• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Topology-optimization of Lens Contact Support Structures: PV Value as An Optimization Objective

    2019-11-06 07:54:42LIYimangZHOUZiyunLIUYongming
    發(fā)光學(xué)報(bào) 2019年10期

    LI Yi-mang, ZHOU Zi-yun, LIU Yong-ming

    (1. School of Mechanical Engineering, Changzhou University, Changzhou 213164, China; 2. School of Mechanical and Automotive Engineering, Anhui Polytechnic University, Wuhu 241000, China)

    Abstract: The contact position, contact area, contact stress and flexibility of single lens support structure in an optical system are important influencing factors of the system’s imaging quality. Topology optimization of the single-lens contact support structure is carried out using the aberration index PV value as the optimization objective to reduce geometric aberration aberration in the single mirror caused by gravitational force. We first establish the contact topology optimization model, then use a linear elastic structure in unilateral contact with a rigid support as-modeled by Signorini’s contact conditions as an example to verify the model. The aberration index PV value of the lens is described as a function of lens deformation; thus, the value serves as a functional objective of the topology optimization model. We use the SIMP method to describe the topology optimization design variables, and the augmented Lagrange multiplier method to solve the contact condition. The optimal solution of the topology optimization model can be solved via MMA optimization algorithm. The optimal topological configuration of supporting structures that satisfy geometric aberration requirements is defined by the optimal solution of the design variables. We found that the PV value of the lens can be reduced by 14% and the lens surface RMS value by 13.8% after applying the proposed method. We also tested the lens PV value and RMS value on an experimental platform supported by the optimal contact support structure. The surface of the plane mirror surface PV values decreased by 60.4% and 42.9%, and the RMS values by 74.3% and 38.9%. To this effect, the optimal contact support structure effectively improves the precision of the single lens support and demonstrates significant potential for practical application.

    Key words: topology optimization; optomechanics; mirrors analysis; optical machanical structure

    1 Introduction

    Optics is a classic discipline as well as a very popular modern research subject[1-3]. Optics helps us to better understand the environment of outer space and explore our own world down to the nanometer level. Advancements in optical technology have brought about increasingly stringent requirements for the precision of single lenses[4]. For example, consider the 193 nm lithography projector which has objective accuracy of 1-2 nm RMS; its components must be engineered with remarkable precision to achieve such accuracy[5-6].

    The precision single lens and its supporting technology play an important role in the optical system. However, a general lack of effective support structure designs yet hinders the further development of precision single lenses. The purpose of structural design is to select those design variables which most effectively optimize the performance of the structure, so the structural design problem can be attributed to an optimization problem[7-9]. Commonly used structural optimization techniques include size optimization, shape optimization, free size optimization, free shape optimization, topographical optimization, and topological optimization. Topological optimization is conducted to identify the optimal topology of the structure at the conceptual design stage; it is significantly more efficient than the traditional shape or size optimization processes[10-13].

    Topology optimization design was the focus of the present study. We first established a contact topology optimization model, then used a linear elastic structure in unilateral contact with a rigid support as-modeled by Signorini’s contact conditions as an example to verify its correctness. Based on the model, the aberration index PV value of the lens can be described as a function of the lens deformation. We also used the SIMP method to describe the topology optimization design variables, and the augmented Lagrange multiplier method to solve the contact condition. We obtained the optimal solution to the topology optimization modelviaMMA optimization algorithm. The optimal topological configuration of supporting structures that satisfy geometric aberration requirements can be defined by the optimal solution of topological optimization design variables. We analyzed the topological optimization results in detail, then established an experimental platform for the sake of further assessment. The lens PV value and RMS value were tested as-supported by the optimal contact support structure[22-27].

    This paper is organized as follows. The precision single lens and relevant supporting technology are discussed in Section 2. In Section 3, the contact topology optimization model and PV minimum topology optimization model are established. Section 4 presents our simulation results. Section 5 describes our experimental setup for precision single lens support and the results of our model verification.

    2 Precision Single Lens and Supporting Technology

    The objective lens of a 193 nm mask alignment system is shown in Fig.1. It is mainly composed of a lithography mask, silicon wafer, and projection lithography lenses. A light beam is irradiated onto the silicon wafer through the projection lithography lenses.

    The increasing integration of integrated circuit devices and device operating speed have created increasingly stringent requirements for manufacturing lithography projector projection objective lens resolution. Current projection lithography projection objectives include not only the application of large numerical apertures and short wavelength technologies, but also the use of improved lithography resolution wavefront engineering technology to ultimately enhance the lithography resolution. Aberration in the lithographic projection lens markedly influences the quality of the lithography. By design, the entire objective lens from 20 to 30 lenses has system wavefront requirements less than 10 nm. After tolerance distribution is established to meet the design accuracy requirements (lens surface of 1-2 nm), there are very high demands for optical components of the processing and objective lens support.

    Fig.1 Objective lens of 193 nm mask alignment system

    3 Optimization Mode Topology

    Different boundary conditions correspond to different topologies and thus different topology optimization processes. Structural topological optimization must align with the actual physical boundary conditions. In a typical light machine, the metal support structure contacts the optical components which are fixed in the mirror. The characteristics of contact problems in this design include unequal inequality constraints with strong nonlinearity. It is difficult to solve contacting nonlinear topology optimization problems. To this effect, the topological optimization problem of contact nonlinear coupling structures and the design of optical machines is very significant in terms of practical application.

    The equilibrium equation of the contact nonlinear finite element discrete form based on the Lagrange multiplier method can be written as follows:

    (1)

    [Kcλ]=[KcU]T,

    (2)

    (3)

    (4)

    whereNcis the interpolation of basis functions and the unit vector matrix,θis the overall coordinates to the local coordinate transformation matrix, [Kcλ] is the equivalent node contact force corresponding to the stiffness matrix, [KcU] is the displacement constraint stiffness matrix,Uis the displacement solution vector,PNis the Lagrange multiplier,Ris the equivalent node load, andgcis the contact gap.

    (5)

    You can read more about the history of the Christmas Tree, which was in use during Andersen s lifetime, on the Christmas Tree Farm Network and The Christmas Archives.

    A contact topology optimization model with optical aberration PV value as the target is as follows:

    (6)

    (7)

    (8)

    (9)

    Fig.2 Program flow chart

    We established the interpolation model using the improved SIMP method, the advantages of which include simple modeling, convenient solution, high computational efficiency, versatility, and portability. The interpolation model is as follows:

    (10)

    Here, we use the Lagrange multiplier method to construct the constrained optimization model. The Lagrange function is:

    (11)

    The derivative of the Lagrange function for optimizing the design variables is:

    (12)

    by Newton-Ranhson iteration, the following expression holds when the structural balance reaches convergence:

    (13)

    The tangent stiffness matrix of the solution can be rewritten as:

    (14)

    The derivative of the Lagrange function for optimizing the design variables is reduced to:

    (15)

    There is numerical instability inherent to the model above, but processing for sensitivity, density, and filtering method can effectively prevent it.

    4 Simulation and Results

    We next conducted a series of simulations to validate the model established above. First, we built a two-dimensional nonlinear topological optimization model with static strain energy as shown in Fig.3, where white areas are the optimization area and black areas are the rigid support section. The design area was optimized with boundary 1 as the contact boundary, rolling support at the lower left end, vertical downward force at the lower right end, size of 10 000 N, and the fixed area is marked in black. The Young’s modulus 2.1 e5 MPa and Poisson’s ratio is 0.3. The objective function is the minimum static strain energy.

    In Fig.4, the red area represents the entity,the blue area has no structure, the intermediate transition area is the false material, and the material is processed. It was optimized using a quadrilateral mesh with 10 501 grids. The results gathered using this model are consistent with the results of a smooth contact conditions model taken from the literature [14]; the results are shown in Fig.4(a) and Fig.4(b). The proposed non-smooth inequality contact condition model is indeed correct and reliable.

    Fig.3 Design area and boundary conditions

    Fig.4 (a) Topological optimization results based on non-smooth inequality contact conditions. (b) Topological optimization results based on smooth equation contact conditions.

    We next took the plane mirror model shown in Fig.5 as an example to establish the contact topology optimization model. In the figure, the red area is the optimized design area, boundary 1 is fixed, and the mirror is affected by gravity. The objective function is the minimum absolute value of thez-direction of the center point of the plane mirror. We analyzed the initial structure to obtain the negativez-direction of the center point of the plane mirror with the smallest possible objective function,Vmin=0.7,p=4. We used a hexahedral mesh and 131 100 triangular prism grids.

    Fig.5 Topology optimization model of optical coupling force with nonlinear contacted for plane mirror

    The initial value of the objective function was 35.3 nm; after optimization, it was 16.9 nm. The objective function, the absolute value of thez-direction of the center of the plane mirror, was reduced by 52.12% and presented significant optimization effect. The iterative process graph is shown in Fig.6.

    The absolute value of thez-direction displacement of the center point of the planar mirror was reduced by 62.57%, the PV value was reduced by 14%, and the RMS value of the face was reduced by 13.8% in our experiment. After the optimization process and the accompanying change in volume fraction, we found that a larger volume fraction yields a smaller objective function, PV value, and RMS value.

    Fig.6 Iterative process graph

    5 Experiments and Results

    5.1 Experiment Setup

    The experiment system for the precision single lens support is designed as Fig.7. A laser beam (650 nm wavelength, continuous irradiance mode semiconductor) propagates through a standard mirror, the designed precision single lens, reflector lens, and then is reflected and focused on the detector of interferometer(Zygo Corporation, diameter 102 mm, system resolution 1 024×1 024). The precision single lens is placed on the designed support structure. This experimental setup can be measured to optimize the design of the support structure after the precision single lens accuracy.

    Fig.7 Experiment setup for the precision single lens support

    5.2 Results and Analysis

    The results of theN-step rotation averaging method are shown in Fig.8. Fig.8(a) and Fig.8(c) are the results after structural optimization while Fig.8(b) and Fig.8(d) are the results before optimization. The plane mirror surface PV values before optimization were 32.685 nm and 34.964 nm, and the RMS values were 4.976 nm and 6.015 nm, respectively. The suplane mirror surface PV values after optimization were 12.958 nm and 19.794 nm, and the RMS values were 1.279 nm and 3.676 nm, respectively. The plane mirror surface PV values decreased by 60.4% and 42.9%, and the RMS values decreased by 74.3% and 38.9%. The detailed measurement results are listed in Tab.1.

    Fig.8 Interferometer measurement results for precision single lens

    Tab.1 Before and after structural optimization: result analysis

    6 Conclusion

    This paper presented a novel topology optimization design for precision single lens support. A contact topology optimization model with optical aberration PV value as target was established, then used to design and optimize a high precision single lens. An experimental platform was set up and used to further analyze the effectiveness of the proposed model. The plane mirror surface PV value and RMS value were obtained after applying the proposed supporting structure. The plane mirror surface PV values decreased by 60.4% and 42.9%, and the RMS values decreased by 74.3% and 38.9% after structural optimization. These results suggest that the proposed method has very strong potential for practical application.

    Acknowledgments: The authors would like to thank Tao Wang for the assistance rendered with the mechanical adjustment stage and appreciate useful discussions with Hai Yu of CIOMP.

    国产av在哪里看| 国产大屁股一区二区在线视频| 欧美性猛交╳xxx乱大交人| 美女国产视频在线观看| 国产伦精品一区二区三区视频9| 精品久久国产蜜桃| 淫秽高清视频在线观看| 国产黄色小视频在线观看| 日本成人三级电影网站| 亚洲图色成人| 国内揄拍国产精品人妻在线| 精品久久久久久成人av| 亚州av有码| 亚洲成av人片在线播放无| 久久6这里有精品| 黄片无遮挡物在线观看| 夫妻性生交免费视频一级片| 亚洲人成网站在线观看播放| 欧美日韩国产亚洲二区| 日韩欧美在线乱码| 99久国产av精品| 嫩草影院新地址| 亚洲国产精品sss在线观看| 国产午夜精品论理片| 国产成人a区在线观看| 级片在线观看| 亚洲欧美日韩卡通动漫| 亚洲va在线va天堂va国产| 一本久久精品| 午夜激情福利司机影院| 乱码一卡2卡4卡精品| 亚洲性久久影院| 成人永久免费在线观看视频| 国产高清不卡午夜福利| 日本黄大片高清| 悠悠久久av| 男人舔女人下体高潮全视频| 在线观看一区二区三区| 久久精品影院6| 哪里可以看免费的av片| 在线免费观看的www视频| 高清日韩中文字幕在线| 床上黄色一级片| 国产精品人妻久久久影院| 日韩中字成人| 高清日韩中文字幕在线| 免费av毛片视频| 少妇的逼好多水| 日韩一本色道免费dvd| 国产精品不卡视频一区二区| 青春草国产在线视频 | 亚洲自偷自拍三级| 波多野结衣高清无吗| 国产高清激情床上av| 国产 一区 欧美 日韩| 美女cb高潮喷水在线观看| 国产人妻一区二区三区在| 狠狠狠狠99中文字幕| 97超视频在线观看视频| 91午夜精品亚洲一区二区三区| 日韩国内少妇激情av| 国产又黄又爽又无遮挡在线| 日韩欧美在线乱码| 欧美日韩一区二区视频在线观看视频在线 | 精品人妻视频免费看| 伦精品一区二区三区| 一卡2卡三卡四卡精品乱码亚洲| 国产亚洲av嫩草精品影院| 久久欧美精品欧美久久欧美| 中文字幕久久专区| 国产老妇伦熟女老妇高清| 深爱激情五月婷婷| 99久久精品热视频| 久久精品91蜜桃| 国产伦理片在线播放av一区 | 色5月婷婷丁香| 尤物成人国产欧美一区二区三区| 亚洲丝袜综合中文字幕| 国产亚洲精品av在线| 网址你懂的国产日韩在线| 免费观看精品视频网站| 欧美激情国产日韩精品一区| 国产色爽女视频免费观看| 亚洲国产日韩欧美精品在线观看| 老司机福利观看| 久久久色成人| 免费人成视频x8x8入口观看| 变态另类丝袜制服| 欧美bdsm另类| 成人毛片60女人毛片免费| 亚洲最大成人中文| 一级毛片aaaaaa免费看小| 国产精品蜜桃在线观看 | 国产久久久一区二区三区| 简卡轻食公司| 久久韩国三级中文字幕| 男女边吃奶边做爰视频| 国内揄拍国产精品人妻在线| 亚洲av中文av极速乱| 变态另类成人亚洲欧美熟女| 亚洲人成网站在线观看播放| 亚洲第一电影网av| 日韩 亚洲 欧美在线| 好男人视频免费观看在线| 噜噜噜噜噜久久久久久91| 久久久久久伊人网av| 深夜a级毛片| 日韩欧美 国产精品| 亚洲经典国产精华液单| 97超碰精品成人国产| 真实男女啪啪啪动态图| 久久久国产成人精品二区| 99久久人妻综合| 午夜福利成人在线免费观看| 国产高清三级在线| 国产成人a区在线观看| 国产单亲对白刺激| 老司机影院成人| 亚洲aⅴ乱码一区二区在线播放| 成年女人永久免费观看视频| 久久久成人免费电影| 国产精品无大码| 成人毛片a级毛片在线播放| 亚洲经典国产精华液单| 国产精品99久久久久久久久| 日韩视频在线欧美| 国产精品永久免费网站| 亚洲成a人片在线一区二区| 久久久色成人| videossex国产| 久久综合国产亚洲精品| 色哟哟·www| 97超视频在线观看视频| 久久精品国产亚洲av香蕉五月| 国产亚洲5aaaaa淫片| 1000部很黄的大片| 女同久久另类99精品国产91| 内射极品少妇av片p| 日韩一区二区视频免费看| 天堂影院成人在线观看| 欧美成人免费av一区二区三区| 亚洲三级黄色毛片| 亚洲va在线va天堂va国产| АⅤ资源中文在线天堂| 国产伦精品一区二区三区视频9| 91aial.com中文字幕在线观看| 日韩欧美 国产精品| 全区人妻精品视频| 免费av不卡在线播放| 特级一级黄色大片| 免费一级毛片在线播放高清视频| 九九在线视频观看精品| 午夜a级毛片| 少妇裸体淫交视频免费看高清| 国产成人aa在线观看| 老司机影院成人| 丝袜喷水一区| h日本视频在线播放| 亚洲成人久久性| 少妇丰满av| 九色成人免费人妻av| 亚洲av男天堂| 久久亚洲精品不卡| 亚洲成人中文字幕在线播放| 日本五十路高清| 精品午夜福利在线看| 成人无遮挡网站| 好男人在线观看高清免费视频| 亚洲最大成人手机在线| 精品99又大又爽又粗少妇毛片| 三级毛片av免费| 午夜福利视频1000在线观看| 国产老妇伦熟女老妇高清| 午夜福利成人在线免费观看| 日日摸夜夜添夜夜添av毛片| 成人永久免费在线观看视频| 成人一区二区视频在线观看| 内射极品少妇av片p| 国产精品综合久久久久久久免费| 国内揄拍国产精品人妻在线| 在线观看美女被高潮喷水网站| 国产黄色视频一区二区在线观看 | 亚洲成a人片在线一区二区| 黄色欧美视频在线观看| 亚洲美女搞黄在线观看| 黄色一级大片看看| 悠悠久久av| 亚洲自偷自拍三级| 在线观看午夜福利视频| 内地一区二区视频在线| 亚洲在久久综合| 精华霜和精华液先用哪个| 深爱激情五月婷婷| 亚洲成a人片在线一区二区| 国产精品电影一区二区三区| 亚洲成人av在线免费| 亚洲成人中文字幕在线播放| 久久久精品欧美日韩精品| 麻豆国产av国片精品| 亚洲国产精品久久男人天堂| 国产单亲对白刺激| 国产精品一二三区在线看| 在线免费十八禁| 日本一二三区视频观看| 卡戴珊不雅视频在线播放| 搡老妇女老女人老熟妇| 91久久精品国产一区二区三区| 亚洲七黄色美女视频| 亚洲国产精品成人久久小说 | 日韩欧美 国产精品| eeuss影院久久| 99热只有精品国产| 嫩草影院精品99| 久久久国产成人免费| 国产色婷婷99| 夜夜看夜夜爽夜夜摸| 99在线人妻在线中文字幕| 欧美日韩乱码在线| videossex国产| 99热6这里只有精品| 男女那种视频在线观看| 天天一区二区日本电影三级| 亚洲精品亚洲一区二区| 国产一区二区在线av高清观看| 亚洲va在线va天堂va国产| 中文字幕免费在线视频6| 99热这里只有是精品50| 婷婷亚洲欧美| 2021天堂中文幕一二区在线观| 精品久久久久久久久av| 两个人视频免费观看高清| 桃色一区二区三区在线观看| 亚洲精华国产精华液的使用体验 | 狂野欧美白嫩少妇大欣赏| 久久久久久久亚洲中文字幕| 亚洲激情五月婷婷啪啪| 天美传媒精品一区二区| 直男gayav资源| 永久网站在线| 噜噜噜噜噜久久久久久91| 蜜桃久久精品国产亚洲av| av福利片在线观看| 有码 亚洲区| 国产精品蜜桃在线观看 | 亚洲综合色惰| 麻豆国产av国片精品| 搞女人的毛片| 日韩欧美一区二区三区在线观看| 男人的好看免费观看在线视频| 亚洲av成人精品一区久久| 久久欧美精品欧美久久欧美| 欧美激情在线99| 精品久久久噜噜| 国产午夜福利久久久久久| 国产精品一区二区三区四区久久| 韩国av在线不卡| 国产亚洲91精品色在线| 18禁在线播放成人免费| 青春草国产在线视频 | 22中文网久久字幕| 欧美一区二区亚洲| 青春草国产在线视频 | 久久久久久久久大av| 97热精品久久久久久| 日本三级黄在线观看| 午夜福利在线观看免费完整高清在 | 99riav亚洲国产免费| 观看免费一级毛片| 精品不卡国产一区二区三区| 亚洲av男天堂| 精品人妻熟女av久视频| 日韩一区二区视频免费看| 悠悠久久av| 97在线视频观看| 久久人人爽人人片av| 亚洲经典国产精华液单| 变态另类丝袜制服| 久久久国产成人精品二区| 精品少妇黑人巨大在线播放 | 18禁黄网站禁片免费观看直播| 18禁在线无遮挡免费观看视频| 国产精品麻豆人妻色哟哟久久 | 校园春色视频在线观看| h日本视频在线播放| 亚洲综合色惰| 亚洲av免费高清在线观看| 18+在线观看网站| 色噜噜av男人的天堂激情| 99久国产av精品国产电影| 可以在线观看毛片的网站| 国内精品美女久久久久久| 亚洲精品国产成人久久av| 女人被狂操c到高潮| 久久久欧美国产精品| 久久精品国产自在天天线| 成人无遮挡网站| 尤物成人国产欧美一区二区三区| 国产免费一级a男人的天堂| 美女xxoo啪啪120秒动态图| 亚洲人成网站在线播| 女同久久另类99精品国产91| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产伦精品一区二区三区四那| 美女被艹到高潮喷水动态| 免费观看在线日韩| 激情 狠狠 欧美| 美女高潮的动态| 岛国毛片在线播放| 亚洲精品色激情综合| 亚洲四区av| 赤兔流量卡办理| 精品人妻视频免费看| 亚洲精品影视一区二区三区av| 国产色婷婷99| 久久99蜜桃精品久久| 欧美性感艳星| 极品教师在线视频| .国产精品久久| 丰满人妻一区二区三区视频av| 亚洲婷婷狠狠爱综合网| 亚洲图色成人| 国产亚洲精品久久久久久毛片| 我的女老师完整版在线观看| 久久国内精品自在自线图片| 日韩在线高清观看一区二区三区| 一区福利在线观看| 18禁裸乳无遮挡免费网站照片| 欧美潮喷喷水| 日本色播在线视频| 午夜免费激情av| av在线亚洲专区| 国产精品免费一区二区三区在线| 久久精品久久久久久久性| .国产精品久久| 久久久久久大精品| 亚洲美女搞黄在线观看| 亚洲人成网站在线播放欧美日韩| 久久久久久久午夜电影| 亚洲av电影不卡..在线观看| 国内精品美女久久久久久| 亚洲熟妇中文字幕五十中出| 亚洲一区高清亚洲精品| 人体艺术视频欧美日本| 亚洲最大成人av| 国产一级毛片在线| 黄色一级大片看看| 国产成人精品婷婷| 亚洲av电影不卡..在线观看| 国产乱人视频| 久久午夜福利片| 中文资源天堂在线| 深夜精品福利| 极品教师在线视频| 亚洲中文字幕一区二区三区有码在线看| 色哟哟·www| 国产中年淑女户外野战色| 欧美日本视频| 亚洲精品日韩av片在线观看| 女人十人毛片免费观看3o分钟| 日韩一区二区三区影片| 波多野结衣巨乳人妻| 12—13女人毛片做爰片一| 国产精品一及| 久久韩国三级中文字幕| 久久99热6这里只有精品| 熟妇人妻久久中文字幕3abv| 美女国产视频在线观看| 99热6这里只有精品| 99视频精品全部免费 在线| 久久久精品94久久精品| 麻豆成人午夜福利视频| 99久久成人亚洲精品观看| 波野结衣二区三区在线| 久久婷婷人人爽人人干人人爱| 欧美激情在线99| 午夜精品国产一区二区电影 | 干丝袜人妻中文字幕| 国产精品久久久久久久电影| 欧美性猛交╳xxx乱大交人| 少妇熟女欧美另类| 中文字幕av在线有码专区| 成人毛片a级毛片在线播放| 久久久久久久午夜电影| 毛片一级片免费看久久久久| 老司机福利观看| 不卡一级毛片| 99热只有精品国产| 99久久精品国产国产毛片| 最近最新中文字幕大全电影3| 欧美最新免费一区二区三区| 婷婷六月久久综合丁香| 免费人成视频x8x8入口观看| 成人午夜精彩视频在线观看| 色综合亚洲欧美另类图片| 国产精品美女特级片免费视频播放器| 白带黄色成豆腐渣| 国产成人91sexporn| 麻豆精品久久久久久蜜桃| 国产精品99久久久久久久久| 色哟哟·www| 国产69精品久久久久777片| 久久精品91蜜桃| 欧美一区二区亚洲| 日韩视频在线欧美| 国产一区二区在线观看日韩| 一边摸一边抽搐一进一小说| 亚洲精华国产精华液的使用体验 | 一卡2卡三卡四卡精品乱码亚洲| 亚洲美女视频黄频| 国产在线精品亚洲第一网站| 色综合站精品国产| 一个人看视频在线观看www免费| 日日摸夜夜添夜夜爱| 国产精品1区2区在线观看.| 一级毛片我不卡| 夫妻性生交免费视频一级片| 我要搜黄色片| 精品国内亚洲2022精品成人| 哪个播放器可以免费观看大片| 精品一区二区三区视频在线| 免费av不卡在线播放| 高清毛片免费观看视频网站| 在线观看av片永久免费下载| 欧美3d第一页| 久久久成人免费电影| 亚洲人成网站高清观看| 91久久精品国产一区二区三区| 伦精品一区二区三区| av在线天堂中文字幕| 99精品在免费线老司机午夜| 亚洲精品日韩av片在线观看| 人妻少妇偷人精品九色| 欧美不卡视频在线免费观看| 亚洲国产精品成人综合色| 在线a可以看的网站| 一本一本综合久久| 日本五十路高清| 精品日产1卡2卡| 免费av毛片视频| 成人综合一区亚洲| 欧美性感艳星| 国产精品一区二区在线观看99 | 国产精品一及| 麻豆一二三区av精品| 免费大片18禁| 在线观看66精品国产| 99久久精品国产国产毛片| 久久热精品热| 国产精品蜜桃在线观看 | 晚上一个人看的免费电影| 国产高清激情床上av| 亚洲av成人精品一区久久| 成人特级av手机在线观看| 国产午夜精品论理片| 国产高清有码在线观看视频| 亚洲成人av在线免费| 一个人观看的视频www高清免费观看| 欧美日韩国产亚洲二区| 爱豆传媒免费全集在线观看| 亚洲欧美精品综合久久99| av天堂在线播放| 久久九九热精品免费| 又粗又硬又长又爽又黄的视频 | 亚洲美女视频黄频| 日韩视频在线欧美| 一级二级三级毛片免费看| 少妇高潮的动态图| 亚洲欧美清纯卡通| 男的添女的下面高潮视频| 成年免费大片在线观看| 国产精品无大码| 欧美丝袜亚洲另类| 国产午夜福利久久久久久| 卡戴珊不雅视频在线播放| 美女 人体艺术 gogo| 黄色日韩在线| 两个人视频免费观看高清| 亚洲在久久综合| 欧美性感艳星| 亚洲成av人片在线播放无| 亚洲无线在线观看| av专区在线播放| 床上黄色一级片| 国产色婷婷99| 哪里可以看免费的av片| 久久久精品大字幕| 久久久久久久久久黄片| 最近最新中文字幕大全电影3| 国产精品久久久久久精品电影| 99热这里只有精品一区| 亚洲乱码一区二区免费版| 青春草国产在线视频 | 校园人妻丝袜中文字幕| 不卡视频在线观看欧美| 精品免费久久久久久久清纯| 一个人看视频在线观看www免费| 欧美一区二区亚洲| 国产在线男女| 色哟哟·www| a级一级毛片免费在线观看| 久久精品影院6| 丝袜喷水一区| 波多野结衣高清作品| 看片在线看免费视频| 欧美性猛交黑人性爽| 欧美变态另类bdsm刘玥| 久久久精品94久久精品| 99精品在免费线老司机午夜| 爱豆传媒免费全集在线观看| 国产高清三级在线| 亚洲国产欧洲综合997久久,| 精品久久久噜噜| 国产一区二区亚洲精品在线观看| 亚洲三级黄色毛片| 亚洲国产欧洲综合997久久,| 天堂影院成人在线观看| 日韩欧美一区二区三区在线观看| 色尼玛亚洲综合影院| 日韩精品有码人妻一区| 亚洲不卡免费看| 男女下面进入的视频免费午夜| 晚上一个人看的免费电影| 免费看a级黄色片| 又爽又黄无遮挡网站| 日韩av不卡免费在线播放| 亚洲人与动物交配视频| 欧美区成人在线视频| 欧美zozozo另类| 国产精品.久久久| 日韩av在线大香蕉| 夫妻性生交免费视频一级片| 禁无遮挡网站| 悠悠久久av| av女优亚洲男人天堂| 国产精品综合久久久久久久免费| 亚洲欧美日韩高清专用| 天堂中文最新版在线下载 | 一本久久精品| 寂寞人妻少妇视频99o| 熟女人妻精品中文字幕| 神马国产精品三级电影在线观看| 成人鲁丝片一二三区免费| 精品久久久久久久久亚洲| 九九爱精品视频在线观看| 高清日韩中文字幕在线| 欧美一级a爱片免费观看看| 长腿黑丝高跟| 中文字幕av在线有码专区| 美女xxoo啪啪120秒动态图| 亚洲欧美日韩东京热| 久久韩国三级中文字幕| 国产亚洲精品久久久久久毛片| 给我免费播放毛片高清在线观看| 色吧在线观看| 亚洲欧美日韩高清在线视频| 国产国拍精品亚洲av在线观看| 免费观看精品视频网站| 国产一区二区亚洲精品在线观看| 国内精品久久久久精免费| 国产精品免费一区二区三区在线| 十八禁国产超污无遮挡网站| 哪里可以看免费的av片| 97超碰精品成人国产| 18禁在线播放成人免费| 一个人看视频在线观看www免费| 91在线精品国自产拍蜜月| 亚洲经典国产精华液单| 男插女下体视频免费在线播放| 悠悠久久av| 欧美色欧美亚洲另类二区| eeuss影院久久| 午夜久久久久精精品| АⅤ资源中文在线天堂| kizo精华| 亚洲aⅴ乱码一区二区在线播放| 女同久久另类99精品国产91| 久久久国产成人免费| 欧美又色又爽又黄视频| 91精品国产九色| 亚洲综合色惰| 一级毛片aaaaaa免费看小| 中国国产av一级| 国产精品一区二区三区四区免费观看| 一本久久中文字幕| 日韩av不卡免费在线播放| 久久精品国产99精品国产亚洲性色| 亚洲美女视频黄频| 欧美一级a爱片免费观看看| 狂野欧美激情性xxxx在线观看| 亚洲,欧美,日韩| videossex国产| 日韩欧美 国产精品| 亚洲一区高清亚洲精品| 国产伦精品一区二区三区视频9| 亚洲图色成人| 精品久久久久久久久亚洲| 色视频www国产| 草草在线视频免费看| 亚洲久久久久久中文字幕| 亚洲欧美日韩无卡精品| 国产69精品久久久久777片| 久久精品夜夜夜夜夜久久蜜豆| 国产色爽女视频免费观看| 狂野欧美激情性xxxx在线观看| 特级一级黄色大片| 亚洲婷婷狠狠爱综合网| 我的老师免费观看完整版| 99热这里只有是精品在线观看| 3wmmmm亚洲av在线观看| 国产色爽女视频免费观看| 国产精品日韩av在线免费观看| 国产探花极品一区二区| 性色avwww在线观看| 男人舔奶头视频| 亚洲av电影不卡..在线观看|