• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      介電彈性體球殼瞬態(tài)振動(dòng)的最優(yōu)參數(shù)控制

      2019-11-27 03:21楊穎金肖玲王永
      振動(dòng)工程學(xué)報(bào) 2019年5期

      楊穎 金肖玲 王永

      摘要: 介電彈性體球殼在沖擊載荷作用下發(fā)生瞬態(tài)振動(dòng),由于其具有較大柔性,將經(jīng)歷較長(zhǎng)時(shí)間的持續(xù)衰減震蕩。最優(yōu)有界參數(shù)控制策略是通過(guò)實(shí)時(shí)地微調(diào)電壓使球殼的震蕩迅速衰減,從而達(dá)到抑制振動(dòng)的目的。首先,建立伸長(zhǎng)比擾動(dòng)量滿足的微分方程,并結(jié)合性能指標(biāo)和控制電壓界限,三者構(gòu)成最優(yōu)有界參數(shù)控制問(wèn)題;而后,由動(dòng)態(tài)規(guī)劃原理之極值條件確定最優(yōu)控制律,并采用偽逆算法求解最終的動(dòng)態(tài)規(guī)劃方程,從而導(dǎo)出最優(yōu)控制電壓。數(shù)值研究表明:該控制策略具有較好的控制效果及較高的魯棒性。

      關(guān)鍵詞: 最優(yōu)參數(shù)控制; 介電彈性體; 瞬態(tài)振動(dòng); 控制界限; 動(dòng)態(tài)規(guī)劃原理

      中圖分類號(hào): O328; O347.1 ?文獻(xiàn)標(biāo)志碼: A ?文章編號(hào): 1004-4523(2019)05-0778-08

      DOI:10.16385/j.cnki.issn.1004-4523.2019.05.005

      引 言

      介電彈性體(DE)材料是一類典型的電活性軟材料,而DE結(jié)構(gòu)是由DE薄膜及附連于其上下表面的電極組成的[1]。在電極上施加電壓,由于電荷間的靜電作用,薄膜厚度減小而在面內(nèi)方向延展,即DE結(jié)構(gòu)的作動(dòng)機(jī)制;薄膜厚度方向或面內(nèi)方向的載荷作用使平行板電容器電容發(fā)生變化,通過(guò)檢測(cè)該電容值即可給出變形量,即DE結(jié)構(gòu)的傳感機(jī)制?;谏鲜鰴C(jī)電耦合特征,DE結(jié)構(gòu)已在多個(gè)領(lǐng)域獲得廣泛應(yīng)用,如人工肌肉,自適應(yīng)光學(xué)元件,軟體機(jī)器人,共振器及傳感器等[2-5]。

      伴隨著軟體機(jī)器人技術(shù)的快速發(fā)展,DE作動(dòng)器的研究也取得了極大的進(jìn)展。若將壓電作動(dòng)器、磁流變/電流變作動(dòng)器等傳統(tǒng)器件稱為“剛性”作動(dòng)器,則DE作動(dòng)器可稱為“柔性”作動(dòng)器。DE作動(dòng)器克服了傳統(tǒng)的“剛性”作動(dòng)器變形量小、剛度大等缺點(diǎn),提高了軟體機(jī)器人的環(huán)境適應(yīng)性和人機(jī)交互性。DE作動(dòng)器具有多種不同的構(gòu)型,如平面型、柱型及球殼型等,各種構(gòu)型有不同的特點(diǎn)及不同的適用場(chǎng)合。如平面型DE作動(dòng)器由矩形DE薄膜和剛性框架組成,矩形薄膜在兩個(gè)方向預(yù)拉伸后置于剛性框架上,僅有一個(gè)邊界可自由運(yùn)動(dòng)。該作動(dòng)器具有單向作動(dòng)能力,且其性能可通過(guò)預(yù)拉伸調(diào)節(jié)[6-9]。柱型作動(dòng)器由平面DE結(jié)構(gòu)卷曲而成,可提供較大的作動(dòng)力。球殼型DE作動(dòng)器的初始構(gòu)型即為球狀,在球殼內(nèi)表面和外表面涂敷電極,常用于實(shí)現(xiàn)流體泵功能[10]。在內(nèi)外壓差及常電壓作用下,球殼處于某一靜止平衡位置,突然切換電壓值則球殼迅速向另一平衡位置切換,并最終穩(wěn)定于該位置;上述過(guò)程周而復(fù)始,即實(shí)現(xiàn)了泵功能。

      各類不同構(gòu)型DE作動(dòng)器的動(dòng)態(tài)特性都已有了一些研究。對(duì)平面型DE作動(dòng)器,通過(guò)熱力學(xué)平衡理論及歐拉-拉格朗日方程法研究了其面內(nèi)變形的動(dòng)力學(xué)行為[11-12],亦討論了阻尼、應(yīng)變硬化及黏彈性等因素對(duì)DE作動(dòng)器非線性動(dòng)力學(xué)行為的影響[13-14]。對(duì)柱型DE作動(dòng)器,通過(guò)數(shù)值求解簡(jiǎn)化的偏微分方程得到其動(dòng)態(tài)響應(yīng),并通過(guò)實(shí)驗(yàn)得以驗(yàn)證[15]。對(duì)球殼型DE作動(dòng)器,在熱力學(xué)框架下研究了周期壓力及周期電壓作用下的非線性振動(dòng)行為,揭示了超諧共振及次諧共振等典型的非線性動(dòng)力學(xué)特征[16];通過(guò)隨機(jī)平均法研究了白噪聲作用下,以及諧和與白噪聲聯(lián)合激勵(lì)下的隨機(jī)動(dòng)態(tài)響應(yīng),解釋了其伸長(zhǎng)比概率密度的不對(duì)稱性特征[17-18];亦研究了球殼厚度對(duì)結(jié)構(gòu)穩(wěn)定性及動(dòng)態(tài)響應(yīng)的影響[19]。在機(jī)構(gòu)及結(jié)構(gòu)控制領(lǐng)域,也已提出了一些基于DE作動(dòng)器的軌跡控制及振動(dòng)控制方法?;谄矫嫘虳E作動(dòng)器的非線性動(dòng)力學(xué)模型,建立了軌跡追蹤的前饋控制方法,通過(guò)實(shí)驗(yàn)驗(yàn)證了該方法對(duì)于追蹤典型預(yù)期軌線的有效性[20]。基于各種理論模型建立了結(jié)合位移自傳感機(jī)制的閉環(huán)控制策略[21-22],并通過(guò)比較未控和受控系統(tǒng)的傳遞函數(shù)發(fā)展了其他控制方法,如反饋主動(dòng)控制、速度反饋控制和位移反饋控制等[23-25]。

      球殼型DE作動(dòng)器多用作流體泵,從一個(gè)平衡狀態(tài)切換到另一個(gè)平衡狀態(tài)的過(guò)程中引起持續(xù)的震蕩必將降低其工作效率,因此有必要研究DE球殼瞬態(tài)振動(dòng)的主動(dòng)控制問(wèn)題。本文研究了如何通過(guò)微調(diào)電壓來(lái)抑制沖擊作用下DE球殼的瞬態(tài)振動(dòng),使DE球殼的震蕩迅速衰減從而快速達(dá)到其平衡狀態(tài)。該問(wèn)題歸結(jié)為非線性系統(tǒng)的最優(yōu)參數(shù)控制問(wèn)題,結(jié)合動(dòng)態(tài)規(guī)劃原理及控制電壓的界限導(dǎo)出最優(yōu)有界參數(shù)控制。評(píng)估了控制策略的控制效果,并討論了控制電壓界限及沖擊致初始速度對(duì)控制效果的影響。

      1 DE球殼瞬態(tài)振動(dòng)最優(yōu)參數(shù)控制問(wèn)題的建立 ?研究圖1所示DE球殼,初始構(gòu)型為球狀,且假定在變形過(guò)程中保持球?qū)ΨQ性。因此,可近似用單自由度系統(tǒng)描述其動(dòng)力學(xué)行為[17]。未變形時(shí),DE球殼中面半徑記為R,厚度記為K。在工作狀態(tài)下,DE球殼電極上施加電壓Φ,同時(shí)內(nèi)外表面施加壓力差p,球殼中面的即時(shí)半徑記為r,為時(shí)間的函數(shù)。

      4 結(jié) 論

      本文研究了受初始沖擊作用下DE球殼瞬態(tài)振動(dòng)的最優(yōu)有界參數(shù)控制問(wèn)題。通過(guò)對(duì)電壓的實(shí)時(shí)微調(diào),使沖擊作用下的DE球殼震蕩迅速衰減。文章首先導(dǎo)出DE球殼結(jié)構(gòu)關(guān)于伸長(zhǎng)比的運(yùn)動(dòng)微分方程,之后通過(guò)在靜止平衡位置的展開(kāi)處理得到關(guān)于擾動(dòng)量的微分方程式,結(jié)合性能指標(biāo)和控制界限建立了確定性的最優(yōu)有界參數(shù)控制問(wèn)題。隨后應(yīng)用動(dòng)態(tài)規(guī)劃原理之極值條件導(dǎo)出最優(yōu)控制律,并通過(guò)求解最終形式的動(dòng)態(tài)規(guī)劃方程得到最優(yōu)控制電壓。最后為了衡量最優(yōu)有界參數(shù)控制策略的性能定義了控制效果表達(dá)式。數(shù)值算例表明:控制效果隨控制界限的增大而增大;當(dāng)控制電壓界限達(dá)到一定值時(shí),控制效果趨于穩(wěn)定;且該控制策略對(duì)沖擊致初始速度具有好的魯棒性。

      值得指出的是,從理論上講,本文引入的控制界限不是必須的。放棄控制界限的約束,則得到了最優(yōu)無(wú)界參數(shù)控制問(wèn)題,該問(wèn)題仍可采用本文的方法處理。然而對(duì)實(shí)際問(wèn)題,由于材料性能的限制,控制力存在界限是必然的。除本文的處理方法外,亦可以首先按無(wú)界控制引入最優(yōu)控制力,之后截?cái)嘧顑?yōu)無(wú)界控制力使之符合對(duì)控制力的實(shí)際限制。

      參考文獻(xiàn):

      [1] 鎖志剛,曲紹興. 介電高彈聚合物理論[J]. 力學(xué)進(jìn)展,2011,41(6):730-750.

      Suo Zhigang, Qu Shaoxing. Theory of dielectric elastomer[J]. Advances of Mechanics, 2011,41(6):730-750.

      [2] Kovacs G, During L, Michel S, et al. Stacked dielectric elastomer actuator for tensile force transmission[J]. Sensors and Actuator A-Physical, 2009,155(2): 299-307.

      [3] Brochu P, Pei Q B. Advances in dielectric elastomers for actuators and artificial muscles[J]. Macromolecular Rapid Communications, 2010, 31(1):10-36.

      [4] McKay T, O′Brien B, Calius E, et al. An integrated, self-priming dielectric elastomer generator[J]. Applied Physics Letters, 2010,97(6):062911.

      [5] Kaal W, Herold S. Electroactive polymer actuators in dynamic applications[J]. IEEE-ASME Transactions on Mechatronics,2011,16(1): 24-32.

      [6] Li Tiefeng, Qu Shaoxing, Yang Wei. Electromechanical and dynamic analyses of tunable dielectric elastomer resonator[J]. International Journal of Solids and Structures, 2012,49(26): 3754-3761.

      [7] Li Bo, Zhang Junshi, Liu Lei, et al. Modeling of dielectric elastomer as electromechanical resonator[J]. Journal of Applied Physics,2014,116(12): 124509.

      [8] Zhang Junshi, Chen Hualing, Sheng Junjie, et al. Dynamic performance of dissipative dielectric elastomers under alternating mechanical load[J]. Applied Physics A-Materials Science & Processing, 2014,116(1): 59-67.

      [9] Zhou Jianyou, Jiang Liying, Khayat R E. Viscoelastic effects on frequency tuning of a dielectric elastomer membrane resonator[J]. Journal of Applied Physics, 2014, 115(12): 124106.

      [10] Mockensturm E M, Goulbourne N. Dynamic response of dielectric elastomers[J]. International Journal of Nonlinear Mechanics, 2006, 41(3):388-395.

      [11] Sheng Junjie, Chen Hualing, Li Bo, et al. Nonlinear dynamic characteristics of a dielectric elastomer membrane undergoing in-plane deformation[J]. Smart Materials and Structures, 2014,23(4): 045010.

      [12] Xu Baixiang, Mueller R, Theis A, et al. Dynamic analysis of dielectric elastomer actuators[J]. Applied Physics Letters,2012,100(11): 112903.

      [13] Sheng Junjie, Chen Hualing, Liu Lei, et al. Dynamic electromechanical performance of viscoelastic dielectric elastomers[J]. Journal of Applied Physics,2013,114(13): 134101.

      [14] Wang Fangfang, Lu Tongqing,Wang T J. Nonlinear vibration of dielectric elastomer incorporating strain stiffening[J]. International Journal of Solids and Structures,2016,87: 70-80.

      [15] Son S, Goulbourne N C. Dynamic response of tubular dielectric elastomer transducers[J]. International Journal of Nonlinear Mechanics,2010,47(20):2672-2679.

      [16] Zhu Jian, Cai Shengqiang,Suo Zhigang. Nonlinear oscillation of a dielectric elastomer balloon[J]. Polymer International,2010, 59(3): 378-383.

      [17] Chen Feifei, Zhu Jian,Wang M Y. Dynamic electromechanical instability of a dielectric elastomer balloon[J]. EPL, 2015, 112(4): 47003.

      [18] Jin Xiaoling, Huang Zhilong. Random response of dielectric elastomer balloon to electrical or mechanical perturbation[J]. Journal of Intelligent Material Systems and Structures, 2017,28(2): 195-203.

      [19] Yong Huadong, He Xinzhen, Zhou Youhe. Dynamics of a thick-walled dielectric elastomer spherical shell[J]. International Journal of Engineering Science,2011,49(8): 792-800.

      [20] Gu Guoying, Gupta U, Zhu Jian,et al. Feedforward deformation control of a dielectric elastomer actuator based on a nonlinear dynamic model[J]. Applied Physics Letters,2015, 107(4): 042907.

      [21] Rizzello G, Naso D, York A, et al. Closed loop control of dielectric elastomer actuators based on self-sensing displacement feedback[J]. Smart Materials and Structures, 2016,25(3): 035034.

      [22] Rizzello G, Naso D, York A, et al. Modeling, identification and control of a dielectric electro-active polymer positioning system[J]. IEEE Transactions on Control Systems Technology,2014,23(2): 632-643.

      [23] Sarban R, Jones R W. Physical model-based active vibration control using a dielectric elastomer actuator[J]. Journal of Intelligent Material Systems and Structures,2012,23(4): 473-483.

      [24] Kaal W, Herold S. Electro-active polymer actuators in dynamic applications[J]. IEEE-ASME Transactions on Mechatronics,2011,16(1):24-32.

      [25] Herold S, Kaal W, Melz T. Dielectric elastomers for active vibration control applications[C].Proceedings of Electroactive Polymer Actuators and Devices(EAPAD),2011.

      [26] Ying Z G, Ni Y Q, Duan Y F. Parametric optimal bounded feedback control for smart parameter-controllable composite structures[J]. Journal of Sound and Vibration,2015, 339:38-55.

      Abstract: As impacted by an external load, a dielectric elastomer spherical shell will suffer from transient oscillation. The attenuation vibration of the spherical shell will sustain long time due to its large flexibility. This work establishes the optimal bounded parametric control strategy to suppress the transient oscillation by slightly adjusting the voltage in real time. Firstly, the motion of equation with respect to the perturbation of stretch ratio is derived, and the optimal bounded parameter control problem is constituted by combining with a performance index and a control constraint. The control law is determined by the extremum condition of the dynamic programming principle, and the control voltage is obtained by solving the final dynamic programming equation through the pseudoinverse algorithm. Numerical results show the good control effectiveness and high robustness to the impact intensity.

      Key words: optimal parametric control; dielectric elastomer; transient vibration; control constraint; dynamic programming principle

      作者簡(jiǎn)介: 楊 穎(1993-),女,博士研究生。電話:13777863315;E-mail: 21624007@zju.edu.cn

      兴文县| 成武县| 太康县| 丰台区| 建平县| 承德县| 铜梁县| 涞源县| 金华市| 崇州市| 巩留县| 法库县| 禹城市| 加查县| 东港市| 大新县| 雷波县| 葵青区| 阿拉善右旗| 平果县| 巧家县| 华池县| 房产| 女性| 内丘县| 行唐县| 海淀区| 雅江县| 都江堰市| 柳河县| 娄底市| 湘阴县| 五莲县| 阳城县| 宜良县| 龙口市| 锦州市| 柳江县| 崇仁县| 库伦旗| 临夏县|