游河道的水量必須大于河道的生態(tài)需水量。防凌目標為在凌汛期內任意時段水庫下泄流量應在防凌允許的區(qū)間之內。本文采用分層序列法[3],將生態(tài)及防凌目標轉換為約束條件處理。
2.2 約束條件
(1)水量平衡約束。水庫蓄水量的變化為人庫水量與出庫水量之差:
(2)水庫出流約束。水庫出流量應當滿足最大、最小下泄流量限制要求,且下泄水量大于水輪機最大過流能力時產生棄水:
2.3 模型求解
采用改進的多目標遺傳算法(NSGA -Ⅱ)對模型進行求解。NSGA-Ⅱ算法由Deb K.等[4]于2000年提出,它降低了傳統(tǒng)非劣排序遺傳算法的復雜性,通過引入精英保留策略防止最佳個體丟失,提高了算法的運行速度和抗干擾性,被廣泛應用于水庫多目標優(yōu)化調度的計算中。
設種群由m個個體組成,個體的編號為i:個體共進化K代,每代的編號為k,取各水庫上游水位為決策變量進行編碼。每個個體Xi(k)中的元素 (k)為進化到第k代種群時第i個個體中d水庫t時段末(1≤t≤2T)的水位(d=l為龍羊峽水庫,d=2為劉家峽水庫,T為水庫的計算周期,計算步長為月)。個體表達式為
求解步驟如下:
(1)采用個體約束和群體約束技術生成初始種群P0[5]。首先,采用群體約束技術,在龍羊峽水庫各時段來水(用龍羊峽水庫各時段最大最小出庫流量和區(qū)間人流之和代替)、最大最小出庫流量約束已知的情況下,從期末消落水位開始逆序遞推出所有水位未知時段的可行水位區(qū)間,作為群體約束的上下限;然后,采用個體約束技術,在前一時段水位已知的情況下,根據當前的來水及最大最小下泄流量約束,確定下一時段的可行水位區(qū)間,作為個體約束的上下限;最后,取個體約束、群體約束和水庫水位約束三者的交集,作為下一時段水位生成的區(qū)間,在該區(qū)間內隨機生成t時段的水位。如此循環(huán)可求出所有時段的初始水位。
(2)通過水庫群調度求得所有個體各目標的適應度值,對于不符合約束條件的個體,通過增加罰函數的方式減小其對應的適應度值,以期在之后的進化過程中該個體逐漸被淘汰。
(3)通過錦標賽法選擇、交叉和變異操作,產生子代種群Q0,種群規(guī)模與父代相同。
(4)將Pk和Qk(初始時k=0)合并,對合并后的種群進行快速非支配排序,構造其所有不同等級的非支配解集F1,F2,…,Fi,從低到高進行挑選。
(5)計算Fi所有個體的擁擠度,按Fi級別中所有個體的擁擠度大小順序進行挑選,直至選出m個個體為止,作為新的父代種群Pk+1。
(6)重復步驟(2)~步驟(5),迭代到k=K時停止。
3 上游水庫群優(yōu)化調度與實際情況對比
為了檢驗模型的合理性,從發(fā)電、水庫運行、供水、防凌、生態(tài)等方面對上游水庫群優(yōu)化調度與水量分配結果進行分析。龍羊峽水庫1986年10月下閘蓄水,1987-1988年運行水位過低,之后逐漸步人正常運行階段,因此模型選取1989-2008年的水文資料作為調度周期,以月為時段進行計算。唐乃亥水文站徑流量和其他區(qū)間來水采用1989年7月-2009年6月的實測徑流數據。龍羊峽水庫調度初期、末期水位分別取1989年6月末水位2 553.2 m和2009年6月末水位2 566.6 m,劉家峽水庫調度初期、末期水位分別取1989年6月末水位1 720.7 m和2009年6月末水位1 719.7 m.下游需水量按照全河370億m3可供水量來分配。
模型種群規(guī)模m取30,進化代數K取500,交叉概率取0.4,變異概率取0.03。按照上述步驟對所建立的模型進行求解,種群進化到500代時得到的Pareto非劣解集分布情況見圖2。
模型種群規(guī)模取30.經過算法優(yōu)化后會產生30條水位過程線,即30個方案。由于Pareto非劣解集中的各個方案之間并沒有直接的優(yōu)劣支配關系,且每個方案都對應多個屬性,因此本文采用模糊優(yōu)選法,根據隸屬度矩陣選擇最終方案。各個方案隸屬度值見表1.按照隸屬度最大原則,選取方案17為最優(yōu)方案。
由模糊優(yōu)選法確定的最優(yōu)方案(方案17)作為置換臨界值可得到:當發(fā)電量較小(f1≤7 050.14億kW·h)時,發(fā)電量與缺水率平方和之間的置換關系較小,梯級水庫群年均發(fā)電量每增加1億kW·h.缺水率平方和約增大0.31%,因此在梯級水庫群發(fā)電量達到這個臨界值之前可適當增加發(fā)電量以獲得更多的效益:當發(fā)電量較大(f1>7 050.14億kW·h)時,發(fā)電量與缺水率平方和的置換關系逐漸增大,梯級水庫群年均發(fā)電量每增加1億kW·h,缺水率平方和約增大0.61%。因此可以得出:缺水率平方和隨著水庫群發(fā)電量的增大而增大,隨著缺水率平方和的增大所能置換的發(fā)電量越來越小。
3.1 模型優(yōu)化發(fā)電量與“實際”發(fā)電量對比分析
模型優(yōu)化發(fā)電量與“實際”發(fā)電量對比見表2。表中“實際”發(fā)電量是根據各水庫實際蓄水位和實際泄流量,采用與優(yōu)化方法相同的電站出力系數計算所得,僅是為了與優(yōu)化結果進行對比,并非梯級水庫的實際發(fā)電量。梯級水庫中未建成的水電站“實際”發(fā)電量由斷面實測流量計算所得。年份一欄代表水文年,如“1989”表示“1989年7月-1990年6月”。從表2可看出,龍羊峽水庫1989-2008年“實際”年均發(fā)電量為42.94億kW·h,優(yōu)化年均發(fā)電量為51.74億kW·h(比“實際”發(fā)電量提高20.49%):劉家峽水庫“實際”年均發(fā)電量為50.15億kW·h.優(yōu)化年均發(fā)電量為52.47億kW·h(比“實際”發(fā)電量提高4.63%);黃河上游梯級水庫群“實際”年均發(fā)電量為345.37億kW.h.優(yōu)化年均發(fā)電量為352.51億kW·h(比“實際”發(fā)電量提高2.07%)。
3.2 水庫運行情況對比
將模型計算的龍羊峽水庫調度水位過程線與實際調度水位過程線(見圖3)進行對比,可以看出,龍羊峽計算水位比實際運行水位整體偏高。如果能預知后續(xù)來水情況,則調度前期下泄流量不能過大,以保證后期的供水流量和發(fā)電水頭,獲取最大供水和發(fā)電效益:當然也不能保持過高水頭,以避免棄水。而在實際水庫調度過程中,后續(xù)年份的來水情況是未知的,這也是合理運用多年調節(jié)水庫的難點所在。從圖4可以看出,優(yōu)化后龍羊峽水庫各年月的出流較實際更加均衡,供水更加穩(wěn)定。
3.3 供水情況對比
供水目標是黃河水量調度的重要目標之一。優(yōu)化調度的缺水率平方和與實際逐年缺水率平方和見表3??梢钥闯觯孩賰?yōu)化后的缺水率平方和(2.864%)小于實際缺水率平方和(8.844%),優(yōu)化后的總缺水率平方和比實際的降低了5.98%,模型優(yōu)化的水庫下泄過程能提高下游用水戶的供水率:②實際的水庫調度過程多年供水穩(wěn)定性不高,模型優(yōu)化調度使水庫下游用水戶的供水更有保證。
3.4 防凌情況對比
防凌需求在模型中被作為約束條件,通過與防凌流量設定值對比表明,經過模型優(yōu)化計算的防凌斷面(石嘴山斷面)12月一次年3月的流量均滿足防凌安全泄量約束要求,能保證凌汛期流量控制要求。在實際調度中,對防凌提出了“穩(wěn)定封凍,平穩(wěn)開河”的要求,即在考慮封河開河期間槽蓄水量變化的前提下,使寧蒙河段防凌期的流量保持平穩(wěn)。為了使防凌滿足度量化并易于衡量優(yōu)劣,本文引入偏差測度表示下泄流量大小的合適程度。結合相關研究成果,選擇以下偏差測度公式[6]:
根據式(13)分別計算優(yōu)化和實際防凌期流量偏差測度,可得:AR優(yōu)化=3.96,AR實際=4.31。優(yōu)化所得的防凌期下泄流量與設定的防凌流量區(qū)間偏差更小,因而其下泄流量更優(yōu)。
繪制石嘴山斷面防凌期的優(yōu)化流量過程線和實測流量過程線,見圖5。與石嘴山斷面12月一次年3月的實測流量過程線相比,優(yōu)化流量呈逐月均勻遞減趨勢,能在一定程度上減少冰凌災害發(fā)生的概率,符合寧蒙河段的安全封河開河要求。
3.5 生態(tài)情況對比
將模型優(yōu)化后的逐月最小下泄流量通過水量傳播公式演算至各生態(tài)控制斷面(下河沿、石嘴山、頭道拐),生態(tài)控制斷面演算流量與預警流量(生態(tài)節(jié)點控制流量)對比見圖6。優(yōu)化后的斷面最小流量均滿足生態(tài)流量的控制要求。
4 結語
模型優(yōu)化使整個長系列調度周期的總缺水率減小,且各年缺水相對均衡,下游供水能得到保障;龍羊峽水庫優(yōu)化水位比實際運行水位高,可使黃河上游梯級水庫群總發(fā)電量提高;從發(fā)電、水庫運行、供水、防凌、生態(tài)等方面對模型計算結果進行合理性檢驗,結果達到水庫調度目標要求,表明模型合理,可以為黃河上游水庫群優(yōu)化調度提供參考。
參考文獻:
[1] 徐磊,基于遺傳算法的多目標優(yōu)化問題的研究與應用[D].長沙:中南大學,2007:1-7.
[2]董增川,水資源規(guī)劃與管理[M].北京:中國水利水電出版社,2008:82- 84.
[3] 王方勇,袁吉棟,李靜,等,基于河流健康的水庫和諧調度模型研究[J].人民黃河,2010,32(6):7-9.
[4] DEB K, AGRAWAL S,PRATAP A, et d.A Fast ElitistNon-Dominated Sorting Genetic Algorithm for Multi-Objective Optimization: NSGA-Ⅱ[J]. Lecture Notes inComputer Science, 2000, 1917: 849-858.
[5]王學斌,暢建霞.孟雪姣,等,基于改進NSGA一II的黃河下游水庫多目標調度研究[J].水利學報,2017,48(2):135-156.
[6]董增川,水資源系統(tǒng)分析[M].北京:中國水利水電出版社,2008:178.