陳 倩,許 媛
基于收斂啟發(fā)機制的人工網(wǎng)絡(luò)安全遷移算法研究
*陳 倩1,許 媛2
(1. 黃山職業(yè)技術(shù)學(xué)院,安徽,黃山 245000;2. 黃山學(xué)院,安徽,黃山 242700)
針對當(dāng)前人工網(wǎng)絡(luò)安全遷移算法研究中存在遷移時間長、誤碼率高且容易造成網(wǎng)絡(luò)癱瘓等不足,提出了一種基于收斂啟發(fā)機制的人工網(wǎng)絡(luò)安全遷移算法。首先,利用社區(qū)網(wǎng)絡(luò)進(jìn)行網(wǎng)絡(luò)遷移時具有的波動特性,通過帶寬函數(shù)均值起伏率和網(wǎng)絡(luò)存儲冗余率兩個指標(biāo)進(jìn)行遷移裁決,有效減緩了遷移過程中網(wǎng)絡(luò)出現(xiàn)擁塞的概率,實現(xiàn)數(shù)據(jù)遷移并提高網(wǎng)絡(luò)安全遷移過程中的魯棒性。隨后,針對當(dāng)前算法遷移過程中難以進(jìn)行誤差評估的不足,通過啟發(fā)映射機制設(shè)計了網(wǎng)絡(luò)存儲冗余帶寬遷移方法,用以改善網(wǎng)絡(luò)數(shù)據(jù)傳輸過程中的抖動,改善網(wǎng)絡(luò)遷移時的效率,具有很強的遷移質(zhì)量。仿真實驗表明:與當(dāng)前常用的超混沌云網(wǎng)絡(luò)預(yù)估遷移機制(Predictive Migration Mechanism of Hyperchaotic Cloud Networks,PMM-HCN機制)、社區(qū)網(wǎng)絡(luò)大數(shù)據(jù)峰值安全遷移機制(Peak Security Migration Mechanism of Large Data in Community Network,PSMM-LDCN機制)相比,本文算法具有網(wǎng)絡(luò)遷移時間少、網(wǎng)絡(luò)遷移數(shù)據(jù)誤碼率小、網(wǎng)絡(luò)抖動時間短、網(wǎng)絡(luò)癱瘓頻率低等特性,具有很強的實際部署價值。
人工網(wǎng)絡(luò);收斂啟發(fā);社區(qū)網(wǎng)絡(luò);數(shù)據(jù)遷移;啟發(fā)映射;網(wǎng)絡(luò)癱瘓頻率
人工網(wǎng)絡(luò)安全遷移算法作為社區(qū)網(wǎng)絡(luò)管理技術(shù)的組成部分之一,正在隨著社區(qū)網(wǎng)絡(luò)逐步走入聚類化、高流動性應(yīng)用場景的不斷變革,呈現(xiàn)日新月異的發(fā)展態(tài)勢[1]。由于人工網(wǎng)絡(luò)安全遷移算法主要應(yīng)用于社區(qū)網(wǎng)絡(luò)應(yīng)對高流量攻擊、大面積網(wǎng)癱等安全領(lǐng)域,因此需要針對社區(qū)網(wǎng)絡(luò)的新變化進(jìn)行有針對性的調(diào)整,以便能夠?qū)崿F(xiàn)對網(wǎng)絡(luò)變遷新態(tài)勢的充分適應(yīng),促進(jìn)相關(guān)領(lǐng)域及產(chǎn)業(yè)的可持續(xù)性發(fā)展[2]。
針對當(dāng)前社區(qū)網(wǎng)絡(luò)部署中出現(xiàn)的一些新情況,人們提出了若干具有前瞻性的人工網(wǎng)絡(luò)安全遷移算法,在治理社區(qū)網(wǎng)絡(luò)高流量攻擊、大面積網(wǎng)癱等方面起到了一定的作用。Ze等[3]提出了一種基于熱點度-聚類切換機制的人工網(wǎng)絡(luò)安全遷移算法,通過周期連通度捕捉機制構(gòu)建區(qū)域熱點并形成熱點聚類,能夠在社區(qū)網(wǎng)絡(luò)出現(xiàn)大面積網(wǎng)癱時實現(xiàn)功能切換,且收斂速度較快;不過,該算法實現(xiàn)過程極其復(fù)雜,需要通過大數(shù)據(jù)匹配的方式實現(xiàn)對熱點的實時捕捉,難以適應(yīng)高并發(fā)環(huán)境下的網(wǎng)絡(luò)資源安全遷移。Shu等[4]提出了一種基于流量指紋動態(tài)預(yù)測機制的人工網(wǎng)絡(luò)安全遷移算法,主要通過實時監(jiān)測異常流量的方式對網(wǎng)絡(luò)運行狀況進(jìn)行預(yù)估,能夠?qū)崟r切斷高攻擊流量對網(wǎng)絡(luò)的攻擊,有效確保網(wǎng)絡(luò)運行高效問題;不過,該算法耗費資源較多,實時性較差,難以勝任突發(fā)攻擊激增情況下網(wǎng)絡(luò)狀況。Tzy等[5]提出了一種基于冗余度資源調(diào)度機制的人工網(wǎng)絡(luò)安全遷移算法,通過動態(tài)核算機制計算各種防御資源的實時冗余度,能夠有效避免因資源受限而導(dǎo)致出現(xiàn)嚴(yán)重網(wǎng)絡(luò)故障,具有實現(xiàn)方式簡單的優(yōu)勢;不過,該算法也存在一定的不足,特別是進(jìn)行網(wǎng)絡(luò)切換過程中需要暫停網(wǎng)絡(luò)運行,難以做到網(wǎng)絡(luò)平滑切換,制約了算法在實際中的運用。
針對當(dāng)前研究中存在的不足,本研究提出了一種基于收斂啟發(fā)機制的人工網(wǎng)絡(luò)安全遷移算法。算法首先針對數(shù)據(jù)遷移中存在的遷移性能較低的不足,采用帶寬函數(shù)均值起伏率和網(wǎng)絡(luò)存儲冗余率兩個指標(biāo)進(jìn)行數(shù)據(jù)采集,大大改善數(shù)據(jù)遷移過程中因網(wǎng)絡(luò)抖動產(chǎn)生的誤比特,促進(jìn)了遷移效率的提高。隨后,考慮到誤差評估中存在的困難,采用啟發(fā)映射機制進(jìn)行二次遷移,增強了網(wǎng)絡(luò)遷移效率,改善了超帶寬條件下網(wǎng)絡(luò)傳輸性能,增強了網(wǎng)絡(luò)安全系數(shù)。最后通過MATLAB仿真實驗環(huán)境,證明了本文算法的有效性。
當(dāng)前社區(qū)網(wǎng)絡(luò)技術(shù)可隸屬于數(shù)據(jù)挖掘及云數(shù)據(jù)范疇,由于實踐中進(jìn)行人工網(wǎng)絡(luò)安全遷移需要考慮一些必要的前提條件,本文方案中對此作出如下規(guī)范[6]:
1)網(wǎng)絡(luò)需要遷移前必須進(jìn)行資源遷移,即當(dāng)前網(wǎng)絡(luò)中的數(shù)據(jù)、用戶、拓?fù)浣Y(jié)構(gòu)等數(shù)據(jù)需要在災(zāi)難發(fā)生前遷移到備用節(jié)點中,若當(dāng)前選定的備用節(jié)點難以承擔(dān)相應(yīng)功能,則必須再次進(jìn)行遷移[7];
2)網(wǎng)絡(luò)安全遷移過程具有一定的時效性,即網(wǎng)絡(luò)安全遷移中負(fù)責(zé)遷移的資源池與網(wǎng)絡(luò)參數(shù)存儲的資源池需要保持高連通狀態(tài)[8];
承擔(dān)遷移任務(wù)的資源池,需要通過遷移數(shù)據(jù)帶寬的形式實現(xiàn)網(wǎng)絡(luò)資源備份,期間帶寬傳輸模型滿足[9]:
式(1)中,為數(shù)據(jù)遷移過程中帶寬函數(shù);B為遷移過程中數(shù)據(jù)帶寬開銷;表示數(shù)據(jù)帶寬開銷與時間之間的函數(shù)關(guān)系,一般為波動關(guān)系,見圖1。
當(dāng)資源池進(jìn)行并發(fā)數(shù)據(jù)遷移過程時,帶寬傳輸模型滿足:
相關(guān)參數(shù)同模型(1),數(shù)據(jù)帶寬開銷與時間之間的函數(shù)關(guān)系一般為不斷增長的線性波動關(guān)系,見圖2。
由上文分析可得,社區(qū)網(wǎng)絡(luò)在進(jìn)行遷移過程中需要花費較大規(guī)模的數(shù)據(jù)帶寬開銷,且若以并發(fā)方式進(jìn)行數(shù)據(jù)遷徙時,數(shù)據(jù)帶寬開銷將呈現(xiàn)波動上升的態(tài)勢。
社區(qū)網(wǎng)絡(luò)進(jìn)行安全遷移時,若對遷移過程中的數(shù)據(jù)帶寬、轉(zhuǎn)存帶寬、網(wǎng)絡(luò)存儲冗余等制約條件考慮不足,則會導(dǎo)致遷移過程中出現(xiàn)嚴(yán)重的網(wǎng)絡(luò)抖動乃至大面積網(wǎng)癱現(xiàn)象,因此需要綜合考慮這些制約條件,以便高效完成遷移工作[10],過程如下:
1)按帶寬函數(shù)均值起伏率()和網(wǎng)絡(luò)存儲冗余率()進(jìn)行數(shù)據(jù)啟發(fā)收斂
資源池進(jìn)行數(shù)據(jù)前移時,遷移效率由帶寬函數(shù)均值起伏率()和網(wǎng)絡(luò)存儲冗余率()確定,因此帶寬函數(shù)均值起伏率()的時間均值滿足:
式(4)中的參數(shù)定義同模型(3)。
使用模型(3)可求得帶寬函數(shù)均值起伏率的一階矩,若該一階矩小于0,說明社區(qū)網(wǎng)絡(luò)進(jìn)行遷移過程中遷移成本較低,無須額外付出成本進(jìn)行網(wǎng)絡(luò)資源遷移;反之,說明遷移效率很低,需要追加資源進(jìn)行數(shù)據(jù)遷移。
參數(shù)同式(3)、式(8)。
本文算法的詳細(xì)過程如下:
Step 1:獲取網(wǎng)絡(luò)存儲冗余帶寬,轉(zhuǎn)Step2;
Step 2:網(wǎng)絡(luò)持續(xù)運行,若需要進(jìn)行網(wǎng)絡(luò)遷移,則轉(zhuǎn)Step 3,反之則回到Step 1并持續(xù)監(jiān)控網(wǎng)絡(luò)存儲冗余帶寬;
Step 3:當(dāng)僅當(dāng)帶寬函數(shù)均值起伏率的一階矩小于0,轉(zhuǎn)Step 4,否則返回Step1;
Step 5 :算法結(jié)束。
圖 3 所提算法的安全遷移過程
為便于對比本文算法的優(yōu)越性能,采用MATLAB仿真實驗環(huán)境[12]進(jìn)行測試。同時,為了突出所提方法的優(yōu)勢,將超混沌云網(wǎng)絡(luò)預(yù)估遷移機制[13](Predictive Migration Mechanism of Hyperchaotic Cloud Networks,PMM-HCN機制)、社區(qū)網(wǎng)絡(luò)大數(shù)據(jù)峰值安全遷移機制[14](Peak Security Migration Mechanism of Large Data in Community Network,PSMM-LDCN機制)作為對照組。評估指標(biāo)采用網(wǎng)絡(luò)遷移時間、網(wǎng)絡(luò)遷移數(shù)據(jù)誤碼率、網(wǎng)絡(luò)抖動時間、網(wǎng)絡(luò)癱瘓頻率四個指標(biāo),仿真參數(shù)如下:
表1 仿真參數(shù)表
首先,采用文獻(xiàn)[14]所提及的初始環(huán)境部署方案:單個網(wǎng)絡(luò)存儲容量不低于1T,數(shù)據(jù)遷移速率不低于96 M,資源池按隨機模式進(jìn)行分布,數(shù)量不低于100。資源按拷貝模式進(jìn)行遷移,時間不低于36 h。
隨后,根據(jù)帶寬函數(shù)均值起伏率()和網(wǎng)絡(luò)存儲冗余率()的變化,對網(wǎng)絡(luò)傳輸進(jìn)行收斂:當(dāng)僅當(dāng)滿足模型(3)的要求時啟動遷移過程,反之進(jìn)入休眠狀態(tài)。
圖4為網(wǎng)絡(luò)遷移時間仿真對比,由圖可知:本文算法對應(yīng)的網(wǎng)絡(luò)遷移時間始終較低,且波動情況較低,PMM-HCN機制和PSMM-LDCN機制的網(wǎng)絡(luò)遷移時間均要高于本文算法,且具有較高的不穩(wěn)定性。這是由于本文算法考慮到網(wǎng)絡(luò)遷移過程中的帶寬及冗余資源等因素,能夠從多個維度同時進(jìn)行網(wǎng)絡(luò)遷移質(zhì)量控制,特別是本文算法能夠有效抑制帶寬函數(shù)均值起伏率的波動,因此網(wǎng)絡(luò)遷移時間波動極為平緩,具有很好的遷移性能。PMM-HCN機制主要通過預(yù)估網(wǎng)絡(luò)傳輸帶寬的最大值進(jìn)行遷移控制,雖然能夠應(yīng)對網(wǎng)絡(luò)傳輸帶寬的波動,但由于該算法未針對帶寬具有的時變特性進(jìn)行抑制,難以控制帶寬起伏,網(wǎng)絡(luò)突遭大流量沖擊時極易發(fā)生遷移失敗的事件,因此網(wǎng)絡(luò)遷移時間要高于本文算法。PSMM-LDCN機制針對PMM-HCN機制的不足,對網(wǎng)絡(luò)帶寬的時變特性進(jìn)行抑制。然而由于該算法并未考慮網(wǎng)絡(luò)資源冗余,容易因資源池過載而出現(xiàn)一定概率的網(wǎng)絡(luò)癱瘓現(xiàn)象,因此該算法的網(wǎng)絡(luò)遷移時間亦要高于本文算法。
圖 4 網(wǎng)絡(luò)遷移時間
圖5為網(wǎng)絡(luò)遷移數(shù)據(jù)誤碼率仿真對比,由圖可知:本文算法對應(yīng)的網(wǎng)絡(luò)遷移數(shù)據(jù)誤碼率較低,且波動情況要遠(yuǎn)遠(yuǎn)低于對照組算法。這是由于本文算法通過多個維度同時進(jìn)行網(wǎng)絡(luò)數(shù)據(jù)遷移,特別是考慮到網(wǎng)絡(luò)存儲冗余帶寬具有的梯變特性動態(tài)進(jìn)行網(wǎng)絡(luò)數(shù)據(jù)遷移,因此數(shù)據(jù)誤碼率較低。PMM-HCN機制僅可通過網(wǎng)絡(luò)傳輸帶寬控制機制進(jìn)行數(shù)據(jù)遷移,網(wǎng)絡(luò)傳輸帶寬實時獲取性能較低,容易導(dǎo)致網(wǎng)絡(luò)擁塞現(xiàn)象,因此具有較高的數(shù)據(jù)誤碼率。PSMM-LDCN機制由于網(wǎng)絡(luò)遷移時間較長,容易導(dǎo)致資源過載出現(xiàn)遷移錯誤,因此網(wǎng)絡(luò)遷移數(shù)據(jù)誤碼率也要高于本文算法。
圖 5 網(wǎng)絡(luò)遷移數(shù)據(jù)誤碼率
圖6為網(wǎng)絡(luò)抖動時間仿真對比,由圖可知:本文算法對應(yīng)的網(wǎng)絡(luò)抖動時間要顯著低于對照組算法,且抖動曲線較為平緩。這是由于本文算法具有較低的網(wǎng)絡(luò)遷移數(shù)據(jù)誤碼率及網(wǎng)絡(luò)遷移時間,產(chǎn)生網(wǎng)絡(luò)抖動的時間窗口較短,因此網(wǎng)絡(luò)抖動時間也較低。由節(jié)3.1和3.2可知,PMM-HCN機制和PSMM-LDCN機制在網(wǎng)絡(luò)遷移數(shù)據(jù)誤碼率及網(wǎng)絡(luò)遷移時間的性能上要差于本文算法,由此帶來的網(wǎng)絡(luò)抖動產(chǎn)生頻率也要高于本文算法,故而網(wǎng)絡(luò)抖動時間較高。
圖 6 網(wǎng)絡(luò)抖動時間
圖7為網(wǎng)絡(luò)癱瘓頻率仿真對比,由圖可知:本文算法對應(yīng)的網(wǎng)絡(luò)癱瘓頻率始終較低,具有顯著的優(yōu)勢。這是由于本文算法考慮到網(wǎng)絡(luò)遷移過程中的帶寬及冗余資源等因素,能夠有效抑制網(wǎng)絡(luò)遷移時間,降低網(wǎng)絡(luò)遷移數(shù)據(jù)誤碼率,控制網(wǎng)絡(luò)抖動,因此網(wǎng)絡(luò)癱瘓頻率發(fā)生概率較低,與PMM-HCN機制和PSMM-LDCN機制相比,具有顯著的優(yōu)勢。
圖 7 網(wǎng)絡(luò)癱瘓頻率
針對當(dāng)前人工網(wǎng)絡(luò)安全遷移算法存在的遷移性能較低等不足,提出了一種基于收斂啟發(fā)機制的人工網(wǎng)絡(luò)安全遷移算法。算法通過啟發(fā)收斂方式,采用多個維度進(jìn)行數(shù)據(jù)遷移及質(zhì)量判斷,能夠有效改善網(wǎng)絡(luò)遷徙過程中存在的抖動現(xiàn)象,減少擁塞情況的發(fā)生,提高網(wǎng)絡(luò)遷移質(zhì)量,實現(xiàn)數(shù)據(jù)遷移的高魯棒性,具有很好的實際部署價值。
下一步,將考慮到本文算法在網(wǎng)絡(luò)規(guī)模擴大情況下存在的遷移效率受限的問題,重點考慮引入立體拓?fù)溥w移映射機制,提升算法的遷移效率,更好地適應(yīng)實際部署環(huán)境,促進(jìn)本文算法的推廣應(yīng)用。
[1] 喬少杰,郭俊,韓楠,等. 大規(guī)模復(fù)雜網(wǎng)絡(luò)社區(qū)并行發(fā)現(xiàn)算法[J]. 計算機學(xué)報,2017,40(3):687-700.
[2] 周創(chuàng),王紅林. 基于超寬帶集中管控機制的物聯(lián)網(wǎng)數(shù)據(jù)傳輸算法[J].井岡山大學(xué)學(xué)報:自然科學(xué)版,2019,40(1): 57-62.
[3] Ze X Z, Xia J, Richard N. Discovering Causal Interactions Using Bayesian Network Scoring and Information Gain[J]. BMC Bioinformatics,2016,17(1): 1021-1036.
[4] Shu Y, Zhang L W, Liang L. Discovering Similar Chinese Characters in Online Handwriting with Deep Convolutional Neural Networks[J]. International Journal on Document Analysis and Recognition (IJDAR), 2016,19(3): 237-252.
[5] Tzy S W, Hui T L, Ping W. Weighted-Spectral Clustering Algorithm for Detecting Community Structures in Complex networks[J]. Artificial Intelligence Review,2017,47(4): 463-48.
[6] Yi C, Xiao L W, Xin X, et al. Overlapping Community Detection in Weighted Networks Via a Bayesian Approach[J]. Physica A: Statistical Mechanics and its Applications, 2017,468(12): 790-801.
[7] Claudio M R. Effects of Multi-state Links in Network Community Detection[J]. Reliability Engineering and System Safety,2017,163(12): 46-56.
[8] Wei Z, Xiao K Z, Zhao K. Analysis of Associtivity and Community Structure in Mobile Social Networks[J]. Procedia Computer Science,2017,107(6): 630-635.
[9] Yang J L, Huang T, Song W M. Discover the Network Mechanisms Underlying the Connections Between Aging and Age-Related Diseases[J]. Scientific reports, 2016, 23(6): 32-56.
[10] Sotirios K. Optimization of Power Consumption in 4G LTE Networks Using a Novel Barebones Self-Adaptive Differential Evolution Algorithm[J]. Telecommunication Systems, 2017, 66(1): 109-120.
[11] Guo J, Feng C. Implementation of Envelope Analysis on a Wireless Condition Monitoring System for Bearing Fault Diagnosis[J]. International Journal of Automation and Computing,2015,12(01):14-24.
[12] Chun C L, Jia R K, Jyun Y C. An Integer Programming Approach and Visual Analysis for Detecting Hierarchical Community Structures in Social Networks[J]. Information Sciences, 2015, 299(3): 25-33.
[13] Zhi Z Z, Zhen Y W. Mining Overlapping and Hierarchical Communities in Complex Networks[J]. Physica A: Statistical Mechanics and its Applications,2015,421(41): 296-311.
[14] Kai L, Zhi G. Image Segmentation with Fuzzy Clustering Based on Generalized Entropy[J]. Journal of Computers, 2014, 9(7): 1678-1683.
Research and Simulation of artificial network security migration algorithm based on convergence heuristic mechanism
*CHEN Qian1, XU Yuan2
(1. Huangshan Vocational and Technical College, Huangshan, Anhui 245000, China; 2. Huangshan University, Huangshan, Anhui 242700, China)
In order to overcome the shortcomings of longmigration time, high bit error rate and easy to cause network paralysis in the current research of artificial network security migration algorithm, a new artificial network security migration algorithm based on convergence heuristic mechanism is proposed. Firstly, by using the fluctuation characteristics of community network in network migration, the migration decision is made through two indicators: the fluctuation rate of bandwidth function mean and the redundancy rate of network storage, which greatly reduces the probability of network congestion in the migration process, realizes data migration efficiently, and improves the robustness in the process of network security migration. Then, aiming at the shortcomings of error evaluation in current algorithm migration process, a method of network storage redundant bandwidth migration is designed through heuristic mapping mechanism to improve the jitter in the process of network data transmission, improve the efficiency of network migration, and have a strong migration quality. The simulation results show that the proposed algorithm has less network migration time than the commonly used Predictive Migration Mechanism of Hyperchaotic Cloud Networks and Peak Security Migration Mechanism of Large Data in Community Network. The characteristics of network migration, such as lowbit error rate, short network jitter time and lower network paralysis frequency, make it have great practical deployment value.
artificial network; convergence heuristics; community network; data migration; heuristic mapping; network paralysis
TP393
A
10.3969/j.issn.1674-8085.2019.05.008
1674-8085(2019)05-0040-04
2019-03-07;
2019-06-13
安徽省高校自然科學(xué)基金項目(KJH2015B02);安徽省教育廳自然科學(xué)研究項目(KJ2018A0953)
*陳 倩(1982-),女,安徽黃山人,講師,主要從事人工智能、計算機應(yīng)用等方面研究(chenqian198211@sina.com);
許 媛(1982-),女,安徽黃山人,講師,碩士,主要從事數(shù)值模擬、計算機應(yīng)用等方面研究(XuYn1982dot@126.com).