• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An ?-Step Modified Augmented Lagrange Multiplier Algorithm for Completing a Toeplitz Matrix

    2019-10-16 01:44:40WENRuiping溫瑞萍LIShuzhen李姝貞
    應(yīng)用數(shù)學(xué) 2019年4期

    WEN Ruiping(溫瑞萍),LI Shuzhen(李姝貞)

    ( Key Laboratory of Engineering & Computing Science,Shanxi Provincial Department of Education /Department of Mathematics,Taiyuan Normal University,Jinzhong 030619,China)

    Abstract: Based on the modified augmented Lagrange multiplier (MALM) algorithm for Toeplitz matrix completion (TMC) proposed by WANG et al.(2016),we put forward an accelerated technique to MALM algorithm,which will reduce the extra load coming from data communication.It is drawn that an ?-step modified augmented Lagrange multiplier algorithm.Meanwhile,we demonstrate the convergence theory of the new algorithm.Finally,numerical experiments show that the ?-step modified augmented Lagrange multiplier(?-MALM) algorithm is more effective than the MALM algorithm.

    Key words: Toeplitz matrix;Matrix completion;Augmented Lagrange multiplier;Data communication

    1.Introduction

    Completing an unknown low-rank or approximately low-rank matrix from a sampling of its entries is a challenging problem applied in many fields of information science.For example,machine learning[1?2],control theory[11],image inpainting[4],computer vision[14]etc.Matrix completion (MC) problem first introduced by Cand`es and Recht[6]is from portion of the observed matrix elements to fill a low-rank matrix as precisely as possible,it is a hot spot of researching in recent years.The famous recommendation system of the Netflix[3]is the typical application of matrix completion.Mathematical language is expressed as follows:

    where the matrixM∈Rm×nis the underlying matrix to be reconstructed,? ?{1,2,···,m}×{1,2,···,n} represents the random subset of indices for the known entries to the sampling matrixM,andP?is associated sampling orthogonal projection operator on?.The purpose of the optimization problem is to reduce the rank of matrix obtained by filling missing elements as far as possible.In other words,the model (1.1) optimizes the structure of the matrix.

    Although matrix completion needs solving the global solution of the non-convex objective problem,there are still many effective algorithms which are applicable to some specific matrix.Many researchers have suggested that the most of a low-rank matrix can be accurately completed according to the known entries at specified accuracy.In a low dimensional linear subspace,the meaning of precision is that we can realize the reasonable matrix completion under the hypothesis of the lowest-rank data matrix.

    However,the optimization problem (1.1) is an NP-hard problem,in theory and practice,the computational complexity of the existing algorithms is a double exponential function about the matrix dimension.As a result,the computations are cumbersome and the data take up a large amount of computer memory.Therefore,the solving of the problem (1.1) is usually expensive by the existing algorithms.Hence,using the relation between the rank and the nuclear norm of a matrix,Cand`es and Recht[6]made the equivalent form of the problem(1.1) as follows:

    whereM∈Rm×nis the underlying matrix,denotes thek-th largest singular value of ther-rank matrixA∈Rm×n,namelyσ1≥σ2≥···≥σk≥···≥σr >0.The problem (1.1) is transformed into a convex optimization problem which is easy to solve.

    Academic circles have made abundant research results in solving the optimization problem (1.2) such as the augmented Lagrange multiplier (ALM) algorithm[9],the singular value theresholding(SVT)algorithm as well as its variants[5,8,19],the accelerated proximal gradient(APG)algorithm[15],and the modified augmented Lagrange multiplier(MALM)algorithm[17]etc.On the practical problems,the sampling matrix often has a special structure,for instance,the Toeplitz and Hankel matrices.Many scholars have conducted in-depth research on the special structure,property and application of the Toeplitz and Hankel matrix in recent years[10,12?13,16,18].As we well know,ann×nToeplitz matrix can be expressed as the following form:

    which is determined by 2n?1 entries.

    As for MALM algorithm,the intuitive idea is to switch iteration matrix into Toeplitz structure at each step by an operator.To implement this idea,a heavy data has to be moved at each iterate step.However,there is a cost,sometimes relatively great,associated with the moving of data.The control of memory traffic is crucial to performance in many computers.

    In order to reduce the traffic jam of data,an?-step modified ALM algorithm is proposed in this paper.Compared with the MALM algorithm,the new algorithm saves computation cost and reduces data communication.Two aspects are taken into account,which result in a more practical or economic implementing.The new algorithm not only overcomes the slowness produced by the computing of singular value decomposition in ALM algorithm,but also saves the data congestion caused by the data communication in MALM algorithm.Compared with the CPU of the MALM algorithm,we can see that the CPU of the?-MALM algorithm is reduced to 45%.

    Here are some of the necessary notations and preliminaries.Rm×ndenotes the set ofm×nreal matrix.The nuclear norm of a matrixAis denoted by‖A‖?,the Frobenius norm by‖A‖F(xiàn)is the sum of absolute values of the matrix entries ofA.ATis used to denote the transpose of a matrixA∈Rn×n,rank(A) stands for the rank ofAand tr(A) represents the trace ofA.The standard inner product between two matrices is denoted by〈X,Y〉=tr(XTY).? ?{?n+1,···,n?1}is the indices set of observed diagonals of a Toeplitz matrixM∈Rn×n,ˉ?is the complementary set of?.For a Toeplitz matrixA∈Rn×n,the vector vec(A,l)denotes a vector reshaped from thel-th diagonal ofA,l=?n+1,···,n?1,P?is the orthogonal projector on?,satisfying

    Definition 1.1(Singular value decomposition(SVD)) The singular value decomposition of a matrixA∈Rm×nofr-rank is defined as follows:

    whereU∈Rm×randV∈Rn×rare column orthonormal matrices,σ1≥σ2≥···≥σr >0.

    Definition 1.2(Singular value thresholding operator)[5]For eachτ≥0,the singular value thresholding operatorDτis defined as follows:

    whereA=UΣrVT∈Rm×n,{σi?τ}+=

    Definition 1.3The matrices

    are called the basis of the Toeplitz matrix space.

    It is clear that a Toeplitz matrixT∈Rn×n,shown in (1.3),can be rewritten as a linear combination of these basis matrices,that is,

    Definition 1.4(Toeplitz structure smoothing operator) For any matrixA=(aij)∈Rn×n,the Toeplitz structure mean operatorTis defined as follows:

    The rest of the paper is organized as follows.After we review briefly the ALM,MALM algorithms and the dual approach,an?-step modified ALM algorithm will be proposed in Section 2.Next,the convergence analysis is given in Section 3.Then the numerical results are provided to show the effectiveness of the?-MALM in Section 4.Finally,the paper ends with a conclusion in Section 5.

    2.Relative Algorithms

    Since the matrix completion problem is closely connected to the robust principal component analysis (RPCA) problem,then it can be formulated in the same way as RPCA,an equivalent problem of (1.2) can be considered as follows.In terms of estimating the lowdimensional subspace,the purpose of the mathematical model is to find a low-rank matrixA∈Rm×n(as long as the error matrixEis sufficiently sparse,relative to the rank ofA)to minimize the difference between matrixAandM,generating the following constraint optimization problem model:

    whereEwill compensate for the unknown entries ofM,the unknown entries ofM∈Rm×nare simply set as zeros.AndP?:Rm×n→Rm×nis a linear operator that keeps the entries in?unchanged and sets those outside?(say,in) zeros.Then we introduce the algorithm for solving problem (2.1).

    ⅠThe augmented Lagrange multiplier (ALM) algorithm

    It is famous that partial augmented Lagrangian function of the problem (2.1) is Hence,the augmented Lagrange multiplier (ALM) algorithm[9]is designed as follows.

    Algorithm 2.1Step 0 Give?,sampled matrixD=P?(M),μ0>0,ρ >1.Give also two initial matricesY0=0,E0=0.k:=0;

    Step 1 Compute the SVD of the matrix (D?Ek+μk?1Yk),

    Step 2 Set

    SolveEk+1=arg

    Step 3 If‖D?Ak+1?Ek+1‖F(xiàn)/‖D‖F(xiàn)

    Step 4 SetYk+1=Yk+μk(D?Ak+1?Ek+1).Ifμk‖Ek+1?Ek‖F(xiàn)/‖D‖F(xiàn)

    RemarkIt is reported that the ALM algorithm performs better both in theory and algorithms than the others that with a Q-linear convergence speed globally.It is of much better numerical behavior,and it is also of much higher accuracy.However,the algorithm has a disadvantage of the penalty function:the matrix sequences{Xk} generated by Algorithm 2.1 are not feasible.Hence,the accepted solutions are not feasible.

    ⅡThe dual algorithm

    The dual algorithm proposed in [7]tackles the problem (2.1) via its dual.That is,one first solves the dual problem

    for the optimal Lagrange multiplierY,where

    A steepest ascend algorithm constrained on the surface{Y|J(Y)=1}can be adopted to solve(2.3),where the constrained steepest ascend direction is obtained by projectingMonto the tangent cone of the convex body{Y|J(Y)≤1}.It turns out that the optimal solution to the primal problem (2.1) can be obtained during the process of finding the constrained steepest ascend direction.

    ⅢThe modified augmented Lagrange multiplier (MALM) algorithm

    In this pant,we mention a mean-value technique for TMC problem[17].The problem can be expressed as the following convex programming,

    whereA,M∈Rn×nare both real Toeplitz matrices,? ?{?n+1,···,n?1}.LetD=P?(M).Then the partial augmented Lagrangian function is

    whereY∈Rn×n.

    Algorithm 2.2Step 0 Give?,sampled matrixD,μ0>0,ρ >1.Give also two initial matricesY0=0,E0=0.k:=0;

    Step 1 Compute the SVD of the matrix (D?Ek+) using the Lanczos method

    Step 2 Set

    Step 3 If‖D?Ak+1?Ek+1‖F(xiàn)/‖D‖F(xiàn)

    Step 4 SetYk+1=Yk+μk(D?Ak+1?Ek+1).Ifμk‖Ek+1?Ek‖F(xiàn)/‖D‖F(xiàn)

    RemarkIt is reported that MALM algorithm performs better that of much higher accuracy.Compared with the ALM,APGL,and SVT algorithms,the MALM algorithm is advantageous over the other three algorithms on the time costed by the SVD for smoothing at each iterate.

    As we know,the saving of the SVD time is at the expense of data communication.Sometimes,this is not worth the candle.This motivated us to put up with the following algorithm.

    ⅣThe?-step modified augmented Lagrange multiplier (?-MALM) algorithm

    To reduce the workload of data being moved at each iteration step,we propose a new accelerated algorithm for the TMC problem,which is smoothing once the diagonal elements of the iteration matrix by (1.5) for every?steps.The technique saves computation cost and reduces the data communication.It turns out that the iteration matrices keep a Toeplitz structure,which ensure the fast SVD of Toeplitz matrices can be utilized.

    Algorithm 2.3(?-MALM algorithm)

    Input:?,sampled matrixD,Y0,0=0,E0,0=0;parametersμ0>0,ρ >1,?,?1,?2.Letk:=0,q:=1,q=1,2,···,??1.

    Repeat:

    Step 1??1 iterations.

    1) Compute the SVD of the matrix (D?Ek,q+) using the Lanczos method

    2) Set

    3) If‖D?Xk+1,q+1?Ek+1,q+1‖F(xiàn)/‖D‖F(xiàn)

    4) SetYk+1,q+1=Yk,q+μk,q(D?Xk+1,q+1?Ek+1,q+1),μk+1,q+1=ρμk,q;otherwise,go to Step 1 1);

    Step 2?-th smoothing.

    1) Compute

    UpdateEk+1,?=

    Step 3 If‖D?Ak+1,??Ek+1,?‖F(xiàn)/‖D‖F(xiàn)

    Step 4 SetYk+1,q+1=Yk,q+μk,q(D?Ak+1,q+1?Ek+1,q+1).

    Ifμk,q‖Ek+1,q+1?Ek,q‖F(xiàn)/‖D‖F(xiàn)

    RemarkClearly,this algorithm is an acceleration of the MALM algorithm in [17].When?=1,it becomes the MALM scheme.

    3.Convergence Analysis

    We provided first some lemmas in the following.

    Lemma 3.1[6]LetA∈Rm×nbe an arbitrary matrix andUΣVTbe its SVD.Then the set of subgradients of the nuclear norm ofAis provided by

    ?‖A‖?={UVT+W:W∈Rm×n,UTW=0,WV=0,‖W‖2≤1}.

    Lemma 3.2[9]Ifμkis nondecreasing then each term of the following series is nonnegative and the series is convergent,that is,

    Lemma 3.3[9]The sequences{},{Yk}and{}are all bounded,where=Yk+1+μk?1(D?Ak?Ek?1).

    Lemma 3.4The sequence{Yk,q} generated by Algorithm 2.3 is bounded.

    ProofLetdefined as (1.5).

    First of all,we indicate thatYk,q,Ek,q,k=1,2,···,q=1,2,···,??1 are all Toeplitz matrices.Evidently,Y0,0=0,E0,0=0 are both smoothed into Toeplitz matrices.Suppose that afterYk,q,Ek,qare both Toeplitz matrices,so isEk+1,q+1=Thus,Yk+1,q+1is a Toeplitz matrix also from the Step 4 in Algorithm 2.3.

    And,

    It is clear that by Steps 1-2 in Algorithm 2.3,

    Hence we can obtain thatYk,q+μk,q(D?Ak+1,q+1?Ek,q)∈?‖Ak+1,q+1‖?from Lemmas 3.2 and 3.3.It is known that forAk+1,q+1=UΣVTby Lemma 3.1,

    We have also,

    Therefore,the following inequalities can be obtained:

    and

    It is clear that the sequence{Yk,q} is bounded.

    Theorem 3.1Suppose thatthen the sequence{Ak,q} converges to the solution of (2.5) whenμk,q→∞and

    ProofIt is true that

    since(Yk+1,q+1?Yk,q)=D?Ak+1,q+1?Ek+1,q+1and Lemma 3.4.Let (?,?) be the solution of (2.5).ThenAk+1,q+1,Yk+1,q+1,Ek+1,q+1,k=1,2,···,are all Toeplitz matrices from+=D.We prove first that where=Yk,q+μk,q(D?Ak+1,q+1?Ek,q),is the optimal solution to the dual problem (2.3).

    We obtain the following result through the same analysis,

    Then

    holds true.

    On the other hand,the following is true by Algorithm 2.3:

    Moreover,along the same idea of Theorem 2 in [9],it is obtained thatis the solution of(2.5).

    Theorem 3.2LetX=(xij)∈Rn×n,T(X)=()∈Rn×nbe the Toeplitz matrix derived fromX,introduced in (1.5).Then for all Toeplitz matrixY=(yij)∈Rn×n,

    ProofBy the definition ofT(X),we have=0,i,j=1,2,···,n.SinceYis a Toeplitz matrix,andyl=yij,l=i?j,i,j=1,2,···,n.Then

    Theorem 3.3In Algorithm 2.3,Ak,qis a Toeplitz matrix derived byXk,q.Then

    where?is the solution of (2.5).

    Proof

    4.Numerical Experiments

    In this section,some original numerical results of two algorithms(MALM,?-MALM)are presented for then×nmatrices with different ranks.We conducted numerical experiments on the same and modest workstation.By analyzing and comparing iteration numbers (IT),computing time in second (time(s)),deviation (error 1,error 2) and ratio which are defined in the following,we can see that the?-MALM algorithm proposed by this paper is far more effective than the MALM algorithm.

    In our experiments,M∈Rn×nrepresents the Toeplitz matrix.We select the sampling densityp=m/(2n?1),wheremis the number of the observed diagonal entries ofM,then 0≤m≤2n?1.With regard to the?-MALM algorithm,we set the parametersτ0=1/‖D‖2,δ=1.2172+,?1=10?9,?2=5×10?6and?=3 as a rule of thumb.The parameters of the MALM algorithm take the same as the?-MALM algorithm.

    The experimental results of two algorithms are shown in Tables 4.1-4.4.From the tables,two algorithms can successfully calculate the approximate solution of prescriptive stop condition for all the test matricesM.And our?-MALM algorithm in computing time is far less than that of the MALM algorithm.In particular,compared with the CPU of the MALM algorithm,we can find that the CPU of the?-MALM algorithm is reduced to 45%.The“ratio”in Table 4.5 can show this effectiveness.

    Table 4.1 Comparison between MALM and ?-MALM for p=0.6.

    Table 4.3 Comparison between MALM and ?-MALM for p=0.4.

    Table 4.4 Comparison between MALM and ?-MALM for p=0.3.

    Table 4.5 The values of ratio.

    5.Conclusion

    As is known to all,matrix completion is usually to recover a matrix from a subset of the elements of a matrix by taking advantage of low rank structure matrix interdependencies between the entries.It is well-known but NP-hard in general.In recent years,Toeplitz matrix completion has attracted widespread attention and TMC is one of the most important completion problems.In order to solve such problems,we put forward an?-step modified augmented Lagrange multiplier (?-MALM) algorithm based on the MALM algorithm,and corresponding with the theory of the convergence of the?-MALM algorithm are established.Theoretical analysis and numerical results have shown that the?-MALM algorithm is effective for solving TMC problem.The?-MALM algorithm overcomes the original ALM algorithm both singular value decomposition of tardy,and surmounts the property of the extra load of the MALM algorithm.The reason is that data communication congestion is far more expensive than computing.Compared with the CPU of the MALM algorithm,we can see that the CPU of our?-MALM algorithm is reduced to 45%.Therefore,?-MALM algorithm has better convergence rate for solving TMC problem than the MALM algorithm (tables 4.1-4.5).

    AcknowledgmentsThe authors gratefully acknowledge the anonymous referees and Professor ZZ Bai(academy of mathematics and systems science,Chinese academy of sciences)for their helpful comments and suggestions which greatly improved the original manuscript of this paper.

    建设人人有责人人尽责人人享有的| 黄片播放在线免费| 国产xxxxx性猛交| 久久久久久久国产电影| 黄色 视频免费看| 女性被躁到高潮视频| 丝袜脚勾引网站| 99久久99久久久精品蜜桃| 王馨瑶露胸无遮挡在线观看| 毛片一级片免费看久久久久| 精品少妇内射三级| 日日爽夜夜爽网站| 亚洲国产精品一区三区| 2018国产大陆天天弄谢| 亚洲精品,欧美精品| 久久人妻熟女aⅴ| 国产精品久久久av美女十八| 一个人免费看片子| av在线老鸭窝| 男人添女人高潮全过程视频| 亚洲欧美中文字幕日韩二区| 一二三四在线观看免费中文在| 最近的中文字幕免费完整| 亚洲国产精品成人久久小说| 男人爽女人下面视频在线观看| 欧美国产精品va在线观看不卡| 成年人午夜在线观看视频| 美女国产高潮福利片在线看| 侵犯人妻中文字幕一二三四区| 亚洲熟女毛片儿| 在线观看www视频免费| 建设人人有责人人尽责人人享有的| 欧美精品亚洲一区二区| 久热爱精品视频在线9| 国产黄色视频一区二区在线观看| 9热在线视频观看99| 老司机亚洲免费影院| 久久久久网色| av女优亚洲男人天堂| 国产精品免费视频内射| 久久久精品区二区三区| 如何舔出高潮| 飞空精品影院首页| 日韩制服丝袜自拍偷拍| 亚洲精品中文字幕在线视频| 美女视频免费永久观看网站| 男人舔女人的私密视频| 999久久久国产精品视频| 亚洲国产精品国产精品| 97在线人人人人妻| 日韩一区二区视频免费看| 国产一卡二卡三卡精品 | 亚洲国产毛片av蜜桃av| 菩萨蛮人人尽说江南好唐韦庄| 国产色婷婷99| 国产伦理片在线播放av一区| 成年人免费黄色播放视频| 人人妻人人澡人人爽人人夜夜| 成年美女黄网站色视频大全免费| 亚洲一区二区三区欧美精品| 日本av免费视频播放| 亚洲伊人久久精品综合| 狂野欧美激情性xxxx| 各种免费的搞黄视频| 欧美另类一区| 9色porny在线观看| 91精品伊人久久大香线蕉| 丁香六月欧美| 久久精品国产综合久久久| 精品少妇一区二区三区视频日本电影 | 七月丁香在线播放| 午夜久久久在线观看| 亚洲av电影在线观看一区二区三区| 国产99久久九九免费精品| 好男人视频免费观看在线| 国产精品久久久久久精品电影小说| 亚洲欧美一区二区三区国产| 超碰97精品在线观看| 狠狠精品人妻久久久久久综合| 免费黄网站久久成人精品| 国产又色又爽无遮挡免| 国产探花极品一区二区| 九草在线视频观看| 男女之事视频高清在线观看 | 国产精品国产av在线观看| 在线观看免费视频网站a站| 久久婷婷青草| 国产在线视频一区二区| 肉色欧美久久久久久久蜜桃| 十八禁人妻一区二区| 制服诱惑二区| 人人妻人人澡人人看| 黑人猛操日本美女一级片| 久久青草综合色| 天天躁日日躁夜夜躁夜夜| 9热在线视频观看99| 纯流量卡能插随身wifi吗| 精品亚洲成a人片在线观看| 日韩电影二区| av视频免费观看在线观看| 久久鲁丝午夜福利片| 亚洲av日韩在线播放| 91aial.com中文字幕在线观看| 99热国产这里只有精品6| 各种免费的搞黄视频| 久久97久久精品| 美女国产高潮福利片在线看| 中文字幕制服av| 国产精品久久久av美女十八| 18禁国产床啪视频网站| 精品国产露脸久久av麻豆| 这个男人来自地球电影免费观看 | 国产亚洲av高清不卡| 99久久人妻综合| 欧美黑人欧美精品刺激| 久久人妻熟女aⅴ| 国产精品一国产av| 日韩av免费高清视频| 91精品国产国语对白视频| 国产精品一区二区精品视频观看| 最近2019中文字幕mv第一页| 精品亚洲成a人片在线观看| 一本一本久久a久久精品综合妖精| 高清黄色对白视频在线免费看| 亚洲美女视频黄频| 亚洲国产中文字幕在线视频| 国产高清国产精品国产三级| 免费日韩欧美在线观看| 自线自在国产av| 精品人妻熟女毛片av久久网站| 久久久久久久久久久久大奶| 色婷婷av一区二区三区视频| 两个人看的免费小视频| 中文字幕精品免费在线观看视频| 国产成人欧美| 在线观看一区二区三区激情| 亚洲中文av在线| 欧美亚洲 丝袜 人妻 在线| 日韩大片免费观看网站| 校园人妻丝袜中文字幕| 亚洲欧美清纯卡通| 日韩中文字幕欧美一区二区 | 午夜福利一区二区在线看| 国产av码专区亚洲av| 欧美日韩一级在线毛片| 男女边吃奶边做爰视频| 一级毛片我不卡| 国产无遮挡羞羞视频在线观看| 美女中出高潮动态图| 国产av一区二区精品久久| 丝袜美腿诱惑在线| 一区在线观看完整版| 两个人看的免费小视频| 777久久人妻少妇嫩草av网站| 免费黄网站久久成人精品| 欧美激情 高清一区二区三区| 免费观看av网站的网址| 最新在线观看一区二区三区 | av在线app专区| 亚洲五月色婷婷综合| 男人添女人高潮全过程视频| 精品国产一区二区三区久久久樱花| 久久天躁狠狠躁夜夜2o2o | 一级片免费观看大全| 一级毛片 在线播放| xxxhd国产人妻xxx| 国产99久久九九免费精品| 一二三四在线观看免费中文在| 涩涩av久久男人的天堂| 国产免费现黄频在线看| 两性夫妻黄色片| 国产亚洲欧美精品永久| 高清不卡的av网站| 欧美成人午夜精品| 精品亚洲成国产av| 一本一本久久a久久精品综合妖精| 香蕉丝袜av| 久久这里只有精品19| 91老司机精品| 黄色视频在线播放观看不卡| 久久久久久久国产电影| 久久国产精品男人的天堂亚洲| 伦理电影大哥的女人| 免费高清在线观看视频在线观看| 久久久久视频综合| 国产免费视频播放在线视频| 在线观看www视频免费| 两个人免费观看高清视频| 中文字幕人妻丝袜制服| av免费观看日本| 久久综合国产亚洲精品| 女性被躁到高潮视频| 亚洲成人免费av在线播放| 伦理电影大哥的女人| 国产 一区精品| 丰满乱子伦码专区| 超碰成人久久| 男女午夜视频在线观看| 波野结衣二区三区在线| 在线观看免费午夜福利视频| 国产精品一区二区在线不卡| 久久精品亚洲熟妇少妇任你| 极品少妇高潮喷水抽搐| 精品人妻熟女毛片av久久网站| 只有这里有精品99| 久久久久精品国产欧美久久久 | 国产在线免费精品| 国产极品天堂在线| 日本猛色少妇xxxxx猛交久久| 久久久久网色| 午夜影院在线不卡| 免费女性裸体啪啪无遮挡网站| 性少妇av在线| 精品国产国语对白av| 久久久久久人妻| 久久久久精品人妻al黑| 中文欧美无线码| 搡老乐熟女国产| 国产黄色视频一区二区在线观看| 欧美97在线视频| 欧美日韩综合久久久久久| 菩萨蛮人人尽说江南好唐韦庄| 男女高潮啪啪啪动态图| 国产日韩一区二区三区精品不卡| av国产久精品久网站免费入址| 97人妻天天添夜夜摸| 国产精品麻豆人妻色哟哟久久| 黑丝袜美女国产一区| 美女主播在线视频| 日韩成人av中文字幕在线观看| 热re99久久精品国产66热6| 午夜免费男女啪啪视频观看| 男的添女的下面高潮视频| 色综合欧美亚洲国产小说| 欧美国产精品va在线观看不卡| 亚洲伊人色综图| 天天添夜夜摸| 亚洲欧美成人综合另类久久久| 精品一区二区三区av网在线观看 | 亚洲精品中文字幕在线视频| 深夜精品福利| 国产 一区精品| 日本av手机在线免费观看| 悠悠久久av| 亚洲国产日韩一区二区| 青草久久国产| 观看美女的网站| 女人被躁到高潮嗷嗷叫费观| 伦理电影大哥的女人| 中文字幕人妻熟女乱码| 亚洲色图综合在线观看| 老汉色∧v一级毛片| 19禁男女啪啪无遮挡网站| 少妇人妻 视频| 精品少妇内射三级| 精品亚洲乱码少妇综合久久| 国产男女超爽视频在线观看| 国产精品秋霞免费鲁丝片| 丰满少妇做爰视频| 人人妻,人人澡人人爽秒播 | 欧美97在线视频| 亚洲国产欧美一区二区综合| 搡老乐熟女国产| 超碰97精品在线观看| 亚洲精品美女久久av网站| 日本色播在线视频| 国产1区2区3区精品| 纯流量卡能插随身wifi吗| 国产成人精品在线电影| 桃花免费在线播放| 欧美人与性动交α欧美软件| 搡老岳熟女国产| 中文天堂在线官网| 亚洲欧洲精品一区二区精品久久久 | 夜夜骑夜夜射夜夜干| 亚洲国产看品久久| 一区二区三区精品91| 欧美激情极品国产一区二区三区| 久久天躁狠狠躁夜夜2o2o | 色视频在线一区二区三区| 韩国av在线不卡| 亚洲,欧美精品.| 电影成人av| 国产日韩一区二区三区精品不卡| 婷婷成人精品国产| 成人免费观看视频高清| 可以免费在线观看a视频的电影网站 | 国产精品麻豆人妻色哟哟久久| 国产福利在线免费观看视频| 精品第一国产精品| 欧美成人精品欧美一级黄| 亚洲av日韩精品久久久久久密 | 国产一区二区三区av在线| av卡一久久| 国产精品香港三级国产av潘金莲 | 亚洲av成人精品一二三区| 亚洲国产欧美网| 91成人精品电影| 午夜福利网站1000一区二区三区| 男女国产视频网站| 国产无遮挡羞羞视频在线观看| 国产一区二区激情短视频 | 伦理电影大哥的女人| 十分钟在线观看高清视频www| 2021少妇久久久久久久久久久| avwww免费| 亚洲精品,欧美精品| 国产精品女同一区二区软件| 久久久久久久国产电影| 一级毛片黄色毛片免费观看视频| 中文字幕色久视频| 男男h啪啪无遮挡| 日本91视频免费播放| 国产av码专区亚洲av| 日韩制服骚丝袜av| 男男h啪啪无遮挡| 一级爰片在线观看| 亚洲欧美精品自产自拍| 日本一区二区免费在线视频| 久久99热这里只频精品6学生| 一级黄片播放器| 美女高潮到喷水免费观看| 国产黄频视频在线观看| 国产成人av激情在线播放| 中文字幕制服av| 久久国产精品大桥未久av| 一级毛片 在线播放| 国产 精品1| 国产日韩欧美视频二区| 一级片免费观看大全| 综合色丁香网| 青春草国产在线视频| 男女午夜视频在线观看| 一级毛片黄色毛片免费观看视频| 欧美日韩福利视频一区二区| 欧美日韩国产mv在线观看视频| 国产深夜福利视频在线观看| 国产成人精品久久久久久| 亚洲欧洲精品一区二区精品久久久 | 另类精品久久| 伦理电影大哥的女人| √禁漫天堂资源中文www| 亚洲精品第二区| 色94色欧美一区二区| 免费不卡黄色视频| 国产片特级美女逼逼视频| 十八禁网站网址无遮挡| 狂野欧美激情性xxxx| 最近2019中文字幕mv第一页| 女人久久www免费人成看片| 一本色道久久久久久精品综合| 国产精品一区二区精品视频观看| 亚洲,欧美,日韩| 日韩一卡2卡3卡4卡2021年| 水蜜桃什么品种好| 在线天堂中文资源库| 各种免费的搞黄视频| 亚洲熟女毛片儿| 伦理电影大哥的女人| 亚洲精品国产一区二区精华液| 亚洲精品中文字幕在线视频| 人体艺术视频欧美日本| 免费av中文字幕在线| 婷婷成人精品国产| 免费女性裸体啪啪无遮挡网站| 两个人看的免费小视频| 国产亚洲精品第一综合不卡| 日韩大码丰满熟妇| 精品久久久精品久久久| 日韩欧美一区视频在线观看| 成人手机av| 亚洲自偷自拍图片 自拍| 精品少妇黑人巨大在线播放| 日韩大片免费观看网站| 在线 av 中文字幕| 一本一本久久a久久精品综合妖精| 亚洲免费av在线视频| 丰满饥渴人妻一区二区三| 99精国产麻豆久久婷婷| 久久久久精品国产欧美久久久 | av在线观看视频网站免费| av国产久精品久网站免费入址| 亚洲人成网站在线观看播放| 女人精品久久久久毛片| 国产一级毛片在线| 日韩av在线免费看完整版不卡| 9191精品国产免费久久| 国产精品国产av在线观看| 亚洲美女视频黄频| 99热全是精品| 精品国产乱码久久久久久男人| 欧美精品av麻豆av| 国产野战对白在线观看| 欧美日韩成人在线一区二区| 亚洲国产最新在线播放| 亚洲,欧美,日韩| 一级片'在线观看视频| 欧美成人精品欧美一级黄| 老鸭窝网址在线观看| 99久久综合免费| 国产毛片在线视频| 成人三级做爰电影| 9191精品国产免费久久| 麻豆精品久久久久久蜜桃| 在线天堂中文资源库| 久久久久视频综合| 久久久久久久大尺度免费视频| 男女免费视频国产| 国产av国产精品国产| 日韩 欧美 亚洲 中文字幕| 欧美日韩一级在线毛片| 欧美日韩av久久| 免费高清在线观看日韩| 久久午夜综合久久蜜桃| 日本91视频免费播放| 欧美人与性动交α欧美精品济南到| 下体分泌物呈黄色| 最近中文字幕2019免费版| 校园人妻丝袜中文字幕| 在线观看免费视频网站a站| 免费观看a级毛片全部| 丝袜脚勾引网站| 伦理电影大哥的女人| 国产亚洲最大av| tube8黄色片| 精品国产乱码久久久久久小说| 亚洲三区欧美一区| 男女之事视频高清在线观看 | 又粗又硬又长又爽又黄的视频| 久久久久久人妻| 在线观看免费日韩欧美大片| 日韩欧美精品免费久久| 国产一区二区三区综合在线观看| √禁漫天堂资源中文www| 亚洲少妇的诱惑av| 别揉我奶头~嗯~啊~动态视频 | 大片免费播放器 马上看| 老司机靠b影院| 精品福利永久在线观看| 大片免费播放器 马上看| 国产探花极品一区二区| svipshipincom国产片| 国产精品久久久av美女十八| 99热国产这里只有精品6| 9热在线视频观看99| 你懂的网址亚洲精品在线观看| 国产av国产精品国产| 欧美黄色片欧美黄色片| 色吧在线观看| 久久久久久久国产电影| 中文欧美无线码| 麻豆乱淫一区二区| 一级毛片黄色毛片免费观看视频| 啦啦啦中文免费视频观看日本| 欧美黄色片欧美黄色片| 亚洲精品国产一区二区精华液| 97在线人人人人妻| 观看av在线不卡| 一边摸一边做爽爽视频免费| 人成视频在线观看免费观看| 最近手机中文字幕大全| 久久鲁丝午夜福利片| 免费av中文字幕在线| 国产xxxxx性猛交| 女人精品久久久久毛片| 黑人巨大精品欧美一区二区蜜桃| 观看av在线不卡| 性色av一级| a级毛片在线看网站| 国产精品嫩草影院av在线观看| 亚洲av电影在线进入| 91老司机精品| 国产精品久久久人人做人人爽| 亚洲国产中文字幕在线视频| 亚洲欧美色中文字幕在线| 99久久精品国产亚洲精品| 亚洲专区中文字幕在线 | 另类精品久久| 久久99精品国语久久久| 九色亚洲精品在线播放| 久久人妻熟女aⅴ| 国产在视频线精品| 成人亚洲精品一区在线观看| 最近中文字幕高清免费大全6| 久久av网站| 国产亚洲午夜精品一区二区久久| 亚洲欧美色中文字幕在线| 一级毛片 在线播放| 亚洲精品中文字幕在线视频| 国产黄频视频在线观看| 亚洲五月色婷婷综合| 亚洲av欧美aⅴ国产| 久久久久网色| 成人毛片60女人毛片免费| 夜夜骑夜夜射夜夜干| 你懂的网址亚洲精品在线观看| netflix在线观看网站| 亚洲人成77777在线视频| 国产99久久九九免费精品| 91精品三级在线观看| 久久人人爽av亚洲精品天堂| 热99久久久久精品小说推荐| 男女高潮啪啪啪动态图| 午夜免费观看性视频| 高清av免费在线| 亚洲国产看品久久| 成人三级做爰电影| 亚洲欧美色中文字幕在线| 最近最新中文字幕免费大全7| 新久久久久国产一级毛片| 精品久久久久久电影网| 18禁观看日本| 99香蕉大伊视频| 亚洲av综合色区一区| 国产精品偷伦视频观看了| 99热全是精品| 超色免费av| 黄网站色视频无遮挡免费观看| 日韩一本色道免费dvd| 黄色视频在线播放观看不卡| 国产精品久久久久久人妻精品电影 | 9色porny在线观看| 亚洲精品一二三| 精品第一国产精品| 99久久人妻综合| 亚洲av男天堂| 欧美av亚洲av综合av国产av | 伊人久久国产一区二区| 亚洲av男天堂| 国产亚洲av片在线观看秒播厂| 国产精品亚洲av一区麻豆 | 国产精品亚洲av一区麻豆 | 色综合欧美亚洲国产小说| 久久国产精品男人的天堂亚洲| 国产欧美日韩综合在线一区二区| 亚洲国产欧美日韩在线播放| 别揉我奶头~嗯~啊~动态视频 | 国产精品无大码| 国产亚洲一区二区精品| 国产精品一国产av| 999精品在线视频| 日本一区二区免费在线视频| 久久精品国产a三级三级三级| 亚洲国产av影院在线观看| 十八禁高潮呻吟视频| 少妇的丰满在线观看| 免费少妇av软件| 日韩熟女老妇一区二区性免费视频| av国产久精品久网站免费入址| 丝袜美腿诱惑在线| 国产一区二区激情短视频 | 亚洲av在线观看美女高潮| 精品久久久久久电影网| 精品亚洲成国产av| 色综合欧美亚洲国产小说| 久久精品aⅴ一区二区三区四区| 伦理电影免费视频| 宅男免费午夜| 日韩成人av中文字幕在线观看| 国产探花极品一区二区| 一二三四中文在线观看免费高清| 大香蕉久久网| 一级毛片我不卡| 高清黄色对白视频在线免费看| 男人爽女人下面视频在线观看| 1024视频免费在线观看| 国产精品一二三区在线看| 亚洲熟女精品中文字幕| 久久精品国产a三级三级三级| 久久久久国产一级毛片高清牌| 日本欧美视频一区| 中文字幕最新亚洲高清| 大香蕉久久网| 不卡av一区二区三区| 亚洲一区二区三区欧美精品| 国产精品蜜桃在线观看| av片东京热男人的天堂| 亚洲国产看品久久| 中文字幕最新亚洲高清| 国产欧美亚洲国产| 又黄又粗又硬又大视频| 久久久久久久久久久久大奶| 国产欧美日韩综合在线一区二区| 国产精品蜜桃在线观看| 最新在线观看一区二区三区 | 亚洲欧美一区二区三区国产| 欧美日韩福利视频一区二区| 少妇精品久久久久久久| 亚洲精品国产一区二区精华液| 中文字幕人妻丝袜一区二区 | 人妻一区二区av| 国产免费一区二区三区四区乱码| 久久免费观看电影| 飞空精品影院首页| 大码成人一级视频| 欧美老熟妇乱子伦牲交| av一本久久久久| 波野结衣二区三区在线| 久热爱精品视频在线9| 免费人妻精品一区二区三区视频| 男人舔女人的私密视频| 色综合欧美亚洲国产小说| 一本一本久久a久久精品综合妖精| 精品久久久精品久久久| 亚洲精品视频女| 亚洲美女搞黄在线观看| 午夜久久久在线观看| 国产一区二区三区综合在线观看| 中文字幕精品免费在线观看视频| 亚洲激情五月婷婷啪啪| 18禁观看日本| 亚洲欧洲日产国产| 啦啦啦 在线观看视频| 在线 av 中文字幕| 成人黄色视频免费在线看|