• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      林木參數(shù)監(jiān)測多傳感器的時空配準(zhǔn)

      2019-10-09 02:58王志樓邢濤
      森林工程 2019年5期

      王志樓 邢濤

      摘 要:本文基于多傳感器集成以及時空配準(zhǔn)技術(shù), 實(shí)現(xiàn)林木的立體參數(shù)采集。采用自主研發(fā)的林木參數(shù)多傳感器集成系統(tǒng),在東北林業(yè)大學(xué)林場樣地進(jìn)行林木的數(shù)據(jù)采集,利用傳感器間坐標(biāo)系轉(zhuǎn)換關(guān)系與雙目視覺算法實(shí)現(xiàn)點(diǎn)云數(shù)據(jù)和圖像數(shù)據(jù)的時空配準(zhǔn)。對配準(zhǔn)后數(shù)據(jù)提取標(biāo)靶坐標(biāo)與全站儀得到真實(shí)坐標(biāo)進(jìn)行比較,X、Y、Z三個方向的RMSE分別為0.074、0.117、0.153 m,RMSE平均值為0.115 m。結(jié)果表明該集成系統(tǒng)采集數(shù)據(jù)有效,配準(zhǔn)效果良好。

      關(guān)鍵詞:林木參數(shù)監(jiān)測;空間配準(zhǔn);時間配準(zhǔn)

      中圖分類號:S757 ? ?文獻(xiàn)標(biāo)識碼:A ? 文章編號:1006-8023(2019)05-0039-04

      Abstract:Based on multi-sensor integration and spatial-temporal registration technology, this paper realizes the stereo parameter acquisition of forest trees. The self-developed forest parameter multi-sensor integrated system is used to collect the data of forest trees in the forest farm sample of Northeast Forestry University, and the spatial-temporal registration of point cloud data and image data is realized by the coordinate transformation relationship between sensors and the binocular vision algorithm. After the registration, the data extraction target coordinates are compared with the total station to obtain the real coordinates. The RMSE in the three directions of X, Y and Z are 0.074, 0.117, 0.153 m, respectively, and the average RMSE is 0.115 m. The results show that the data collected by the integrated system is valid and the registration effect is good.

      Keywords:Forest parameter monitoring; space registration; time registration

      0 引言

      森林資源是全球資源重要的組成部分,在生態(tài)環(huán)境的恢復(fù)與重建、緩解全球氣候變化以及促進(jìn)社會和經(jīng)濟(jì)發(fā)展中具有重要作用[1]。林木參數(shù)監(jiān)測系能夠快速、準(zhǔn)確、高質(zhì)高效地獲取多種空間、光譜和時間分辨率的森林資源現(xiàn)狀及動態(tài)變化信息,在林業(yè)資源監(jiān)測中發(fā)揮著重要作用。目前對于林業(yè)調(diào)查信息采集[2]及森林資源監(jiān)測[3]的需求,需要研發(fā)三維激光掃描、CCD立體測量和林木健康檢測等多傳感器集成及其搭載技術(shù),利用多源采集數(shù)據(jù)構(gòu)建林木參數(shù)變化監(jiān)測技術(shù)體系,形成移動式林木參數(shù)動態(tài)監(jiān)測,實(shí)現(xiàn)對林木參數(shù)(林木胸徑、樹高、冠幅、林分郁閉度和林分生物量等參數(shù))的動態(tài)監(jiān)測,促進(jìn)林業(yè)信息數(shù)字化發(fā)展進(jìn)程以及作業(yè)精準(zhǔn)化和科學(xué)管理,為大區(qū)域森林資源動態(tài)監(jiān)測提供技術(shù)和數(shù)據(jù)支持[4]。

      本文研發(fā)的林木參數(shù)監(jiān)測采集系統(tǒng)是集成多種新型傳感器的林木信息監(jiān)測裝置,系統(tǒng)的激光掃描儀可以采集林木的點(diǎn)云數(shù)據(jù),單反相機(jī)可以采集林木的圖像信息,通過點(diǎn)云和圖像信息的融合,可以更全面的監(jiān)測林木的樹高、胸徑、紋理和顏色,突破皮尺、胸徑尺和測高儀等設(shè)備監(jiān)測的單一和精確度低的限制。這套多傳感器集成系統(tǒng),傳感器為1臺三維激光掃描儀、3臺單反攝像機(jī)、思拓力的S3Ⅱ RTK和SC200Ⅱ型GPS接收機(jī)、IMU慣性姿態(tài)儀,可以進(jìn)行人工林的樹木的點(diǎn)云數(shù)據(jù)采集、GPS定位和圖像信息采集,提高林木點(diǎn)云數(shù)據(jù)和圖像數(shù)據(jù)時間和空間配準(zhǔn)[5-7],實(shí)現(xiàn)多傳感器數(shù)據(jù)融合[8-10]預(yù)處理。

      1 多傳感器的空間配準(zhǔn)

      本文建立了一臺激光掃描儀、三臺單反相機(jī)的空間坐標(biāo)系,使用各個傳感器空間坐標(biāo)系的轉(zhuǎn)換,統(tǒng)一到一個世界坐標(biāo)系中,實(shí)現(xiàn)各個傳感器的空間配準(zhǔn)。

      1.1 單反相機(jī)空間坐標(biāo)系的建立

      林木參數(shù)監(jiān)測系統(tǒng)采用兩臺單反相機(jī),運(yùn)用雙目視覺測距原理[11-12]來獲取林木深度信息,同時獲取圖像信息,建立一個單反相機(jī)空間坐標(biāo)系統(tǒng)(x1,y1,z1)。本文采用的是簡化的雙目視覺成像[13]系統(tǒng),就是常用的平行雙目系統(tǒng),其中,u0,v0,αx,αy都為相機(jī)的內(nèi)部參數(shù):(u1,v1)是左相機(jī)成像點(diǎn)P1在圖像坐標(biāo)系下的像素坐標(biāo);(u2,v2)是右相機(jī)成像點(diǎn)P2在圖像坐標(biāo)系下的像素坐標(biāo)[14]。

      從實(shí)驗結(jié)果可以看出,本文所述的多傳感器時空配準(zhǔn)模型以及在配準(zhǔn)過程中所用的方法,能夠比較好的將各個傳感器的坐標(biāo)系準(zhǔn)確的統(tǒng)一到世界坐標(biāo)系中,并且能夠把不同傳感器采集的不同采樣周期數(shù)據(jù)高精度的配準(zhǔn)到同一個時間點(diǎn)上,比較好的解決了各個傳感器之間不能準(zhǔn)確同步的問題。

      4 結(jié)論

      本文設(shè)計的林木參數(shù)多傳感器集成系統(tǒng),能夠有效的集成多傳感器進(jìn)行點(diǎn)云數(shù)據(jù)圖像數(shù)據(jù)采集,并且能夠高效的數(shù)據(jù)融合。通過各傳感器間的坐標(biāo)轉(zhuǎn)換實(shí)現(xiàn)了多傳感器的空間配準(zhǔn);借助GPS時間作為時間基準(zhǔn),不同頻率數(shù)據(jù)進(jìn)行內(nèi)插、外推、BP神經(jīng)網(wǎng)絡(luò)算法處理,從而實(shí)現(xiàn)多傳感器時間配準(zhǔn),經(jīng)過實(shí)驗證明,該系統(tǒng)有效的解決了多傳感器時空配準(zhǔn)問題,提高了點(diǎn)云采集精度。

      【參 考 文 獻(xiàn)】

      [1]BUIZER M, HUMPHREYS D, JONG W D. Climate change and deforestation: the evolution of an intersecting policy domain[J]. Environmental Science & Police, 2014, 35:1-11.

      [2]黎曦,黃海虹,張新耐.林業(yè)調(diào)查信息采集處理平臺技術(shù)研究[J].林業(yè)調(diào)查規(guī)劃,2017,42(5):45-51.

      LI X, HUANG H H, ZHANG X N. Platform and technology of forestry survey information collection and processing[J]. Forest Inventory and Planning, 2017,42(5):45-51.

      [3]NEWNHAM G J, ARMSTON J, CALDERS K, et al. Terrestrial laser scanning for plot-scale forest measurement[J]. Current Forestry Reports, 2015, 1(4):239-251.

      [4]TANG H, BROLLY M, ZHAO F, et al. Deriving and validating Leaf Area Index (LAI) at multiple spatial scales through lidar remote sensing: A case study in Sierra National Forest, CA[J]. Remote Sensing of Environment, 2014, 143(3):131-141.

      [5]MAI X M, ZHU Z S, PENG X Y, et al. Position and orientation system for overhead power-line inspection using multi-sensor integrated unmanned aerial vehicles[J]. Journal of Chinese Inertial Technology, 2015, 23(1):20-23, 28.

      [6]陳佳東.低空復(fù)雜環(huán)境多源時空配準(zhǔn)方法與應(yīng)用研究[D].西安:西安電子科技大學(xué),2018.

      CHEN J D. Method and application study of multi-source spatial and temporal registration in complex low-altitude environment[D]. Xian: Xidian University, 2018.

      [7]LIN Q Y, YANG R Q, CAI K, et al. Real-time automatic registration in optical surgical navigation[J]. Infrared Physics & Technology, 2016, 76:375-385.

      [8]王勝平,周豐年,劉大偉,等.船載三維激光掃描數(shù)據(jù)時空配準(zhǔn)方法研究[J].現(xiàn)代測繪,2015,38(3):7-10.

      WANG S P, ZHOU F N, LIU D W, et al. Research on space-time registration method for shipborne 3D laser scanning data[J]. Modern Surveying and Mapping, 2015, 38(3):7-10.

      [9]王偉.多傳感器時空配準(zhǔn)技術(shù)研究[D].北京:中國電子科學(xué)研究院,2014.

      WAMG W. Multi-sensor space-time registration technology research[D]. Beijing: China Electronics Science Research Institute, 2014.

      [10]夏家和,雷宏杰,李華,等.考慮時空基準(zhǔn)差異的傳遞對準(zhǔn)算法研究[J].導(dǎo)航定位與授時,2016,3(1):25-28.

      XIA J H, LEI H J, LI H, et al. Study on transfer alignment algorithm considering space-time difference[J]. Navigation Positioning & Timing, 2016, 3(1):25-28.

      [11]張如如,葛廣英,申哲,等.基于雙目立體視覺的三維重建方法[J].揚(yáng)州大學(xué)學(xué)報(自然科學(xué)版),2018,21(3):5-10.

      HANG R R, GE G Y, SHEN Z, et al. 3D reconstruction based on binocular stereo vision[J]. Journal of Yangzhou University (Natural Science Edition), 2018, 21(3):5-10.

      [12]李嘉琛,李曉晨,贠曉港,等.基于雙目視覺的航空發(fā)動機(jī)受損葉片三維重建方法[J].科技與創(chuàng)新,2018,5(17):28-31.

      LI J C, LI X C, DAI X G, et al. Three-dimensional reconstruction method for damaged blade of aeroengine based on binocular vision[J]. Science and Technology & Innovation, 2018, 5(17):28-31.

      [13]曹淞翔.基于雙目視覺的三維重建[J].通訊世界,2018,25(12):236-238.

      CAO S X. 3D reconstruction based on binocular vision[J]. Communication World, 2018, 25(12):236-238.

      [14]JIA Z Y, YANG J H, LIU W, et al. Improved camera calibration method based on perpendicularity compensation for binocular stereo vision measurement system[J]. Optics Express, 2015, 23(12):15205-15223.

      [15]杜思遠(yuǎn).GNSS短時失鎖下車載微慣導(dǎo)算法研究[D].太原:中北大學(xué),2018.

      DU S Y. Research on vehicle micro inertial navigation algorithm under GNSS short time unlock[D]. Taiyuan: North University of China, 2018.

      [16]斯海林,李標(biāo),鄧天民.城市3D GIS實(shí)景采集中多傳感器的時空配準(zhǔn)研究[J].公路與汽運(yùn),2013,28(4):84-88.

      SI H L, LI B, DENG T M. Spatio-temporal registration of multi-sensors in urban 3D GIS real-time acquisition[J]. Highways & Automotive Applications, 2013, 28(4):84-88.

      [17]CHENT G, QIAN W X, CHEN Q, et al. Rapid head dectection method based on binocular stereo vision[J]. Chinese Journal of Lasers, 2014, 41(1):150-155.

      北碚区| 白沙| 民丰县| 合江县| 大安市| 寿光市| 格尔木市| 成都市| 多伦县| 南雄市| 绵阳市| 开鲁县| 吉林省| 淄博市| 郧西县| 咸丰县| 资源县| 上林县| 平武县| 苍南县| 保山市| 通海县| 蚌埠市| 闵行区| 安岳县| 当阳市| 崇明县| 南汇区| 云安县| 应城市| 溧阳市| 启东市| 六安市| 应用必备| 綦江县| 扎兰屯市| 鄂温| 日照市| 克拉玛依市| 万源市| 阳曲县|