• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      對圖結構的魔幻性研究

      2019-09-10 07:22:44姚明姚兵
      現代信息科技 2019年22期

      姚明 姚兵

      摘? 要:由給定邊魔幻圖結合群的代數運算系統,構造出奇魔幻群和圖-奇魔幻群,得到具有普適性的可算法化的運算方法和簡潔明了的結果,給出了互化標號的數學關系式,規(guī)?;貥嬙斐龇椒ǎ瑯嬙爝^程因運算可算法化而得以實施,新定義與算法的引入為不局限于特殊圖類標號的研究提供了新的數理支撐。

      關鍵詞:邊魔幻標號;優(yōu)美標號;奇優(yōu)美標號;魔幻群;全魔幻圖;運算關系

      中圖分類號:O157.5? ? ? ?文獻標識碼:A 文章編號:2096-4706(2019)22-0005-04

      Abstract:Based on the algebraic operation system of the given edges-magical graph and the group,the odd-magical group and the graph odd-magical group are constructed,and the general algorithmic operation method and simple and clear results are obtained. The mathematical relationship of the mutual label is given,and the method is constructed on a large scale. The construction process is implemented due to the algorithmic operation. The introduction of the new definition and algorithm is not limited to the special graph. The research of class label provides a new mathematical support.

      Keywords:edge-magical labellings;graceful trees;odd-graceful trees;magical group;total-magical graphs;operation relation

      3? 結? 論

      基于代數運算給出新的定義與算法為滿足條件的圖結構與標號可相互互化,由于新算法的可算法化,使得圖結構與標號的互化得以實施。應用定義的魔幻群及新數學表達式以及標號互化可算法化的數理關系為標號的深入研究提供了數理支撐;特別是簡潔明了的證明過程及清晰的結果使得可算法化的方法具有理論性和可操作性,益于發(fā)現新結果與助力于標號理論的研究,今后進一步的工作是依據魔幻群的定義嘗試建立適合其他標號研究的運算系統。

      參考文獻:

      [1] KATHIRESAN K M. Two Classes of Graceful Graphs [J]. Ars Combinatoria,2000,55(2):183-186.

      [2] LLADó A. Largest cliques in connected supermagic graphs [J]. European Journal of Combinatorics,2007,28(8):2240-2247.

      [3] YAO B,ZHANG Z,YAO M,et al. A New Type of Magical Coloring [J]. Advances in Mathematics,2008(5):571-583.

      [4] WILLIAM A,RAJAN B,RAJASINGH I,et al. Nor Super Edge Magic Total Labelling [C]//The Proceeding of the 4th International Workshop in Graph Labeling,Harbin Engineering University and University of Ballarat,Australia,2008:5-8.

      [5] ZHOU X,YAO B,Chen X,et al. A proof to the odd-gracefulness of all lobsters [J]. Ars Combinatoria,2012(103):13-18.

      [6] YAO B,CHENG H,YAO M,et al. A Note on Strongly Graceful Trees [J]. Ars Combinatoria,2009(92):155-169.

      [7] ROSA A. On certain valuations of the vertices of a graph [J]. Theory of Graphs,1967:349-355.

      [8] GALLIAN J A. A Dynamic Survey of Graph Labelling [J]. The Electronic Journal of? Combinatorics,2000(19):6-189.

      [9] EDWARDS M,HOWARD L. A survey of graceful trees [J]. Atl. Electron. J. Math.,2006,1(1):5-30.

      [10] YAO M,YAO B,XIE J. Some Results on the k-magical Labelling of Graphs [J]. Journal of Gansu Sciences,2010,22(1):1-6.

      [11] 張禾瑞.近世代數基礎 [M].北京:高等教育出版社,1986:1-175.

      [12] BONDY J.A,MURTY U.S.R. Graph Theory with Application [M]. Amsterdam:Elsevier Science Ltd,1976.

      作者簡介:姚明(1962-),男,漢族,江蘇揚州人,教授,本科,研究方向:圖的著色和標號及計算優(yōu)化。

      东丰县| 景德镇市| 建宁县| 东丰县| 乐平市| 宣化县| 金乡县| 巫溪县| 饶河县| 普格县| 通道| 安龙县| 特克斯县| 长治县| 济宁市| 星子县| 平乐县| 米脂县| 体育| 六安市| 湖口县| 辽宁省| 蒙阴县| 商丘市| 德保县| 武鸣县| 桂阳县| 东阿县| 商水县| 松滋市| 安福县| 闽清县| 梨树县| 新津县| 津市市| 婺源县| 铁力市| 临潭县| 五指山市| 辉县市| 苏尼特右旗|