• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      二維耦合熱彈性動(dòng)力學(xué)問(wèn)題的無(wú)網(wǎng)格自然鄰接點(diǎn)Petrov-Galerkin法

      2019-11-26 12:49李慶華陳莘莘
      土木建筑與環(huán)境工程 2019年5期

      李慶華 陳莘莘

      摘 要:為了更有效地求解二維耦合熱彈性動(dòng)力學(xué)問(wèn)題,對(duì)無(wú)網(wǎng)格自然鄰接點(diǎn)Petrov-Galerkin法在此類問(wèn)題中的應(yīng)用進(jìn)行了研究,并發(fā)展了相應(yīng)的計(jì)算方法。該方法建立試函數(shù)時(shí)可以只依賴于一組離散的節(jié)點(diǎn),有效地避免了復(fù)雜的網(wǎng)格劃分和網(wǎng)格畸變的影響。相對(duì)于常用的移動(dòng)最小二乘而言,自然鄰接點(diǎn)插值不涉及復(fù)雜的矩陣求逆運(yùn)算,更不需要任何人為參數(shù)。由于運(yùn)動(dòng)方程和瞬態(tài)熱傳導(dǎo)方程相互影響,這些方程必須聯(lián)立求解。采用Newmark法求解空間離散后得到的二階常微分方程組,進(jìn)而可直接獲得溫度場(chǎng)和位移場(chǎng)的數(shù)值結(jié)果。

      關(guān)鍵詞: 無(wú)網(wǎng)格法;自然鄰接點(diǎn)插值;耦合熱彈性動(dòng)力學(xué);Petrov-Galerkin法

      中圖分類號(hào):TP301.6 ? 文獻(xiàn)標(biāo)志碼:A ? 文章編號(hào):2096-6717(2019)05-0109-06

      Abstract:In order to solve the two-dimensional dynamic coupled thermoelasticity problem more effectively, a novel numerical method based on the meshless natural neighbour Petrov-Galerkin method is proposed in this study. Only a group of scattered nodes are required in this method, to construct approximation function and therefore complex meshing and disadvantage of mesh distortion are effectively eliminated. In comparison with the moving least-squares (MLS) approximation used widely in meshless methods, the natural neighbour interpolation requires no complex matrix inversions and no artificial intermediate parameters. The equations of motion and transient heat conduction equations of the coupled thermoelasticity interaction on each other and therefore these equations must be solved simultaneously. After spatially discretization, a series of second-order ordinary differential algebraic equations is obtained, which is solved by the Newmark method to obtain the numerical temperature and displacement field directly.

      Keywords:meshless method; natural neighbour interpolation; dynamic coupled thermoelasticity; Petrov-Galerkin method

      當(dāng)結(jié)構(gòu)受到溫變,一般會(huì)產(chǎn)生熱應(yīng)力,并且熱應(yīng)力是物體破壞的一個(gè)重要因素[1-2]。對(duì)受熱結(jié)構(gòu)進(jìn)行分析時(shí),解耦方法可先由熱傳導(dǎo)方程求出溫度分布,再由熱彈性方程求解位移和應(yīng)力。但是,解耦方法沒(méi)有考慮結(jié)構(gòu)變形對(duì)溫度場(chǎng)的影響[3]。事實(shí)上,熱彈性力學(xué)中最基本的問(wèn)題就是耦合熱彈性問(wèn)題。在耦合熱彈性問(wèn)題中,溫度和變形會(huì)相互影響,溫度場(chǎng)和應(yīng)變場(chǎng)的耦合項(xiàng)必須體現(xiàn)在熱傳導(dǎo)方程中。為了求解溫度、位移和應(yīng)力,必須聯(lián)立求解熱傳導(dǎo)方程和熱彈性運(yùn)動(dòng)方程。相對(duì)于非耦合熱彈性問(wèn)題,耦合熱彈性問(wèn)題求解更困難。

      熱應(yīng)力問(wèn)題的數(shù)值方法主要基于發(fā)展較為成熟的有限元法[4-5]和邊界元法[6-8]。近年來(lái),部分學(xué)者嘗試采用無(wú)網(wǎng)格法[9-12]求解熱應(yīng)力問(wèn)題。無(wú)網(wǎng)格法不僅能夠避免網(wǎng)格生成的復(fù)雜過(guò)程,而且在節(jié)點(diǎn)分布不規(guī)則時(shí),損失的計(jì)算精度較小,從而日益得到重視[13-14]。近十多年來(lái)發(fā)展起來(lái)的無(wú)網(wǎng)格法―無(wú)網(wǎng)格自然鄰接點(diǎn)Petrov-Galerkin法[15-16]不僅允許加權(quán)函數(shù)和試函數(shù)取自不同的函數(shù)空間[17],而且克服了本質(zhì)邊界條件不易施加的困難。此方法中,所有的積分都在中心為所考慮點(diǎn)的多邊形子域上進(jìn)行,而且多邊形子域的構(gòu)造十分方便。目前,無(wú)網(wǎng)格自然鄰接點(diǎn)Petrov-Galerkin法在很多領(lǐng)域都得到廣泛應(yīng)用[18-20]。本文采用自然鄰接點(diǎn)插值對(duì)溫度和位移分別插值,與局部加權(quán)余量法結(jié)合,提出了適用于耦合熱彈性動(dòng)力學(xué)問(wèn)題的無(wú)網(wǎng)格自然鄰接點(diǎn)Petrov-Galerkin法。最后,通過(guò)數(shù)值算例驗(yàn)證了本文方法應(yīng)用于耦合熱彈性動(dòng)力學(xué)問(wèn)題分析的有效性和合理性。

      1 自然鄰接點(diǎn)插值

      3 數(shù)值算例

      為了驗(yàn)證所提方法的有效性,考慮如圖3所示的單位面積方板,該問(wèn)題為平面應(yīng)變狀態(tài)下的一個(gè)經(jīng)典算例。初始時(shí)刻板的溫度和位移均為0,板上邊受到突加的熱載荷,另外3邊均絕熱,且無(wú)法向位移。彈性模量E=1,泊松比v=0.3,導(dǎo)熱系數(shù)k=1,密度ρ=1,比熱容c=1,熱膨脹系數(shù)α=0.02。計(jì)算中,采用15×15個(gè)節(jié)點(diǎn)將方板離散,時(shí)間步長(zhǎng)取為2.0×10-3。

      當(dāng)不考慮慣性項(xiàng)和耦合項(xiàng)時(shí),此問(wèn)題屬于準(zhǔn)靜態(tài)熱彈性力學(xué)問(wèn)題。圖4和圖5分別給出了方板y軸上不同坐標(biāo)處的溫度和豎向位移變化情況。從圖4和圖5可以看出,本文數(shù)值解與解析解[22]吻合得很好。

      [12] ZHENG B J, GAO X W, YANG K, et al. A novel meshless local Petrov-Galerkin method for dynamic coupled thermoelasticity analysis under thermal and mechanical shock loading [J]. Engineering Analysis with Boundary Elements, 2015, 60: 154-161.

      [13] 高欣, 段慶林, 李書(shū)卉, 等. 裂紋問(wèn)題的一致性高階無(wú)網(wǎng)格法[J]. 計(jì)算力學(xué)學(xué)報(bào), 2018, 35(3): 275-282.

      GAO X, DUAN Q L, LI S H, et al. Consistent high order meshfree method for crack problems [J]. Chinese Journal of Computational Mechanics, 2018, 35(3): 275-282.(in Chinese)

      [14] 王東東, 張漢杰, 梁慶文. 等幾何修正準(zhǔn)凸無(wú)網(wǎng)格法[J]. 計(jì)算力學(xué)學(xué)報(bào), 2016, 33(4): 605-612.

      WANG D D, ZHANG H J, LIANG Q W. Isogeometric refined quasi-convex meshfree method [J]. Chinese Journal of Computational Mechanics, 2016, 33(4): 605-612. (in Chinese)

      [15] CAI Y C, ZHU H H. A meshless local natural neighbour interpolation method for stress analysis of solids [J]. Engineering Analysis with Boundary Elements, 2004, 28(6): 607-613.

      [16] WANG K, ZHOU S J, SHAN G J. The natural neighbour Petrov-Galerkin method for elasto-statics [J]. International Journal for Numerical Methods in Engineering, 2005, 63(8): 1126-1145.

      [17] ATLURI S N, ZHU T. A new meshless local petrov-galerkin (MLPG) approach in computational mechanics [J]. Computational Mechanics, 1998, 22(2): 117-127.

      [18] 李順利, 龍述堯, 李光耀, 等. 自然鄰接點(diǎn)局部Petrov-Galerkin法求解中厚板彎曲問(wèn)題[J]. 湖南大學(xué)學(xué)報(bào)(自然科學(xué)版), 2011, 38(1): 53-57.

      LI S L, LONG S Y, LI G Y, et al. Natural neighbor petrov-galerkin method for moderately thick plates [J]. Journal of Hunan University(Natural Sciences), 2011, 38(1): 53-57.(in Chinese)

      [19] 王凱, 周慎杰, 聶志峰, 等. 基于局部自然鄰近無(wú)網(wǎng)格法的形狀優(yōu)化[J]. 機(jī)械工程學(xué)報(bào), 2009, 45(10): 185-191.

      WANG K, ZHOU S J, NIE Z F, et al. Shape optimization based on the local natural neighbor Petrov-Galerkin method [J]. Journal of Mechanical Engineering, 2009, 45(10): 185-191.(in Chinese)

      [20] 陳莘莘, 李慶華, 劉永勝. 軸對(duì)稱動(dòng)力學(xué)問(wèn)題的無(wú)網(wǎng)格自然鄰接點(diǎn)Petrov-Galerkin法 [J]. 振動(dòng)與沖擊, 2015, 34(3): 61-65.

      CHEN S S, LI Q H, LIU Y S. Meshless natural neighbour Petrov-Galerkin method for axisymmetric dynamic problems [J]. Journal of Vibration and Shock, 2015, 34(3): 61-65. (in Chinese)

      [21] 張亞輝, 林家浩. 結(jié)構(gòu)動(dòng)力學(xué)基礎(chǔ)[M]. 遼寧 大連: 大連理工大學(xué)出版社,2007.

      ZHANG Y H, LIN J H. Fundamentals of structural dynamics [M]. Dalian, Liaoning: Dalian University of Technology Press, 1993. (in Chinese)

      [22] CARSLAW H S, JAEGER J C. Conduction of Heat in Solids [M]. Clarendon: Oxford University Press, 1959.

      (編輯 王秀玲)

      荆州市| 株洲市| 松潘县| 沅江市| 乌什县| 柞水县| 鄂伦春自治旗| 杭锦后旗| 尉犁县| 额敏县| 祁阳县| 且末县| 黄龙县| 西宁市| 武威市| 洮南市| 南江县| 定结县| 大兴区| 利津县| 丹寨县| 墨竹工卡县| 松桃| 阿巴嘎旗| 秦安县| 平果县| 韶关市| 抚州市| 常宁市| 东阳市| 齐河县| 建瓯市| 巴林右旗| 台前县| 运城市| 宿迁市| 海林市| 侯马市| 怀来县| 布尔津县| 精河县|