• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      酸化赤泥吸附環(huán)丙沙星的特征、機理及過程優(yōu)化

      2019-11-28 10:50:46史京轉(zhuǎn)周孝德史穎娟鄭佳欣
      中國環(huán)境科學(xué) 2019年11期
      關(guān)鍵詞:環(huán)丙沙星赤泥等溫線

      史京轉(zhuǎn),魏 紅*,周孝德,史穎娟,鄭佳欣

      酸化赤泥吸附環(huán)丙沙星的特征、機理及過程優(yōu)化

      史京轉(zhuǎn)1,魏 紅1*,周孝德1,史穎娟2,鄭佳欣1

      (1.西安理工大學(xué),省部共建西北旱區(qū)生態(tài)水利國家重點實驗室,陜西 西安 710048;2.陜西水環(huán)境工程勘測設(shè)計研究院,陜西 西安 710021)

      為提高赤泥的資源化利用及抗生素有機廢水的深度處理,以酸化赤泥為吸附劑、環(huán)丙沙星為目標(biāo)污染物,研究了酸化赤泥吸附環(huán)丙沙星的條件、特征和機理.采用響應(yīng)面法中Box-Behnken設(shè)計方法,以吸附溫度、溶液pH值、環(huán)丙沙星初始濃度、酸化赤泥投加量為自變量,吸附量為響應(yīng)值建立4因素3水平優(yōu)化模型,確定了最佳吸附條件,并對吸附過程的動力學(xué)模型、等溫線模型、熱力學(xué)特性及吸附機理進行了研究.結(jié)果表明,溶液pH值、環(huán)丙沙星初始濃度、酸化赤泥投加量為影響吸附量的顯著因素.酸化赤泥吸附環(huán)丙沙星的最佳條件為:溫度45℃、pH=3.04、環(huán)丙沙星初始濃度29.20mg/L,酸化赤泥投加量3.40g/L,預(yù)測最大吸附量為7.30mg/g.酸化赤泥吸附環(huán)丙沙星的過程遵循偽二級反應(yīng)動力學(xué)模型及Langmuir-Freundilich吸附等溫線模型,經(jīng)過擬合最大吸附量分別為7.90和7.35mg/g.根據(jù)Van Tehoff公式計算吸附熱力學(xué)狀態(tài)函數(shù)Δ0為-82.13~-94.37kJ/mol、Δ0為0.61J/(mol·K)、Δ0為100.25KJ/mol,吸附為自發(fā)進行的吸熱反應(yīng). FTIR表明環(huán)丙沙星分子中—COO與酸化赤泥的Al—O鍵發(fā)生絡(luò)合反應(yīng),C=O與Fe—O鍵發(fā)生微弱的靜電或內(nèi)球面鍵合作用.研究表明,酸化赤泥是一種極具潛力的廉價吸附劑,可用于處理抗生素污染廢水.

      酸化赤泥;環(huán)丙沙星;響應(yīng)面優(yōu)化;吸附動力學(xué);吸附熱力學(xué)

      赤泥是工業(yè)生產(chǎn)氧化鋁過程中產(chǎn)生的固體廢渣,主要包含Na、K、Al、Fe、Ni、Si、Cu、Mn、Ti 及 Zn等元素,不同地區(qū)鋁土礦及氧化鋁生產(chǎn)工藝不同而導(dǎo)致赤泥的成分有所差異[1].據(jù)統(tǒng)計,2014年世界范圍內(nèi)赤泥的貯存量為35億t,并以每年1.2億t的速度增長[2]. 我國每年赤泥的產(chǎn)生量7000萬t,累積庫存約為6億t[3].目前,赤泥最普遍的處置方式是筑壩填埋[4],由此導(dǎo)致的環(huán)境污染及次生災(zāi)害問題時有發(fā)生[5].因此,對赤泥進行資源化和無害化利用越來越受到人們的關(guān)注[6].近年來,國內(nèi)外對赤泥的有效利用主要集中在建材生產(chǎn)[7]、稀有金屬回收[8]、赤泥基催化劑及吸附材料的制備[9-10]等方面.為了降低赤泥的高堿性危害,研究普遍對赤泥進行酸活化處理.不同酸活化可顯著提高赤泥對重金屬離子[11]、有機染料[12]及磷酸鹽[13]等污染物的吸附性能.但赤泥對新興污染物如抗生素的吸附還鮮見報道.

      近年來,抗生素類有機污染物在環(huán)境介質(zhì)中頻繁檢出,引起了學(xué)者們的廣泛關(guān)注[14].不僅在河流[15]、污水中[16]有抗生素檢出,飲用水中也檢測到痕量抗生素.抗生素在環(huán)境介質(zhì)中的“假持久性”[17]和“耐藥性”[18]已經(jīng)嚴重威脅到人類的健康.環(huán)丙沙星作為環(huán)境中檢出率最高的人畜共用類抗生素之一[19],傳統(tǒng)的水處理工藝對其去除效果不佳[20],采取更有效的處理方法已經(jīng)迫在眉睫. 吸附法具有操作簡單、成本低、不添加任何氧化劑等特點而備受青睞[21].

      本實驗根據(jù)響應(yīng)面法[22]中Box-Behnken設(shè)計方法對酸化赤泥吸附環(huán)丙沙星的影響因素進行評價、優(yōu)化, 研究吸附過程的動力學(xué)、吸附等溫線和吸附熱力學(xué)特性,并結(jié)合傅里葉變換衰減全反射紅外光譜(ATR-FTIR)對吸附機理進行分析,以期為赤泥的綜合利用和環(huán)丙沙星污染水體的修復(fù)提供一定科學(xué)依據(jù).

      1 材料與方法

      1.1 儀器與試劑

      實驗所用試劑均為分析純;原始赤泥取自三門峽市義翔鋁業(yè)公司.赤泥浸出液pH值為11.04,經(jīng)XRD(X-ray diffraction,X射線衍射)分析赤泥的主要組分為水化石榴石、鈣霞石、赤鐵礦、剛玉等,經(jīng)BET(Brunauer-Emmett-Teller)多層吸附計算赤泥的比表面積10.96m2/g,平均孔徑40.93nm;環(huán)丙沙星購于日本東京化成工業(yè)株式會社,純度大于98 %,分子式: C17H18FN3O3, 相對分子量331.35.

      1.2 實驗方法

      1.2.1 酸化赤泥的制備 將5g原始赤泥溶于1.0L超純水中,調(diào)節(jié)pH值(6.0±0.2),以100r/min攪拌9h,靜置分離,將泥餅沖洗至中性,并收集于100℃烘干,過150目篩(孔徑106μm),記為酸化赤泥.

      1.2.2 吸附量的測定 將酸化赤泥(3.0,4.0,5.0g/L)和200mL環(huán)丙沙星溶液(10,20,30mg/L)混合置于250mL棕色錐形瓶中.用0.1mol/L的HCl和NaOH調(diào)節(jié)溶液pH值(3.0, 5.0, 7.0, 9.0, 11.0,誤差±0.1),密封后放入250r/min的氣浴恒溫(25,35,45℃)搖床(HZ-8811K,常州德歐)中振蕩180min.一定時間間隔取一定混合液, 4000r/min離心10min,過0.22μm濾膜,用高效液相色譜儀(HPLC,Aglient 1200,美國)測定環(huán)丙沙星濃度.同時設(shè)置空白對照實驗(不加吸附劑)和3組平行實驗. 吸附量的計算如式(1)所示.

      式中:q為時刻的吸附量,mg/g;0為環(huán)丙沙星的初始濃度,mg/L;c為吸附時刻環(huán)丙沙星的濃度, mg/L;為反應(yīng)液體積,mL;為酸化赤泥的質(zhì)量,g.

      1.2.3 響應(yīng)面優(yōu)化吸附條件 通過前期大量單因素實驗分析,以吸附溫度、溶液pH值、環(huán)丙沙星初始濃度和酸化赤泥投加量為自變量,分別記為A、B、C、D;以酸化赤泥對環(huán)丙沙星的吸附量作為響應(yīng)值,記為Y.使用Design Expert 10.0.7軟件中Box- Behnken響應(yīng)面優(yōu)化設(shè)計方法設(shè)計實驗方案,各自變量因素及其水平見表1.

      表1 實驗自變量因素及其水平表

      1.2.4 吸附動力學(xué) 將0.68g酸化赤泥加入200mL初始濃度為30mg/L的環(huán)丙沙星溶液,調(diào)節(jié)pH值為3.04, 在45℃、250r/min條件下振蕩,一定時間取混合液,方法同1.2.2,測定環(huán)丙沙星濃度,設(shè)置3組平行.

      1.2.5 吸附等溫線 將不同初始濃度的環(huán)丙沙星溶液(10,20,30,50,100,500mg/L),在不同溫度(25,35, 45℃)下振蕩180min至吸附平衡,測定環(huán)丙沙星濃度,其他條件同1.2.4.

      1.2.6 分析方法 HPLC色譜條件為: Eclipse XDB-C18色譜柱(150mm×4.6mm,5μm);流動相:乙腈與0.2%(體積分數(shù))甲酸水溶液(體積比20:80);流速0.2mL/min;檢測波長λ=277nm;進樣量10μL;柱溫30℃.在此條件下,環(huán)丙沙星的保留時間R=9.768min.采用ATR法在傅里葉紅外光譜儀(VERTEX70, BRUKER,德國)上于400~4000cm-1范圍內(nèi)對吸附前后酸化赤泥樣品進行掃描.

      1.2.7 數(shù)據(jù)處理 響應(yīng)面優(yōu)化實驗數(shù)據(jù)采用Design Expert 10.0.7軟件進行處理,并得出最優(yōu)吸附條件;吸附動力學(xué)、吸附等溫線、吸附熱力學(xué)數(shù)據(jù)均采用Origin Pro 8軟件進行處理和擬合.

      2 結(jié)果與討論

      2.1 吸附條件的響應(yīng)面實驗結(jié)果分析

      2.1.1 吸附預(yù)測模型建立 采用Box-Behnken實驗設(shè)計方法對酸化赤泥吸附環(huán)丙沙星的條件進行研究并優(yōu)化,實驗結(jié)果見表2.

      表2 Box-Behnken實驗設(shè)計及其實驗結(jié)果

      對表2中的結(jié)果用Design Expert 10.0.7進行方差分析,結(jié)果見表3. 吸附量與4個變量(溫度、溶液pH值、環(huán)丙沙星初始濃度和酸化赤泥投加量)的二次多項式見式(2):

      由表3可知,模型中B、C、D、BC、B2參數(shù)的值<0.05,說明溶液pH值、環(huán)丙沙星初始濃度、酸化赤泥投加量、溶液pH值與環(huán)丙沙星初始濃度交互作用、溶液pH值的平方效應(yīng)對吸附量的影響具有顯著性;其他參數(shù)的值>0.05,說明其他因素對吸附量的影響不顯著.模型的值為40.08,<0.0001,說明模型非常顯著.

      表3 方差分析

      圖1 吸附量實測值與預(yù)測值比較

      圖1表明,建立的二次多項式模型計算出的預(yù)測值與實測值服從正態(tài)分布,決定系數(shù)2=0.9629,表明96.3 %的變異能夠被解釋.校正系數(shù)2Adj= 0.9389(接近1),說明模型的擬合程度很高;模型的信噪比為25.92(大于4視為合理),說明模型的可信度高,數(shù)據(jù)合理[23].因此,該模型建立的方程式[式(2)]能準(zhǔn)確合理的反映吸附條件與吸附量之間對應(yīng)關(guān)系.

      2.1.2 響應(yīng)面分析及模型驗證 由表3可知,溶液pH值與環(huán)丙沙星初始濃度交互作用顯著,圖2為其對吸附量的三維曲面和對應(yīng)的等高線圖.

      由圖2可知,酸化赤泥對環(huán)丙沙星的吸附量隨環(huán)丙沙星初始濃度的升高而升高;隨溶液pH值的升高而降低.這是因為在不同pH值條件下,環(huán)丙沙星的解離形態(tài)不同(圖3所示).當(dāng)溶液pH值較低時,環(huán)丙沙星的解離形態(tài)主要為H4CIP3+,由于H4CIP3+的化學(xué)活性較強于H3CIP2+離子,有利于與酸化赤泥中的活性物質(zhì)發(fā)生吸附作用[24];當(dāng)溶液偏堿性時,酸化赤泥中的活性成分主要以沉淀的形式存在,從而降低了酸化赤泥對環(huán)丙沙星的吸附性能.

      2.1.3 最佳吸附條件確定 根據(jù)模型預(yù)測出酸化赤泥對環(huán)丙沙星的最佳吸附條件為:吸附溫度45℃,溶液pH值3.04,環(huán)丙沙星初始濃度29.20mg/L,酸化赤泥投加量為3.40g/L,最大吸附量為7.30mg/g.

      圖3 不同pH值環(huán)丙沙星的解離形態(tài)

      2.2 吸附動力學(xué)

      吸附動力學(xué)主要研究吸附劑吸附溶質(zhì)的速率快慢.通過動力學(xué)模型對實驗數(shù)據(jù)進行分析擬合,從而探討其吸附機理.常用的吸附動力學(xué)模型有:偽一級動力學(xué)模型、偽二級動力學(xué)模型、顆粒內(nèi)擴散模型、Elovich動力學(xué)模型[式(3)~(6)].

      式中:e是達到吸附平衡時的吸附量, mg/g;q是時刻的吸附量,mg/g;1是偽一級吸附動力學(xué)反應(yīng)速率常數(shù),min-1;2是偽二級反應(yīng)動力學(xué)速率常數(shù), g/(mg·min);是涉及到厚度、邊界層的常數(shù);k為粒子內(nèi)擴散常數(shù), mg/(g·min1.5);是Elovich常數(shù),表示初始吸附速率,mg/(g·min2);是Elovich常數(shù),表示解吸脫附系數(shù),mg/(g·min).

      圖4(a)為酸化赤泥對環(huán)丙沙星的吸附結(jié)果;(b)~(e)分別為不同動力學(xué)模型擬合情況,具體擬合結(jié)果見表4.

      由圖4(a)可知,吸附初期,酸化赤泥吸附環(huán)丙沙星非常迅速,5min的吸附量達到6.54mg/g; 100min后,反應(yīng)體系達到動態(tài)吸附平衡,最大吸附量為7.84mg/g.出現(xiàn)這一現(xiàn)象的原因可能是,反應(yīng)剛發(fā)生時,體系內(nèi)酸化赤泥有足夠多的吸附點位,環(huán)丙沙星的濃度也很高,反應(yīng)速度非???隨著吸附點位和環(huán)丙沙星濃度的降低,吸附反應(yīng)相對緩慢,最后達到動態(tài)平衡.

      圖4 吸附結(jié)果(a)及吸附動力學(xué)模型(b~e)擬合情況

      表4 吸附動力學(xué)模型擬合參數(shù)

      由圖4(b)、(c)、(e)和表4的擬合結(jié)果可知,酸化赤泥對環(huán)丙沙星的吸附過程遵循偽二級吸附動力學(xué)模型,2=0.9998,且擬合的e值和實驗值較吻合,這表明酸化赤泥吸附環(huán)丙沙星是一個化學(xué)吸附過程[25].這可能是由于赤泥中含有多種過渡金屬元素,容易和環(huán)丙沙星中含富電子,N、O元素的官能團配位.為進一步了解吸附過程機理,用顆粒內(nèi)擴散模型進行擬合分析,結(jié)果見圖4(d).整個吸附過程包括快速吸附、慢速吸附、顆粒內(nèi)擴散3個階段,多種吸附機理同時參與反應(yīng);擬合曲線不經(jīng)過原點進一步說明除了顆粒內(nèi)擴散外,還有其他的速控步驟參與[26].

      2.3 吸附等溫線

      吸附等溫線是在一定溫度下,溶質(zhì)在兩相界面上達到吸附平衡時的濃度關(guān)系曲線.常用的等溫線模型有Langmuir、Freundlich和Langmuir-Freundlich [式(7)~(9)].

      式中:e為溶質(zhì)的平衡濃度,mg/L;e是平衡吸附量, mg/g;m是理論上的最大單分子層吸附量,mg/g;L是與吸附能相關(guān)的Langmuir吸附常數(shù),L/mg;F是Freundlich常數(shù),與溶質(zhì)的移除效率有關(guān);是表征吸附強度的常數(shù);LF是Langmuir-Freundlich常數(shù).

      圖5為Langmuir-Freundlich模型的擬合結(jié)果,其他擬合見表6.

      根據(jù)式(7)中L得到一個表征吸附分離難易的無因次分離因子L[式(10)]:

      L是一個無量綱常數(shù),L>1說明過程不利于吸附;L=1是線性的;0

      式(8)中是表征吸附強度的常數(shù),一般在1~10之間說明有利于吸附;值更高或者1/更小,說明吸附劑和溶質(zhì)之間有很強的相互作用;=1時是線性吸附,說明所有的位點都有相同的吸附量[27].根據(jù)計算可知(表5)值為1~10,說明該吸附有利于進行.

      圖5 Langmuir-Freundlich吸附等溫線

      根據(jù)Langmuir-Freundlich模型的計算結(jié)果,最大吸附量7.35mg/g與實測值較符合,2為0.9999,因此該模型能更好地擬合該吸附過程.

      根據(jù)文獻報道,高嶺土對環(huán)丙沙星的最大吸附量為0.143mg/g[28];湖泊底泥吸附環(huán)丙沙星的最大吸附量為6.13mg/g[29];微波輔助合成的磁性生物炭對環(huán)丙沙星的吸附量為8.30mg/g[30].本實驗中酸化赤泥對環(huán)丙沙星的最大吸附量為7.84mg/g,稍低于磁性生物炭材料.這可能與酸化赤泥比表面積不高有關(guān),后續(xù)將圍繞優(yōu)化赤泥結(jié)構(gòu),提高比表面積和暴露活性點位開展進一步研究.

      表5 不同吸附等溫線模型的擬合參數(shù)

      2.4 吸附熱力學(xué)

      吸附熱力學(xué)通過Van Tehoff方程依據(jù)不同溫度下Langmuir吸附等溫線常數(shù)計算[式(11~12)].

      式中:L是Langmuir吸附平衡系數(shù).

      lnL對1/作圖,結(jié)果見圖6,根據(jù)直線斜率和截距求算的結(jié)果見表6.

      由表6可知,不同溫度下,Δ0均為負值,這說明酸化赤泥吸附環(huán)丙沙星的過程是自發(fā)進行的.隨著溫度升高|Δ0|增大,說明溫度升高吸附劑的吸附性能增大[31].物理吸附Δ0一般認為在0~20kJ/mol,化學(xué)吸附在-80~400kJ/mol之間[32],因此環(huán)丙沙星在酸化赤泥上的吸附為化學(xué)吸附.Δ0>0,則說明吸附過程為吸熱反應(yīng)[33].

      圖6 溫度對吸附平衡常數(shù)的影響

      表6 吸附熱力學(xué)狀態(tài)函數(shù)

      2.5 ATR-FTIR分析

      通過FTIR(圖7)分析,1614cm-1處的吸收峰為環(huán)丙沙星中C=O的伸縮振動峰;1372和1588cm-1為環(huán)丙沙星的—COO的對稱和反對稱伸縮振動峰[34]; 1498cm-1為O—H的伸縮振動峰.

      圖7 環(huán)丙沙星及酸化赤泥吸附環(huán)丙沙星前后的紅外光譜

      (before)表示吸附環(huán)丙沙星之前的酸化赤泥;(after)表示吸附環(huán)丙沙星之后的酸化赤泥

      酸化赤泥的FTIR有幾個重要的吸收峰,其中1628cm-1是Fe—O鍵(赤鐵礦)的伸縮振動峰; 1394cm-1為Al—鍵(一水軟鋁石)的伸縮振動峰; 1504cm-1處為O—H鍵的彎曲振動,說明酸化赤泥中有吸附水的存在[35].

      對比環(huán)丙沙星和吸附前后酸化赤泥的FTIR可知,1394cm-1處的Al—O鍵特征峰位移至1380cm-1處,說明赤泥的Al—O鍵與環(huán)丙沙星的—COO發(fā)生表面絡(luò)合作用[36]. 1504cm-1處的O—H鍵發(fā)生位移,說明赤泥中的吸附水被消耗[37]; 1628cm-1處的Fe—O鍵發(fā)生的位移較小,說明環(huán)丙沙星的C=O與赤泥的Fe—O鍵發(fā)生微弱的靜電作用或與赤泥的內(nèi)球面相鍵合[38].這也印證了前面吸附動力學(xué)和熱力學(xué)認為吸附是一個化學(xué)吸附過程.

      3 結(jié)論

      3.1 基于Box-Behnken設(shè)計方法建立的響應(yīng)面優(yōu)化模型對酸化赤泥吸附環(huán)丙沙星進行預(yù)測模擬.得到響應(yīng)面優(yōu)化的最佳吸附條件為:吸附溫度45℃,溶液pH=3.04,環(huán)丙沙星初始濃度29.20mg/L,酸化赤泥投加量3.40g/L,預(yù)測最大吸附量7.30mg/g.

      3.2 酸化赤泥對環(huán)丙沙星的吸附過程遵循偽二級反應(yīng)動力學(xué)模型(2=0.999),擬合的最大吸附量為7.90mg/g,與實測最大吸附量7.84mg/g相符.

      3.3 酸化赤泥對環(huán)丙沙星的吸附等溫線遵循Langmuir-Freundlich模型(2=0.9998),擬合得到最大吸附量為7.35mg/g.

      3.4 吸附熱力學(xué)表明,酸化赤泥吸附環(huán)丙沙星的過程是自發(fā)進行的吸熱反應(yīng).

      3.5 ATR-FTIR分析表明,酸化赤泥吸附環(huán)丙沙星的機理為環(huán)丙沙星的—COO與酸化赤泥發(fā)生表面絡(luò)合作用,同時C=O可能與酸化赤泥發(fā)生微弱的靜電作用或內(nèi)球面鍵合作用.

      [1] Paramguru R K, Rath P C, Misra V N. Trends in red mud utilization-a review [J]. Mineral Processing and Extractive Metallurgy, 2005,26:1-29.

      [2] Ren J, Chen J, Guo W, et al. Physical, chemical, and surface charge properties of bauxite residue derived from a combined process [J]. Journal of Central South University, 2019,26(2):373-382.

      [3] Xue S G, Zhu F, Kong X F, et al. A review of the characterization and revegetation of bauxite residues (Red mud) [J]. Environmental Science and Pollution Research, 2016,23(2):1120-1132.

      [4] Schmalenberger A, O'sullivan O, Gahan J, et al. Bacterial communities established in bauxite residues with different restoration histories [J]. Environmental Science & Technology, 2013,47(13):7110-7119.

      [5] Ren J, Chen J, Han L, et al.Spatial distribution of heavy metals, salinity and alkalinity in soils around bauxite residue disposal area [J]. Science of the Total Environment, 2018,628-629:1200-1208.

      [6] Hua Y, Heal K V, Friesl H W. The use of red mud as an immobiliser for metal/metalloid-contaminated soil: A review [J]. Journal Hazard Mater, 2017,325:17-30.

      [7] Gu H N, Wang N, Liu S R. Radiological restrictions of using red mud as building material additive [J]. Waste Management & Research, 2012,30(9):961-965.

      [8] Zhu X, Li W, Tang S, et al. Selective recovery of vanadium and scandium by ion exchange with D201 and solvent extraction using P507 from hydrochloric acid leaching solution of red mud [J]. Chemosphere, 2017,175:365-372.

      [9] 燕希敏,苗 鵬,常國璋,等.Fe/赤泥催化水蒸氣氣化煤焦的反應(yīng)性與微結(jié)構(gòu)特性[J]. 化工進展, 2018,37(5):1753-1759. Yan X M, Miao P, Chang G Z, et al. Characteristics of microstructures and reactivities during steam gasification of coal char catalyzed by red mud [J]. Chemical Industry And Progress, 2018,37(5):1753-1759.

      [10] Wang Y, Yu Y, Li H, et al. Comparison study of phosphorus adsorption on different waste solids: Fly ash, red mud and ferric-alum water treatment residues [J]. Journal of Environmental Science (China), 2016,50:79-86.

      [11] Gen?-Fuhrman H, Tjell J C, McConchie D. Increasing the arsenate adsorption capacity of neutralized red mud (Bauxsol) [J]. Journal of Colloid and Interface Science, 2004,271(2):313-320.

      [12] 黃 凱,李一飛,焦樹強,等.檸檬酸活化赤泥對亞甲基藍染料廢水的吸附凈化作用[J]. 中國有色金屬學(xué)報, 2011,21(12):3182-3188.Huang K, Li Y F, Jiao S Q, et al. Adsorptive removal of methylene blue dye wastewater from aqueous solution using citric acid activated red mud [J]. The Chinese Journal of Nonferrous Metals, 2011,21(12):3182-3188.

      [13] Ye J, Cong X, Zhang P, et al. Interaction between phosphate and acid-activated neutralized red mud during adsorption process [J]. Applied Surface Science, 2015,356:128-134.

      [14] Tang J, Shi T, Wu X, et al. The occurrence and distribution of antibiotics in Lake Chaohu, China: Seasonal variation, potential source and risk assessment [J]. Chemosphere, 2015,122:154-161.

      [15] Zhang H, Du M, Jiang H, et al. Occurrence, seasonal variation and removal efficiency of antibioticsand their metabolites in wastewater treatment plants, Jiulongjiang River Basin, South China [J]. Environmental Science Processes & Impacts, 2015,17(1):225-234.

      [16] Han Y R, Wang Q J, Mo C H, et al. Determination of four fluoroquinolone antibiotics in tap water in Guangzhou and Macao [J]. Environmental Pollution, 2010,158(7):2350-2358.

      [17] Watkinson A J, Murby E J, Kolpin D W, et al. The occurrence of antibiotics in an urban watershed:from wastewater to drinking water [J]. Science of The Total Environment, 2009,407(8):2711-2723.

      [18] Bengtsson P J, Larsson D G J. Concentrations of antibiotics predicted to select for resistant bacteria: Proposed limits for environmental regulation [J]. Environment International, 2016,86:140-149.

      [19] Liu X, Steele J C, Meng X Z. Usage, residue, and human health risk of antibiotics in Chinese aquaculture: A review [J]. Environmental Pollution, 2017,223:161-169.

      [20] Gu X Y, Tan Y Y, Tong F, et al. Surface complexation modeling of coadsorption of antibiotic ciprofloxacin and Cu(II) and onto goethite surfaces [J]. Chemical Engineering Journal, 2015,269:113-120.

      [21] Ni F, He J, Wang Y, et al. Preparation and characterization of a cost-effective red mud/ polyaluminum chloride composite coagulant for enhanced phosphate removal from aqueous solutions [J]. Journal of Water Process Engineering, 2015,6:158-165.

      [22] 刁 碩,王紅旗,吳梟雄,等.基于響應(yīng)面法優(yōu)化一株低溫耐鹽芘降解菌共代謝條件的研究 [J]. 中國環(huán)境科學(xué), 2017,37(1):345-351. Diao S, Wang H Q, Wu X X, et al. Optimization for pyrene bacteria cometabolism degradation under the low temperature and high salt environment through response surface [J]. China Environmental Science, 2017,37(1):345-351.

      [23] 王雅輝,鄒雪剛,舒冉君,等.胡敏素對Pb2+吸附的響應(yīng)面優(yōu)化及機理[J]. 中國環(huán)境科學(xué), 2017,37(5):1814-1822.Wang Y H, Zou X G, Shu R J, et al. Adsorption of Pb(Ⅱ) from aqueous solutions by humin: optimization and mechanism [J]. China Environmental Science, 2017,37(5):1814-1822.

      [24] Saha S, Sarkar P. Arsenic remediation from drinking water by synthesized nano-alumina dispersed in chitosan-grafted polyacry- lamide [J]. Journal of Hazardous Materials, 2012,227-228:68-78.

      [25] Hu X, Wang J, Liu Y, et al. Adsorption of chromium (VI) by ethylenediamine-modified cross-linked magnetic chitosan resin: Isotherms, kinetics and thermodynamics [J]. Journal of Hazardous Materials, 2011,185(1):306-314.

      [26] Ofomaja A E. Kinetic study and sorption mechanism of methylene blue and methyl violet onto mansonia (Mansonia altissima) wood sawdust [J]. Chemical Engineering Journal, 2008,143(1-3):85-95.

      [27] Febrianto J, Kosasih A N, Sunarso J. Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: A summary of recent studies [J]. Journal of Hazardous Materials, 2009,162:616-645.

      [28] 高 鵬,莫測輝,李彥文,等.高嶺土對喹諾酮類抗生素吸附特性的初步研究[J]. 環(huán)境科學(xué), 2011,32(6):1740-1744.Gao P, Mo C H, Li Y W, et al. Preliminary study on the adsorption of quinolones to kaolin [J]. Environmental Science, 2011,32(6):1740-1744.

      [29] 王富民,馬秀蘭,邊煒濤,等.湖庫底泥對環(huán)丙沙星吸附特性的研究[J]. 水土保持學(xué)報, 2016,30(2):312-316,322.Wang F M, Ma X L, Bian W T, et al. The adsorption characteristic of reservior sediment to ciprofloxacin [J]. Journal of Soil and Water Conservation, 2016,30(2):312-316,322.

      [30] 張學(xué)良,徐 建,占新華,等.微波輔助合成γ-Fe2O3/花生殼磁性生物炭對水體中環(huán)丙沙星吸附的研究[J/OL]. 環(huán)境科學(xué)學(xué)報: 1-11 [2019-07-30]. https://doi.org/10.13671/j.hjkxxb.2019.0176. Zhang X L, Xu J, Zhan X H, et al. Adsorption of ciprofloxacin on magnetic γ-Fe2O3/peanut shell biochar prepared by microwave- assisted synthesis in aqueous [J/OL]. Acta Scientiae Circumstantiae, 1-11 [2019-07-30]. https://doi.org/10.13671/j.hjkxxb.2019.0176.

      [31] Reza R A, Ahmaruzzaman M, Sil A K, et al. Comparative adsorption behavior of ibuprofen and clofibric acid onto microwave assisted activated bamboo waste [J]. Industrial and Engineering Chemistry Research, 2014,53:9331-9339.

      [32] Liu C C, Ming K W, Li Y S. Removal of nickel from aqueous solution using wine processing waste sludge [J]. Industrial and Engineering Chemistry Research, 2005,44:1438-1445.

      [33] Kumar R, Rashid J, Barakat M A. Synthesis and characterization of a starch-AIOOH-FeS2nanocomposite for the adsorption of congo red dye from aqueous solution [J]. RSC Advances, 2014,4:38334-38340.

      [34] Rakshit S, Sarkar D, Elzinga E J, et al. Mechanisms of ciprofloxacin removal by nano-sized magnetite [J]. Journal of Hazardous Materials, 2013,(246-247):221-226.

      [35] Deihimi N, Irannajad M, Rezai B. Characterization studies of red mud modification processes as adsorbent for enhancing ferricyanide removal [J]. Journal of Environmental Management, 2018,206:266-275.

      [36] Venkatesan G, Narayanan S L. Synthesis of Fe2O3-coated and HCl-treated bauxite ore waste for the adsorption of arsenic (Ⅲ) from aqueous solution: isotherm and kinetic models [J]. Chemical Engineering Communications, 2018,205(1):34-46.

      [37] Castaldia P, Silvetti M, Enzob S, et al. Study of sorption processes and FT-IR analysis of arsenate sorbed onto red muds (a bauxite ore processing waste) [J]. Journal of Hazardous Materials, 2010,175:172–178.

      [38] Paras T, Dharni V. Spectroscopic investigation of ciprofloxacin speciation at the goethite-water interface [J]. Environmental Science & Technology, 2007,41(9):3153-3158.

      Adsorption of ciprofloxacin by acidified red mud: characteristic, mechanism and process optimization.

      SHI Jing-zhuan1, WEI Hong1*, ZHOU Xiao-de1, SHI Ying-juan2, ZHENG Jia-xin1

      (1.State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China;2.Shaanxi Reconnaissance Design & Research Institute of Water Environmental Engineering, Xi’an 710021, China)., 2019,39(11):4689~4696

      In this paper, the adsorption conditions, characteristic and mechanism of ciprofloxacin on the acidified red mud were studied.A four-factor and three-level optimization model based on Box-Behnken design method was established to determine the optimum adsorption condition, andadsorption temperature, solution pH, ciprofloxacin initial concentration and acidified red mud dosage were as arguments and adsorption capacity as the response value. The kinetic model, isotherm model, thermodynamic property and mechanism of the adsorption process were discussed as well. The results showed that solutionpH, ciprofloxacin initial concentration, acidified red mud dosage had significant effect on the adsorption process.The predicted maximum adsorption reached 7.30mg/g under the optimized conditions of 45℃, pH 3.04, ciprofloxacin initial concentration of 29.20mg/L, and acidified red mud dosage 3.40g/L. The adsorption was well fitted the pseudo-second-order reaction kinetics and Langmuir-Freundilich isotherm model, with the maximum adsorption capacity were 7.90 and 7.35mg/g, respectively. Δ0, Δ0and Δ0were calculated by Van Tehoff equation as -82.13~94.37kJ/mol, 0.61J/(mol·K) and100.25kJ/mol, respectively. Ciprofloxacinadsorption on acidified red mud was a spontaneous endothermic process.Infrared spectrum showed that the complexation between carboxylate group of ciprofloxacin and Al-O bond of acidified red mud, and the weak electrostatic or inner-sphere bonding between keto group in ciprofloxacin and Fe-O in acidified red mud were attributed to the adsorption. This study showed that acidified red mud is a potentially low-cost absorbent for the treatment of antibiotic-contaminated wastewater.

      acidified red mud;ciprofloxacin;response surface optimization;adsorption kinetics;adsorption thermodynamics

      X703

      A

      1000-6923(2019)11-4689-08

      史京轉(zhuǎn)(1985-),女,陜西渭南人,西安理工大學(xué)博士研究生,主要從事生態(tài)環(huán)境修復(fù)及有機污染有效控制研究.發(fā)表論文5篇.

      2019-04-19

      國家自然科學(xué)基金資助項目(51979223);陜西省自然科學(xué)基金資助項目(2017JM5082);陜西省水利科技項目(2013slkj-07)

      * 責(zé)任作者, 教授, weihong0921@163.com

      猜你喜歡
      環(huán)丙沙星赤泥等溫線
      新型Z型TiO2/Ag/Ag3PO4光催化劑的設(shè)計及其降解環(huán)丙沙星性能研究
      低溫吸附劑的低溫低壓吸附等溫線分布研究
      拜耳法赤泥底流與燒結(jié)法赤泥濾餅混合預(yù)處理試驗
      山東冶金(2019年5期)2019-11-16 09:09:18
      赤泥制備新型燃煤脫硫劑工業(yè)應(yīng)用
      山東冶金(2019年2期)2019-05-11 09:12:10
      腸桿菌科細菌環(huán)丙沙星耐藥株與敏感株耐藥性分析
      環(huán)丙沙星在鹽堿土中吸附特性的研究
      Co2+催化超聲/H2O2降解環(huán)丙沙星
      如何在新課改背景下突破等溫線判讀中的難點
      赤泥吸附劑的制備及其對銅離子的吸附性能
      粉煤灰-赤泥復(fù)合絮凝劑PAFC的除磷性能
      金屬礦山(2014年7期)2014-03-20 14:20:00
      宕昌县| 壶关县| 辽中县| 宁都县| 项城市| 湟中县| 德庆县| 连山| 清涧县| 探索| 营口市| 海兴县| 股票| 丰县| 新建县| 道真| 安岳县| 弥渡县| 突泉县| 衡东县| 尼勒克县| 托里县| 即墨市| 高碑店市| 东乌珠穆沁旗| 沁源县| 吕梁市| 庆城县| 宣化县| 高碑店市| 海城市| 黄平县| 乌拉特前旗| 客服| 上虞市| 固阳县| 城口县| 安丘市| 古蔺县| 托克托县| 承德市|