程文杰 鄧志凱 肖玲
摘 要:彈性箔片軸承支承的轉(zhuǎn)子在高速旋轉(zhuǎn)時,轉(zhuǎn)子可能會和軸承發(fā)生碰摩。為了揭示當(dāng)轉(zhuǎn)子采用不同結(jié)構(gòu)剛度箔片支承時,該沖擊對轉(zhuǎn)子振動的影響機(jī)理,針對2個徑向GFBs支承的剛性轉(zhuǎn)子系統(tǒng)模型,應(yīng)用龍格庫塔法求解轉(zhuǎn)子動力學(xué)狀態(tài)方程,獲得3種結(jié)構(gòu)剛度箔片(均勻剛度箔片、軟箔片、硬箔片)下的軸頸位移。推導(dǎo)出箔片軸承的等效剛度和等效阻尼系數(shù),發(fā)現(xiàn)當(dāng)軸頸無渦動時,箔片軸承的等效剛度正好是氣膜剛度和箔片結(jié)構(gòu)剛度的串聯(lián);而當(dāng)軸頸有渦動時,箔片軸承的等效剛度和等效阻尼均是結(jié)構(gòu)剛度、結(jié)構(gòu)阻尼和渦動頻率的函數(shù),且當(dāng)軸頸渦動頻率趨于無窮大時,上述等效剛度和等效阻尼趨于無渦動時的值。計算表明,當(dāng)采用恒定剛度箔片時,轉(zhuǎn)子穩(wěn)態(tài)振幅最小,但是瞬態(tài)響應(yīng)時間較長;當(dāng)采用非線性軟箔片時,轉(zhuǎn)子穩(wěn)態(tài)振幅最大,但是瞬態(tài)響應(yīng)時間最短。當(dāng)增大非線性箔片的結(jié)構(gòu)剛度時,轉(zhuǎn)子穩(wěn)態(tài)振幅會減小,瞬態(tài)響應(yīng)時間會增加。因此,箔片的設(shè)計需要輔以軸承-轉(zhuǎn)子動力學(xué)特性的考量,以獲得箔片結(jié)構(gòu)剛度和結(jié)構(gòu)阻尼的合理匹配。
關(guān)鍵詞:彈性箔片軸承;等效剛度;等效阻尼;瞬態(tài)沖擊;穩(wěn)態(tài)響應(yīng)
中圖分類號:TB 122 ? ? ? ? ? 文獻(xiàn)標(biāo)志碼:A
文章編號:1672-9315(2019)05-0912-07
Abstract:The rotor supported by gas foil bearings(GFBs)may collide with the bearings at a high speed.In order to reveal the mechanism of the impact on rotor vibration when the rotor is supported by GFBs with various structural stiffness,the paper takes a 2 GFBs-rigid rotor system models as examples,uses the Runge-Kutta method to solve the state equation of rotor dynamics,and obtains the journal displacements of the rotor supported by three different structural stiffness foils(uniform,soft,and hard foils).The equivalent stiffness and damping coefficient of foil bearing are derived.It was discovered that the equivalent stiffness of the GFB is the series connection of the gas film stiffness and the foil structural stiffness for the static journal.The equivalent stiffness and damping of the GFB are functions of structural stiffness,structural damping and vortex frequency,and approach to the values of the static journal when the vortex frequency becomes infinity.The results show that the steady amplitude of rotor is the smallest,but the transient response time is longer when the constant stiffness foil is used;for the nonlinear soft foil,the steady amplitude of the rotor is maximum,but the transient response time is minimum;when the structural stiffness of the nonlinear foil is increased,the steady amplitude of rotor decreases and the transient response time increases.Therefore,the design of foil needs to be supplemented by the consideration of the dynamic characteristics of the bearing-rotor in order to obtain a reasonable match of the structural stiffness and damping of the foil.
Key words:Gas Foil Bearings(GFBs);equivalent stiffness;equivalent damping;transient shock;steady state response
0 引 言
近年來,彈性箔片軸承支承的高速永磁同步電機(jī)驅(qū)動的離心壓縮機(jī)已經(jīng)成為各國競相研究的熱點[1-5],但在應(yīng)用中通往超高速時始終面臨著以下關(guān)鍵問題:系統(tǒng)的動力不穩(wěn)定。由于氣體軸承的低阻尼特性,氣體軸承轉(zhuǎn)子系統(tǒng)中的不穩(wěn)定現(xiàn)象往往比油潤滑軸承轉(zhuǎn)子系統(tǒng)更為明顯。同時,盡管彈性箔片軸承與剛性表面軸承相比具有更為優(yōu)秀的抗渦動性能,但是仍然無法避免因旋轉(zhuǎn)效應(yīng)而產(chǎn)生的自激振蕩。在彈性箔片軸承中除了有限的氣膜阻尼之外,唯一能為高速轉(zhuǎn)子提供穩(wěn)定性保障的只剩下庫侖摩擦阻尼[6]。大量實驗數(shù)據(jù)顯示,當(dāng)轉(zhuǎn)子在超高速下運行時,轉(zhuǎn)子的軸心軌跡頻譜中會含有亞同步渦動分量,不同學(xué)者在不同的試驗臺上測得的亞同步渦動頻率大致在100~400 Hz之間[7-9]。目前對該現(xiàn)象的解釋有較多分歧,有學(xué)者認(rèn)為是由軸承內(nèi)的氣膜渦動所引起,有的則認(rèn)為是不平衡量造成,還有的歸結(jié)為軸承非線性結(jié)構(gòu)剛度原因[10],但有一點是相同的,即該亞同步渦動頻率與箔片軸承-轉(zhuǎn)子系統(tǒng)的剛體自然頻率接近。Kim和San Andres對轉(zhuǎn)子動力性能測試表明:在軸承端部供應(yīng)壓縮空氣會延遲轉(zhuǎn)子亞同步渦動出現(xiàn)的轉(zhuǎn)速,增強轉(zhuǎn)子動力穩(wěn)定性[11]。Kim和San Andres在文獻(xiàn)[12]中的研究表明:在拱箔下面安裝金屬膜片是最經(jīng)濟(jì)的增加預(yù)緊方式,它增加了氣膜內(nèi)的壓力場,測試表明加膜片的彈性箔片軸承使得大幅值亞同步渦動發(fā)生時的轉(zhuǎn)子轉(zhuǎn)速延后了。按照Sim的理解,大幅值亞同步渦動是由大的不平衡量造成,箔片預(yù)緊只是一種很好的抑制或者推遲亞同步渦動出現(xiàn)的補救措施[13]。雖然,人們對亞同步渦動出現(xiàn)的原因尚未達(dá)成統(tǒng)一意見,但為了提高軸承的抗渦動能力,即穩(wěn)定性,增加軸承的阻尼確是毋庸置疑的選擇。Heshmat曾經(jīng)嘗試過采用噴涂2.5 μm厚銅涂層的拱箔來改善軸承的阻尼(庫倫阻尼)特性,但是效果不明顯[14]。為了增加GFBs的阻尼,San Andres 引入了金屬網(wǎng),替代了原來的拱箔,這種金屬網(wǎng)結(jié)構(gòu)具有很大的機(jī)械能耗散能力(材料阻尼大),且氣膜動態(tài)阻尼幾乎不隨轉(zhuǎn)速變化,但是軸承的剛度會有所降低[15-16]。為了避免金屬網(wǎng)箔片軸承低剛度特性,可以將吸振材料移到軸承套的外表面,充填在軸承套外表面的槽內(nèi)[17]。此外,還有其他一些提高阻尼的結(jié)構(gòu),比如拱箔-金屬網(wǎng)混合型[18]、油潤滑型GFB[19]。
以上增強阻尼的措施對解決工程問題是非常適用的,但為探究亞同步渦動現(xiàn)象的機(jī)理,則需進(jìn)行軸承轉(zhuǎn)子系統(tǒng)動力學(xué)的研究。San Andres認(rèn)為箔片的非線性結(jié)構(gòu)剛度是引起亞同步渦動的原因,在他的模型中氣膜剛度假設(shè)為無窮大。事實上,超高速下氣膜剛度是一個有界值[20]。為此,文中將拋棄氣膜剛度無窮大的假設(shè),通過引入等效剛度和等效阻尼系數(shù),來綜合考慮氣膜剛度和箔片結(jié)構(gòu)剛度對轉(zhuǎn)子動力學(xué)瞬態(tài)沖擊響應(yīng)的影響。歸納箔片參數(shù)對軸心軌跡的影響規(guī)律,為箔片結(jié)構(gòu)剛度與氣膜剛度的匹配提供參考。
1 箔片軸承-剛性轉(zhuǎn)子動力學(xué)模型
1.1 轉(zhuǎn)子動力學(xué)方程
氣體動壓軸承支承下的剛性轉(zhuǎn)子可等效成圖1所示的形式,轉(zhuǎn)子長度為l,轉(zhuǎn)子重心距兩端支承點距離分別為l1和l2,轉(zhuǎn)子左右兩端軸承支承處的動態(tài)位移依次為x1,y1,x2,y2.
從圖8可以看出,當(dāng)箔片的結(jié)構(gòu)剛度為非線性,且偏硬時,5.0 s后計算收斂。穩(wěn)態(tài)時,a端軸頸的最大振幅約為1.25 μm,b端軸頸的最大振幅約為2 μm.與軟箔片相比較,采用硬箔片時,計算收斂時間變長,但是振幅減小。1.7 s時脈沖力引起最大位移為130 μm,沖擊結(jié)束后,經(jīng)過0.070 s后再次進(jìn)入穩(wěn)態(tài)。
綜上,穩(wěn)態(tài)時,采用1#箔片(軟箔片)的轉(zhuǎn)子振幅最大(約為10 μm),采用2#箔片(硬箔片)的轉(zhuǎn)子振幅其次(約為2 μm),采用3#箔片(恒定結(jié)構(gòu)剛度箔片)的轉(zhuǎn)子振幅最?。s為1 μm)。箔片越硬,等效剛度越大,因此轉(zhuǎn)子振幅會減小,但是箔片結(jié)構(gòu)剛度的非線性也是造成振幅過大的因素。
3種箔片支承的轉(zhuǎn)子系統(tǒng)在相同脈沖力下的響應(yīng)結(jié)果對比如圖9所示:3種情形下的轉(zhuǎn)子最大振幅大致相等;采用恒定結(jié)構(gòu)剛度箔片與采用硬箔片的轉(zhuǎn)子響應(yīng)時間大致相當(dāng)(約為0.07 s),而采用軟箔片的轉(zhuǎn)子響應(yīng)時間最短(約0.023 s)。如圖4所示,1#箔片的結(jié)構(gòu)剛度大部分要比3#箔片的小,但這會使它獲得比3#箔片大一些的等效阻尼,使得瞬態(tài)響應(yīng)時間縮短。箔片越硬,等效阻尼會越小,所以轉(zhuǎn)子振蕩時間會加長,但是箔片結(jié)構(gòu)剛度的非線性會使得瞬態(tài)響應(yīng)時間縮短。
綜上分析,當(dāng)采用恒定剛度箔片時,轉(zhuǎn)子穩(wěn)態(tài)振幅最小,但是瞬態(tài)響應(yīng)時間較長;當(dāng)采用非線性軟箔片時,轉(zhuǎn)子穩(wěn)態(tài)振幅最大,但是瞬態(tài)響應(yīng)時間最短。當(dāng)增大非線性箔片的結(jié)構(gòu)剛度時,轉(zhuǎn)子穩(wěn)態(tài)振幅會減小,瞬態(tài)響應(yīng)時間會增加。因此,箔片的設(shè)計需要輔以軸承-轉(zhuǎn)子動力學(xué)特性的考量,以獲得箔片結(jié)構(gòu)剛度和結(jié)構(gòu)阻尼的合理匹配。
4 結(jié) 論
1)當(dāng)軸頸無渦動,氣膜壓力為常數(shù)時,等效剛度是氣膜剛度和箔片結(jié)構(gòu)剛度的串聯(lián),等效阻尼要小于箔片結(jié)構(gòu)阻尼;當(dāng)軸頸有渦動時,等效剛度和等效阻尼與渦動頻率相關(guān),且當(dāng)渦動頻率趨于無窮大時,等效剛度和等效阻尼趨于無渦動時的值。
2)穩(wěn)態(tài)時,采用1#箔片(軟箔片)的轉(zhuǎn)子振幅最大(約為10 μm),采用2#箔片(硬箔片)的轉(zhuǎn)子振幅其次(約為2 μm),采用3#箔片(恒定結(jié)構(gòu)剛度箔片)的轉(zhuǎn)子振幅最小(約為1 μm)。箔片越硬,等效剛度越大,因此轉(zhuǎn)子振幅會減小,但是箔片結(jié)構(gòu)剛度的非線性也是造成振幅過大的因素。
3)相同脈沖力下,采用恒定結(jié)構(gòu)剛度箔片與采用硬箔片的轉(zhuǎn)子響應(yīng)時間大致相當(dāng)(約為0.07 s),而采用軟箔片的轉(zhuǎn)子響應(yīng)時間最短(約0.023 s)。箔片越硬,等效阻尼會越小,轉(zhuǎn)子振蕩時間會加長,但是箔片結(jié)構(gòu)剛度的非線性會使得瞬態(tài)響應(yīng)時間縮短。
參考文獻(xiàn)(References):
[1] Mark G.Cost and performance enhancements for a PEM fuel cell turbocompressor[R].Philadelphia:Honeywell Systems,Systems & Services,2004.
[2]Ahluwalia R K,Wang X H.Fuel cell systems for transportation:status and trends[J].Journal of Power Sources,2008,177(1):167-176.
[3]Walton J F,Tomaszewski M J,Heshmat C A,et al.On the development of an oil-free electric turbocharger for fuel cells[C]//Proceedings of the ASME Turbo Expo 2006,Barcelona,Spain,2006(5):395-400.
[4]Hong D K,Woo B C,Lee J Y,et al.Ultra high speed motor supported by air foil bearings for air blower cooling fuel cells[J].IEEE Transactions on Magnetics,2012,48(2):871-874.
[5]Hong D K,Woo B C,Jeong Y H,et al.Development of an ultra high speed permanent magnet synchronous motor[J].International Journal of Precision Engineering and Manufacturing,2013,14(3):493-499.
[6]Heshmat H.Advancements in the performance of aerodynamic foil journal bearing:High-speed and load capability[J].Journal of Tribology,Transactions of the ASME,1994,116(2):287-295.
[7]Kim T H,Lee J W,Kim C H,et al.Rotordynamic performance of an oil-free turbocharger supported on gas foil bearings:effects of an assembly radial clearance[C]//ASME Turbo Expo 2010:Power for Land,Sea,and Air.Glasgow,United kingdom,2010:GT2010-23243.
[8]San Andres L,Kim T H.Forced nonlinear response of gas foil bearing supported rotors[J].Tribology International,2008,41(8):704-715.
[9]Sim K H,Koo B J,Lee J S.Effects of mechanical preloads on the rotordynamic performance of a rotor supported on three-pad gas foil journal bearings[C]//Proceedings of ASME Turbo Expo,D sseldorf,Germany,2014:GT2014-25849.
[10]San Andres L,Rubio D,Kim T H.Rotordynamic performance of a rotor supported on bump type foil gas bearings:experiments and predictions[J].Journal of Engineering for Gas Turbines and Power,2007,129(3):850-857.
[11]Kim T H,San Andres L.Effect of side end pressurization on the dynamic performance of gas foil bearings:a model anchored to test data[J].Transactions of the ASME,Journal of Engineering for Gas Turbines and Power,2009,131:012501.
[12]Kim T H,San Andres L.Effects of a mechanical preload on the dynamic force response of gas foil bearings-measurements and model predictions[J].STLE Tribology Transactions,2009,52:569-580.
[13]Sim K H,Koo B J.Effects of mechanical preloads on the rotordynamic performance of a rotor supported on three-pad gas foil journal bearings[J].Journal of Engineering for Gas Turbines and Power,2014,136:122503-1-8.
[14]Heshmat H.Operation of foil bearing beyond the bending critical mode[J].Journal of Tribology,Transactions of the ASME,2000,122(1):192-198.
[15]San Andres L.Identification of rotordynamic force coefficients of a metal mesh foil bearing using impact load excitations[J].Journal of Engineering for Gas Turbines and Power,2011,133:112501-1-9.
[16]San Andres L.A metal mesh foil bearing and a bump-type foil bearing:comparison of performance for two similar size gas bearings[J].Journal of Engineering for Gas Turbines and Power,2012,134:102501-1-13.
[17]Moore J J,Lerche A,Allison T.Development of a high speed gas bearing test rig to measure rotordynamic force coefficients[J].Journal of Engineering for Gas Turbines and Power,2011,133:102504-1-9.
[18]Feng K,Zhao X,Huo C,et al.Analysis of novel hybrid bump-metal mesh foil bearings[J].Tribology International,2016,103:529-539.
[19]Zhang G,Chen Q,Yan J,et al.Theoretical analysis and numerical simulation of oil lubricated foil bearing with elastic supported bump foil structure[C]//Proceedings of the ASME Turbo Expo,Seoul,South Korea,2016:GT2016-56267.
[20]戚社苗.彈性箔片氣體軸承的完全氣彈耦合解[D].西安:西安交通大學(xué),2005.
QI She-miao.A generalized solution of elasto-aerodynamically coupled lubrication for compliant foil bearings[D].Xi’an:Xi’an Jiaotong University,2005.
[21]戚社苗,耿海鵬,虞 烈.動壓氣體軸承的動態(tài)剛度和動態(tài)阻尼系數(shù)[J].機(jī)械工程學(xué)報,2007,43(5):91-98.
QI She-miao,GENG Hai-peng,YU Lie.Dynamic stiffness and dynamic damping coefficients of aerodynamic bearings[J].Chinese Journal of Mechanical Engineering,2007,43(5):91-98.