石金巧 龍友華 黎曉茜 莫飛旭 冉飛 黃亞欣
摘 要:【目的】明確貴長獼猴桃軟腐病致病病原菌,篩選具有防控作用的綠色植物源殺菌劑,為獼猴桃軟腐病的綠色防控提供科學依據(jù)?!痉椒ā坎捎媒M織分離法分離、純化并結合回接試驗確定病原菌。通過形態(tài)學和分子生物學對病原進行鑒定,并采用菌絲生長速率法測定6種植物源殺菌劑對病原菌的毒力?!窘Y果】分離獲得的8株有效菌株中RF2和RF2-4可引發(fā)軟腐病,將該菌株的rDNA-ITS序列在NCBI上進行BLAST比對,菌株RF2和RF2-4分別與葡萄座腔菌Botryosphaeria dothidea、擬莖點霉菌Phomopsis sp.同源性達100% 和99%,結合RF2和RF2-4病原菌形態(tài)特征分析,明確兩株致病菌為葡萄座腔菌B. dothidea、擬莖點霉菌Phomopsis sp.。0.5%苦參堿AS對葡萄座腔菌B. dothidea和擬莖點霉菌Phomopsis sp.的EC50分別為0.442 ?mg·L-1和0.322 ?mg·L-1,0.3%丁子香酚SL的EC50則分別為0.680 ?mg·L-1和0.301 mg·L-1,兩者毒力均高于其他植物源殺菌劑?!窘Y論】引起貴長獼猴桃軟腐病的病原菌為葡萄座腔菌B. dothidea和擬莖點霉菌Phomopsis sp.;0.5%苦參堿AS和0.3%丁子香酚SL對葡萄座腔菌B. dothidea和擬莖點霉菌Phomopsis sp.菌絲生長具有較強的抑制作用,該研究結果可為貴長獼猴桃軟腐病的田間藥劑防治提供篩選依據(jù)。
關鍵詞:獼猴桃;軟腐病;植物源殺菌劑;毒力測定;綠色防控
中圖分類號:S 663.4 文獻標識碼:A文章編號:1008-0384(2019)03-331-07
Abstract: 【Objective】 Pathogens that cause the soft rot disease on Guichang kiwifruit and potential botanical fungicides for the disease control were investigated. 【Method】Suspected microbes were isolated using tissue culture and verified as the causation pathogens by means of artificial infection. The pathogens were identified morphologically and molecular biologically. In an indoor toxicity test using the mycelium growth method,6 selected botanical fungicides were applied on the identified pathogenic isolates to determine their potencies for the disease control. 【Result】Among the 8 isolated strains,RF2 and RF2-4 induced the soft rot disease on kiwifruits. The BLAST comparison on NCBI of the rDNA-ITS sequences of these strains suggested that RF2 was Botryosphaeria dothidea with a perfect match,and RF2-4 Phomopsis sp. with a 99% homology. The morphological analysis further confirmed the identifications. The EC50 of the organic fungicides were found for 0.5% matrine AS to be 0.442 mg·L-1 against B. dothidea and 0.322 mg·L-1 against Phomopsis sp.; and for 0.3% eugenol SL,0.680 mg·L-1 against B. dothidea and 0.301 mg·L-1 against Phomopsis sp. The potencies were greater than other botanical fungicides tested. 【Conclusion】B. dothidea and phomopsis sp.were positively identified as the pathogens that caused the soft rot disease on kiwifruits; and as botanical fungicides,0.5% matrine AS and 0.3% eugenol SL seemed most effective for the disease control.
Key words: kiwifruit; botanical fungicides; soft rot disease; toxicity determination; green method for disease control
0 引言
【研究意義】獼猴桃Actinidia屬獼猴桃科Actinidiaceae獼猴桃屬Actinidia,原產(chǎn)中國[1]。獼猴桃果實含有豐富的維生素、蛋白質(zhì)等多種礦質(zhì)元素,有“Vc之王”的美譽。目前,在中國、新西蘭、日本、韓國、智利等國家廣泛種植[2]。近年,貴州獼猴桃種植面積不斷增加,至2017年底,貴州獼猴桃種植面積達28萬hm2,主要種植品種為紅陽、東紅和貴長。貴州氣候條件濕潤、潮濕,獼猴桃病蟲害不斷加重,軟腐病也越來越嚴重。軟腐病的發(fā)生可加快獼猴桃的軟化率,縮短儲藏期,嚴重影響獼猴桃果實的品質(zhì)及口感,給獼猴桃產(chǎn)業(yè)帶來巨大的經(jīng)濟損失。獼猴桃軟腐病在世界各獼猴桃產(chǎn)區(qū)均有報道發(fā)生,其病原菌也因果實品種、地區(qū)、環(huán)境條件等差異而不盡相同。因此,明確貴長獼猴桃軟腐病致病病原菌,篩選具有防控作用的綠色植物源殺菌劑,對獼猴桃軟腐病的綠色防治控具有重要意義?!厩叭搜芯窟M展】目前報道的獼猴桃軟腐病病原菌主要包括葡萄座腔菌B.dothidea、擬莖點霉菌Phomopsis sp.、盤多毛孢菌Pestalotiopsis gracilis.、葡萄孢菌Botrytis cinersa、鏈格孢菌A. alternata及青霉菌Penicillium sp.等[3-8]。目前,對獼猴桃軟腐病的防治主要以化學防治為主[9-11],而化學藥劑的不合理使用容易引起污染、殘留及抗藥性等問題?!颈狙芯壳腥朦c】隨著人類安全意識的提高,綠色防控逐漸被重視。植物源殺菌劑是一種清潔、綠色的藥劑,受陽光或微生物的作用容易分解、半衰期短、降解快,有利于農(nóng)業(yè)的可持續(xù)發(fā)展?!緮M解決的關鍵問題】本研究基于綠色防控的原則,通過病原菌的形態(tài)學、致病性特征,結合病原菌rDNA內(nèi)部轉錄間隔區(qū)ITS序列對分離物進行鑒定,摸清貴長獼猴桃軟腐病主要致病病原,并篩選出對病原具有較高毒力的植物源殺菌劑,以期為貴長獼猴桃軟腐病的防治提供綠色手段,為解決獼猴桃產(chǎn)業(yè)發(fā)展難題提供技術依據(jù)。
1 材料與方法
1.1 供試材料
在貴州省修文縣獼猴桃基地采集貴長獼猴桃病果帶回貴州大學農(nóng)安實驗室進行病原菌分離、純化及鑒定,對純化的菌種編號保存。菌株保存和活化均用PDA培養(yǎng)基(馬鈴薯200 g,葡萄糖20 g,瓊脂18 g,蒸餾水1 000 mL)。供試植物源殺菌劑見表1。
1.2 試驗方法
1.2.1 病原菌致病性測定
按照柯赫氏法則將分離得到的病原菌進行致病性測定。將培養(yǎng)5 d的PDA平板菌落用打孔器打成直徑為5 mm的菌餅,將菌餅的菌絲面緊貼在無菌處理過的果面上,分刺傷和不刺傷2種方式進行接種,對照為刺傷未接種。將接種好的果實放入250 mL燒杯中進行保濕,放入(25±0.5)℃培養(yǎng)箱中,于L∶D=12∶12條件下培養(yǎng),注意保濕并定期觀察發(fā)病情況測量病斑直徑,病原菌致病性強弱根據(jù)病斑直徑大小判斷。無致病性記為“-”,有致病性記為“+”,“+”越多表示致病性越強,其中病斑直徑R≤5 mm、5 mm
1.2.2 病原菌分子鑒定
將純化的菌株送往生物工程(上海)股份有限公司進行DNA分子測序,將測定的序列登錄 NCBI(www.ncbi.nlm.nih.gov)進行 BLAST 分析,并從GenBank數(shù)據(jù)庫獲得相關分離物的rDNA-ITS序列,在MEGA 6.0軟件上用鄰接法構建系統(tǒng)發(fā)育進化樹。
1.2.3 室內(nèi)毒力測定
采用菌絲生長速率法測定,將供試植物源殺菌劑和化學對照藥劑配制成5個濃度梯度(表2、3),將不同濃度藥劑與PDA培養(yǎng)基充分混勻后,制成不同濃度含藥平板,加入等量無菌水的PDA平板作為空白對照。用無菌的打孔器取菌齡一致、直徑5 mm的軟腐病病原菌菌餅接種于不同濃度含藥平板和對照平板中央(d=9 cm),每個處理重復3次,置于(25±0.5)℃恒溫培養(yǎng)箱中,于L∶D=12∶12條件下培養(yǎng)5 d,采用十字交叉法測量菌落直徑,計算抑菌率。
抑菌率/%=(對照菌落直徑-處理菌落直徑)/對照菌落直徑×100。
1.3 數(shù)據(jù)分析
采用Microsoft Excel 2007和DPS 7.05數(shù)據(jù)統(tǒng)計軟件進行統(tǒng)計分析。
2 結果與分析
2.1 病原菌形態(tài)特征
從貴長獼猴桃病果中分離純化獲得8株有效菌株,其中RF2和RF2-4可引發(fā)軟腐病。將菌株置于(25±0.5)℃恒溫培養(yǎng)箱中,于黑暗下培養(yǎng),菌株RF2菌落初期為白色,長滿后由中央開始轉為墨綠色,菌落絮狀,邊緣不整齊,生長迅速,經(jīng)4 d生長,菌落直徑達67 mm(d=9 cm)(圖1-A~B),氣生菌絲較長,菌絲無隔,分支較多,呈樹狀形(圖1-C);菌株RF2-4菌落初期為白色,菌落長滿后由中央開始轉為棕色,菌落絮狀、較致密,邊緣整齊,生長速度適中,經(jīng)6 d生長,菌落直徑達58 mm(d=9 cm)(圖1-D~E),氣生菌絲相對較短,無隔,分支較少(圖1-F)。
2.2 病原菌致病性測定
由圖2可知,刺傷未接種和未刺傷接種均未致?。▓D2-CK,圖2-A和圖2-C),刺傷接種的獼猴桃均致病且致病性較強(圖2-B和圖2-D)。14 d后,回接菌株RF2的病斑直徑R為42.1 mm,致病性為“+++++”(R>20 mm);回接菌株RF2-4的病斑直徑R為32.5 mm,致病性為“+++++”,其中RF2致病性最強。刺傷接種發(fā)病初期病斑內(nèi)部呈乳白色,后病斑擴大,病健交界處果肉呈水漬狀,與自然發(fā)病癥狀相同,對回接發(fā)病的病果進行再分離所得病原菌與原病原菌性狀一致,根據(jù)柯赫氏法則證實分離獲得的菌株RF2和RF2-4是獼猴桃軟腐病的致病菌。
2.3 病原菌分子鑒定
對菌株進行分子鑒定,將測得的rDNA-ITS序列與GenBank數(shù)據(jù)庫中已經(jīng)收錄的序列進行BLAST分析比對,利用MEGA 6.0軟件的鄰接法構建系統(tǒng)發(fā)育進化樹。
通過BLAST分析比對,菌株RF2與B. dothidea的同源性最高,同源性達100%,系統(tǒng)發(fā)育進化樹分析結果顯示(圖3),RF2與B. dothidea聚為同一分支,親緣關系最近,根據(jù)分子生物學理論,將RF2菌株鑒定為B. dothidea;而菌株RF2-4與Phomopsis sp.的同源性最高,達99%,系統(tǒng)發(fā)育進化樹分析結果顯示(圖4),RF2-4與Phomopsis sp.聚為一支,與其他菌株的遺傳距離較遠,根據(jù)分子生物學理論,將RF2-4菌株鑒定為Phomopsis sp.。
2.4 室內(nèi)毒力測定
2.4.1 植物源殺菌劑對葡萄座腔菌的毒力
6種植物源殺菌劑對葡萄座腔菌B. dothidea的室內(nèi)毒力見表4。0.5%苦參堿AS對葡萄座腔菌B. dothidea的毒力相對最強,EC50為0.442 ?mg·L-1;其次為0.3%丁子香酚SL,EC50為0.680 ?mg·L-1;兩種藥劑的毒力均強于對照化學藥劑23%嘧菌·噻霉酮SC。其他4種植物殺菌劑的毒力均相對較弱,其中0.5%小檗堿AS對葡萄座腔菌B. dothidea毒力最弱,EC50為1 362.11 ?mg·L-1。試驗表明,0.5%苦參堿AS和0.3%丁子香酚SL對葡萄座腔菌B. dothidea的毒力較強,可用于該病原菌的防控。
2.4.2 植物源殺菌劑對擬莖點霉菌的毒力
6種植物源殺菌劑對擬莖點霉菌Phomopsis sp.的室內(nèi)毒力見表5。0.3%丁子香酚SL和0.5%苦參堿AS對擬莖點霉菌Phomopsis sp.的毒力效果較強,EC50值分別為0.301、0.322 ?mg·L-1,均強于對照化學藥劑23%嘧菌·噻霉酮SC;其他4種植物殺菌劑的毒力均相對較弱。試驗表明,0.3%丁子香酚SL和0.5%苦參堿AS對擬莖點霉菌Phomopsis sp.的毒力也較強,可用于抑制該病原菌菌絲生長。
3 討論與結論
葡萄座腔菌B. dothidea和擬莖點霉菌Phomopsis sp.是寄主范圍較廣的病原真菌,侵染可引起獼猴桃軟腐病[3]、獼猴桃枝枯病[12] 和藍莓莖潰瘍病[13]等。本研究通過病原菌分離純化、致病性測定和rDNA-ITS分子鑒定,明確引起修文縣貴長獼猴桃軟腐病的主要病原菌為葡萄座腔菌B.dothidea和擬莖點霉菌Phomopsis sp.,這與前人報道[3-8]一致。
物源殺菌劑的主要成分是天然存在的化合物,這些活性物質(zhì)主要由C、H、O等元素組成,來源于自然,能在自然界降解,具有安全、無污染、低殘留等優(yōu)點,具有不影響環(huán)境的優(yōu)越性 [14-15],是一種清潔、綠色藥劑,有利于農(nóng)業(yè)的可持續(xù)性發(fā)展。
湯麗梅等[16]研究表明大蒜素對擬莖點霉菌Phomopsis sp.和葡萄座腔菌B. dothidea等獼猴桃軟腐病的主要致病菌具有顯著抑制作用;王強等[17]報道蒜頭原汁對擬莖點霉菌Phomopsis sp.等10種病菌菌絲生長有較好的抑制效果;周軍等[18]研究表明丁子香酚和苦參堿對桃果腐病菌的毒力較高。本試驗結果顯示,對照23%嘧菌·噻霉酮SC對葡萄座腔菌B. dothidea和擬莖點霉菌Phomopsis sp.毒力相對較弱,可能與田間防治過程中長期使用化學藥劑有關。而0.3%丁子香酚SL和0.5%苦參堿AS對葡萄座腔菌B. dothidea和擬莖點霉菌Phomopsis sp.毒力較好,可為田間綠色藥劑防治貴長獼猴桃軟腐病提供參考依據(jù)。由于貴長引起獼猴桃軟腐病的致病菌種類較多,要明確對獼猴桃軟腐病毒力較好的藥劑,仍需進一步的研究。
參考文獻:
[1]馬松濤,宋曉斌,張學武,等. 獼猴桃花果病害研究現(xiàn)狀及趨勢[J]. 西北林學院學報,2000,15(3):86-90.
MA S T,SONG X B,ZHANG X W,et al. Present situation and trend of the researches on flower and fruit diseases of kiwifruit [J]. Journal of Northwest Forestry University,2000,15(3): 86-90.(in Chinese)
[2]韓禮星,黃貞光,李明,等. 加入WTO后我國獼猴桃產(chǎn)業(yè)的發(fā)展策略[J]. 果樹學報,2003,20(3):218-223.
HAN L X,HUANG Z G,LI M,et al. On the strategies for development of kiwifruit industry in China after accessed to WTO [J]. Journal of Fruit Science,2003,20(3): 218-223.(in Chinese)
[3]HAWTHORNE B T,REES-GEORGE J,SAMUELS G J. Fungi associated with leaf spots and post-harvest fruit rots of kiwifruit (Actinidia chinensis) in New Zealand[J]. New Zealand Journal of Botany,1982,20(2):143-150.
[4]丁愛冬,于梁,石蘊蓮. 獼猴桃采后病害鑒定和侵染規(guī)律研究[J]. 植物病理學報,1995(2):149-153.
DING A D,YU L,SHI Y L. Studies on the identification of pathogenic fungi and their ways of post-harvest rot disease infection on kiwifruit [J]. Acta Phytopathologica Sinica,1995 (2): 149-153.(in Chinese)
[5]張承,李明,龍友華,等. 采前噴施殼聚糖復合膜對獼猴桃軟腐病的防控及其保鮮作用[J]. 食品科學,2016,37(22):274-281.
ZHANG C,LI M,LONG Y H,et al. Control of soft rot in kiwifruit by pre-harvest application of chitosan composite coating and its effect on preserving and improving kiwifruit quality [J]. Food Science,2016,37(22): 274-281.(in Chinese)
[6]黎曉茜,曾彬,尹顯慧,等. 修文縣獼猴桃腐爛病病原鑒定及防治藥劑篩選[J]. 中國南方果樹,2016,45(5):101-104.
LI X X,ZENG B,YIN X H,et al. Identification of pathogenic fungi causing fruit rot of kiwifruit in Xiuwen county and the toxicity assay of fungicites [J]. South China Fruits,2016,45(5): 101-104.(in Chinese)
[7]吳文能,張起,雷霽卿,等. 貴長獼猴桃軟腐病病原菌分離鑒定及抑菌藥劑篩選[J]. 北方園藝,2018(16):47-54.
WU W N,ZHANG Q,LEI J Q,et al. Identification and pharmaceutical screening of kiwifruit soft rot disease on ‘Guichang’ gooseberry [J]. Northern Horticulture,2018 (16): 47-54.(in Chinese)
[8]潘慧,胡秋舲,張勝菊,等. 貴州六盤水市獼猴桃病害調(diào)查及病原鑒定[J]. 植物保護,2018,44(4):125-131.
PAN H,HU Q L,ZHANG S J. et al. Kiwifruit disease investigation and pathogen identification in liupanshui city,Guizhou province [J]. Plant Protection,2018,44(4): 125-131.(in Chinese)
[9]李誠,蔣軍喜,冷建華,等. 6種殺菌劑對獼猴桃主要腐爛病菌的室內(nèi)毒力測定[J]. 中國南方果樹,2012,41(1):27-29.
LI C,JIANG J X,LENG J H,et al. Indoor toxicity test of six fungicides to main pathogenic fungi causing fruit rot of kiwifruit [J]. South China Fruits,2012,41(1): 27-29.(in Chinese)
[10]劉達富,王井田,陸雪峰,等. 獼猴桃果實腐爛病田間藥效試驗[J]. 浙江林業(yè)科技,2015,35(2):70-73.
LIU D F,WANG J T,LU X F,et al. Field experiment on fungicides on fruit rot of actinidia chinensis [J]. Journal of Zhejiang Forestry Science and Technology,2015,35(2): 70-73.(in Chinese)
[11]王小潔,李士謠,李亞巍,等. 獼猴桃軟腐病病原菌的分離鑒定及其防治藥劑篩選[J]. 植物保護學報,2017,44(5):826-832.
WANG X J,LI S Y,LI Y W,et al. Pathogen identification of kiwifruit soft rot and fungicide screening for control of the disease [J]. Journal of Plant Protection,2017,4(5): 826-832.(in Chinese)
[12]李誠,蔣軍喜,冷建華,等. 獼猴桃枝枯病病原菌鑒定[J]. 北方園藝,2013(24):130-133.
LI C,JIANG J X,LENG J H,et al. Identification of the pathogen causing shoot blight of Kiwifruit [J]. Northern Horticulture,2013(24): 130-133.(in Chinese)
[13]凌丹燕. 藍莓主要真菌病害的分離鑒定與防治研究[D]. 金華:浙江師范大學,2016.
LING D Y. The study of isolation and identification of major fungal diseases of blueberry and disease control [D].Jinhua: Zhejiang Normal University,2016.(in Chinese)
[14]何軍,馬志卿,張興. 植物源農(nóng)藥概述[J]. 西北農(nóng)林科技大學學報(自然科學版),2006,34(9):79-85.
HE J,MA Z Q,ZHANG X. Review of botanical pesticide [J]. Journal of Northwest A & F University(Natural Science Edition),2006,34(9): 79-85.(in Chinese)
[15]陳昂. 五種植物源農(nóng)藥的環(huán)境毒性評價[D]. 長沙:中南大學,2010.
CHEN A. Environmental toxicity evaluation of five botanical pesticides [D].Changsha: Central South University,2010.(in Chinese)
[16]湯麗梅,周清,吳尚,等. 大蒜素對獼猴桃果實致病菌的抑制活性及貯藏防效研究[J]. 中國南方果樹,2014,43(4):15-18.
TONG L M,ZHOU Q,WU S,et al. Study on inhibitory activity of allicin to pathogens of kiwifruit and its efficacy on fruit storage [J]. South China Fruits,2014,43(4): 15-18.(in Chinese)
[17]王強,馮巖,何小靜,等. 植物源殺菌劑的篩選[J]. 福建農(nóng)業(yè)學報,2012,27(11):1246-1249.
WANG Q,F(xiàn)ENG Y,HE X J,et al. Screening of the botanical fungicides [J]. Fujian Journal of Agricultural Sciences,2012,27(11): 1246-1249.(in Chinese)
[18]周軍,趙杰. 植物性殺菌劑對桃炭疽病菌和桃果腐病菌的毒力測定[J]. 上海農(nóng)業(yè)科技,2018(5):113.
ZHOU J,ZHAO J. Toxicity determination of botanical fungicides to anthracnose and fruit rot on Peach [J]. Shanghai Agricultural Science and Technology,2018 (5): 113.(in Chinese)
(責任編輯:林海清)