楊?軍,謝敬輝,高?超,劉開(kāi)政
?
VE-cad-Fc功能化透明質(zhì)酸水凝膠的制備與表征
楊?軍1, 2,謝敬輝1, 2,高?超1, 2,劉開(kāi)政1, 2
(1. 南開(kāi)大學(xué)生命科學(xué)學(xué)院,天津 300071;2. 南開(kāi)大學(xué)生物活性材料教育部重點(diǎn)實(shí)驗(yàn)室,天津 300071)
為了提高透明質(zhì)酸水凝膠的生物學(xué)功能,本研究利用兩步邁克爾加成反應(yīng)及點(diǎn)擊化學(xué)反應(yīng)制備了人血管內(nèi)皮鈣黏素融合蛋白(VE-cad-Fc)功能化的透明質(zhì)酸水凝膠,并進(jìn)一步研究了其對(duì)人臍帶間充質(zhì)干細(xì)胞(hUC-MSCs)的影響.核磁共振光譜檢測(cè)及凝膠時(shí)間檢測(cè)顯示,透明質(zhì)酸主鏈丙烯酰肼取代率為16%,,融合蛋白功能化透明質(zhì)酸以DTT交聯(lián)的凝膠化時(shí)間約為30,min.ELISA檢測(cè)顯示水凝膠中化學(xué)鍵合Fc結(jié)構(gòu)域特異性結(jié)合多肽可以顯著提高融合蛋白的長(zhǎng)期負(fù)載穩(wěn)定性.2D/3D細(xì)胞黏附、增殖與活細(xì)胞染色實(shí)驗(yàn)結(jié)果顯示,水凝膠中利用Fc結(jié)構(gòu)域固定融合蛋白顯著改善人臍帶間充質(zhì)干細(xì)胞的黏附、增殖,且促進(jìn)水凝膠中hUC-MSCs的長(zhǎng)期克隆化生長(zhǎng).作為一種細(xì)胞培養(yǎng)基質(zhì)(2D/3D培養(yǎng)),這種融合蛋白功能化的水凝膠材料在組織工程、再生醫(yī)學(xué)等領(lǐng)域?qū)⒂蟹浅V闊的應(yīng)用前景.
水凝膠;透明質(zhì)酸;人臍帶間充質(zhì)干細(xì)胞;細(xì)胞黏附;細(xì)胞增殖
透明質(zhì)酸(HA)是一種廣泛分布于多種組織細(xì)胞外基質(zhì)中的糖胺聚糖,具有較好的生物相容性,對(duì)組織器官生長(zhǎng)發(fā)育、疾病發(fā)生以及損傷修復(fù)均發(fā)揮重要作用[1-2].因此,基于透明質(zhì)酸的水凝膠已經(jīng)在組織工程支架、細(xì)胞三維培養(yǎng)以及再生醫(yī)學(xué)研究中被廣泛應(yīng)用.透明質(zhì)酸能夠通過(guò)與多種細(xì)胞表面受體如CD44和RHAMM等結(jié)合,支持細(xì)胞的黏附、增殖與分化,但由于透明質(zhì)酸水凝膠本身缺乏整合素受體以及分化調(diào)控因子的活性,所以為了促進(jìn)其在干細(xì)胞的分化研究中應(yīng)用,很多研究者對(duì)透明質(zhì)酸水凝膠進(jìn)行了進(jìn)一步的功能化修飾[3].Hanjaya-Putra等[4]通過(guò)在透明質(zhì)酸側(cè)鏈上化學(xué)鍵合整合素功能多肽(RGD)促進(jìn)干細(xì)胞的黏附與增殖.Cosgrove等[5]、Zhu等[6]和Jcm等[7]通過(guò)透明質(zhì)酸水凝膠中固定神經(jīng)鈣黏素功能性短肽,為干細(xì)胞創(chuàng)建了一種利于其向軟骨和神經(jīng)分化的微環(huán)境,成功實(shí)現(xiàn)了干細(xì)胞的分化命運(yùn)調(diào)控.
血管內(nèi)皮細(xì)胞鈣黏素(VE-cadherin)是一種分布于血管內(nèi)皮細(xì)胞中用于細(xì)胞間連接的跨膜蛋白,其在細(xì)胞間相互作用以及血管的發(fā)生發(fā)育和管型形成中發(fā)揮著至關(guān)重要的作用[8].研究表明,在斑馬魚(yú)胚胎中對(duì)VE-cadherin進(jìn)行基因敲除處理,最終會(huì)嚴(yán)重影響胚胎的管型構(gòu)建并引起官腔的塌陷[9].此外,VE-cadherin的胞內(nèi)域還可以與細(xì)胞骨架相互作用激活p-FAK、AKT和Bcl-2等細(xì)胞內(nèi)信號(hào)通路,從而在細(xì)胞的黏附、增殖、遷移以及分化中發(fā)揮重要作用[10].人血管內(nèi)皮鈣黏素融合蛋白(VE-cad-Fc)已經(jīng)作為一種胞外基質(zhì)用于胚胎干細(xì)胞的培養(yǎng)以及內(nèi)皮細(xì)胞的功能維持中,而且表現(xiàn)出很好的促進(jìn)細(xì)胞黏附和生長(zhǎng)的特性[11].人臍帶間充質(zhì)干細(xì)胞(hUC-MSCs)由于其來(lái)源豐富、低免疫原性和免疫調(diào)節(jié)性已經(jīng)被廣泛用于疾病治療以及再生醫(yī)學(xué)的的研究中[12].本研究擬制備一種VE-cad-Fc功能化修飾的透明質(zhì)酸水凝膠材料,研究VE-cad-Fc功能化修飾透明質(zhì)酸水凝膠對(duì)hUC-MSCs黏附與增殖的影響,旨在為后續(xù)hUC-MSCs在該融合蛋白修飾水凝膠中的血管分化研究以及血管組織工程中的應(yīng)用奠定基礎(chǔ).
HA(相對(duì)分子質(zhì)量91000)購(gòu)自山東福瑞達(dá)生物醫(yī)藥有限公司;己二酸二酰肼(ADH)、1-羥基苯并三唑(HOBT)、碳二亞胺(EDAC)和N-丙烯酰氧基琥珀酰亞胺(NHS-AC)購(gòu)自日本Tokyo chemical industry公司;二硫蘇糖醇(DTT)購(gòu)自美國(guó)Solarbio公司;細(xì)胞黏附性多肽(RGD、相對(duì)分子質(zhì)量634)、Fc段特異性結(jié)合多肽(Fc-binding peptide,相對(duì)分子質(zhì)量943)、VE-cad-Fc(相對(duì)分子質(zhì)量120000)為本實(shí)驗(yàn)室委托南京金斯瑞公司合成;Hepes緩沖液(1,mol/L)、三乙醇胺(TEOA)購(gòu)自美國(guó)Solarbio公司;過(guò)氧化酶標(biāo)記的人IgG抗體(HRP-goat anti-human IgG)購(gòu)自美國(guó)Solarbio公司.
控溫型磁力攪拌器,MS-H280-Pro型,SCILOGEX公司;pH測(cè)試儀,METTLER TOLEDO公司;凍干機(jī),北京博醫(yī)康實(shí)驗(yàn)儀器有限公司;核磁共振波譜儀,Mercury Vx-300型,美國(guó)瓦里安公司;倒置相差顯微鏡,日本奧林巴斯公司;高級(jí)正置熒光顯微鏡,Axio Imager Z1型,德國(guó)ZEISS公司;多功能酶標(biāo)儀,美國(guó)Bio-RAD公司.
稱取HA粉末0.5,g,添加適量ddH2O,充分溶解.稱取9.0,g ADH 加入充分溶解,添加1,g EDAC、0.2,g HOBT 至充分溶解,反應(yīng)液pH=4.75,溫度?25,℃.過(guò)夜反應(yīng),反應(yīng)完成后置于100,mmol/L NaCl溶液透析48,h,1/4~1/5乙醇溶液透析48,h,DIH2O透析48,h.透析完成后,樣品凍干,取出5~10,mg進(jìn)行1H NMR分析并計(jì)算取代度,以D2O為溶劑.
取適量HA-ADH樣品充分溶解于Hepes緩沖液(0.05,mol/L),加入質(zhì)量比HA-ADH:NHS-AC=4∶3的NHS-AC,充分混勻,反應(yīng)液pH=7.20,溫度25,℃.反應(yīng)過(guò)夜,反應(yīng)完成后置于100,mmol/L NaCl溶液中透析48,h,DIH2O中透析48,h.透析完成后,樣品凍干,取出5~10,mg進(jìn)行1H NMR分析并計(jì)算取代度,以D2O為溶劑.
取第1.4節(jié)方法制備的HA-AC粉末配置成質(zhì)量分?jǐn)?shù)5%,溶液,每100,mL添加4,mL 0.45,g/mL DTT交聯(lián)劑充分混勻37,℃反應(yīng)30,min成膠,制成HA-AC水凝膠.
取第1.5節(jié)方法中制備的Fc-binding peptide修飾透明質(zhì)酸配置成質(zhì)量分?jǐn)?shù)5%,溶液,每100,mL添加4,mL 0.45,g/mL DTT交聯(lián)劑充分混勻37,℃反應(yīng)30,min成膠,制成Fc-binding peptide水凝膠.
取1.4方法制備的HA-AC粉末配置成質(zhì)量分?jǐn)?shù)5%,溶液,每100,mL添加2,mL 1,mg/mL VE-cad-Fc溶液,充分混勻37,℃反應(yīng)30,min,后添加交聯(lián)劑DTT充分混勻37,℃反應(yīng)30,min成膠,制成VE-cad/Fc-binding(-)水凝膠.
配制質(zhì)量分?jǐn)?shù)5%, Fc-binding peptide修飾透明質(zhì)酸溶液,取100,mL,添加2,mL 1,mg/mL VE-cad-Fc溶液,充分混勻37,℃反應(yīng)30,min,后添加交聯(lián)劑DTT充分混勻37,℃反應(yīng)30,min成膠,制成VE-cad/Fc-binding(+)水凝膠.
配制質(zhì)量分?jǐn)?shù)5%, HA-AC溶液,每100,mL,添加6.3,mL 10,mg/mL RGD溶液,充分混勻37,℃反應(yīng)30,min,后添加交聯(lián)劑DTT充分混勻37,℃反應(yīng)30,min成膠,制成RGD水凝膠,此水凝膠作為陽(yáng)性對(duì)照,合成方法參見(jiàn)文獻(xiàn)[6].
按照第1.8節(jié)和第1.9節(jié)方法分別制備VE-cad/Fc-binding(-)、VE-cad/Fc-binding(+)水凝膠于96孔板中,成膠后,培養(yǎng)基浸泡,定時(shí)更換培養(yǎng)基直至檢測(cè)結(jié)束.分別于1,d、3,d、5,d、7,d時(shí)間點(diǎn)取樣進(jìn)行ELISA檢測(cè),以PBS沖洗5次,加入以PBS配置的5%,牛血清白蛋白(BSA)溶液,37,℃孵育1,h.PBST清洗5次后,加入過(guò)氧化酶標(biāo)記的人IgG抗體,37,℃孵育1,h.PBST清洗5次,每孔加入100,mL TMB顯色液,37,℃避光孵育15,min,加入終止液后,于452,nm下測(cè)定吸光度,并繪制VE-cad-Fc標(biāo)準(zhǔn)曲線.
于96孔板中按照第1.6節(jié)~第1.10節(jié)分別制備HA-AC、Fc-binding peptide、VE-cad/Fc-binding(-)、VE-cad/Fc-binding(+)、RGD水凝膠,取第3代hUC-MSCs,二維培養(yǎng)細(xì)胞密度5×103/孔,三維培養(yǎng)細(xì)胞密度為5×106mL-1水凝膠.培養(yǎng)24,h后,拍照取樣.
分別于4,h、24,h、48,h時(shí)間點(diǎn)取二維培養(yǎng)細(xì)胞樣品,吸出培養(yǎng)上清,PBS清洗3次,加入以新鮮培養(yǎng)基稀釋的質(zhì)量濃度為1,mg/mL的 MTT工作液(母液5,mg/mL,PBS配制).繼續(xù)培養(yǎng)3,h后,去除上清,每孔加入100,μL DMSO,避光,搖床振蕩10,min.結(jié)晶充分溶解后,吸出溶解液于450,nm下測(cè)定吸光度.
取不同時(shí)間點(diǎn)三維培養(yǎng)細(xì)胞樣品,吸出培養(yǎng)上清,PBS清洗兩遍,加入稀釋好的Calcein AM活細(xì)胞染色液,避光染色20,min,PBS清洗5次,置于高級(jí)熒光正置顯微鏡下觀察拍照.
實(shí)驗(yàn)數(shù)據(jù)以平均值±標(biāo)準(zhǔn)差(SD)表示(=5).實(shí)驗(yàn)數(shù)據(jù)用GraphPad Prism 5軟件統(tǒng)計(jì)分析.<0.05 表示差別有統(tǒng)計(jì)學(xué)意義.
透明質(zhì)酸含有大量的羧基、羥基、N-乙酰氨基和還原末端等活性反應(yīng)側(cè)基.本研究首先選用HA的羧基側(cè)基經(jīng)過(guò)兩步邁克爾加成反應(yīng),制備了丙烯酰肼化透明質(zhì)酸(HA-AC).反應(yīng)過(guò)程如圖1所示.
對(duì)比HA和HA-ADH的1H核磁共振檢測(cè)結(jié)果(見(jiàn)圖2(a)、圖2(b)),圖2(b)中化學(xué)位移2.3(a)和1.6(b)處的特征吸收峰表明:通過(guò)第一步邁克爾加成反應(yīng)成功合成了HA-脂肪雙酰肼衍生物HA-ADH.通過(guò)MestReNova 軟件計(jì)算取代度得出HA羧酸側(cè)基的取代度約為58%,該反應(yīng)效率與文獻(xiàn)[13-14]報(bào)道相近.
進(jìn)一步比較HA-ADH和HA-AC的1H核磁共振檢測(cè)結(jié)果(見(jiàn)圖2(b)、圖2(c)),圖2(c)中化學(xué)位移5.8(c)和6.2(d)處吸收峰的存在表明:通過(guò)第二步邁克爾加成反應(yīng)成功制備了丙烯酰肼化透明質(zhì)酸(HA-AC).通過(guò)MestReNova軟件計(jì)算取代度得出該反應(yīng)的反應(yīng)效率約為16%,與文獻(xiàn)[15]報(bào)道相近.
巰基-雙鍵點(diǎn)擊反應(yīng)是近年來(lái)發(fā)展衍生的一種具有高度選擇性有機(jī)加成反應(yīng),已經(jīng)成為合成新型材料的一種重要途徑.該反應(yīng)機(jī)理在文獻(xiàn)[16]中已有報(bào)道,本實(shí)驗(yàn)Fc-binding peptide與HA-AC的反應(yīng)過(guò)程如圖3(a)所示.
多肽(CHWRGWV)可以與Fc結(jié)構(gòu)域發(fā)生特異性結(jié)合[17],融合了人IgG的Fc段的VE-cad-Fc即可以通過(guò)與透明質(zhì)酸骨架化學(xué)鍵合的Fc-binding peptide結(jié)合而實(shí)現(xiàn)透明質(zhì)酸水凝膠的功能化.實(shí)驗(yàn)結(jié)果顯示(見(jiàn)圖3(b)),質(zhì)量分?jǐn)?shù)5%,的Fc-binding peptide修飾透明質(zhì)酸溶液,反應(yīng)溫度37,℃,VE-cad-Fc質(zhì)量濃度20,mg/mL,交聯(lián)劑濃度1.17,mol/L,反應(yīng)時(shí)間30,min即可成膠.
圖1?丙烯酰肼化透明質(zhì)酸的制備
如圖3(c)所示,利用ELISA方法檢測(cè)水凝膠中釋放到培養(yǎng)介質(zhì)中的VE-cad-Fc的量,結(jié)果顯示:化學(xué)鍵合Fc-binding peptide修飾透明質(zhì)酸水凝膠(VE-cad/Fc-binding(+))在1周后釋放出的VE-cad-Fc僅為添加量的10%,左右,而純透明質(zhì)酸(VE-cad/Fc-binding(-))體系為40%,左右.因此,我們認(rèn)為透明質(zhì)酸主鏈上融合蛋白Fc結(jié)構(gòu)域特異性結(jié)合位點(diǎn)的存在,有利于提高水凝膠內(nèi)功能蛋白的長(zhǎng)期負(fù)載穩(wěn)定性.
利用倒置顯微鏡觀察細(xì)胞形態(tài)以及MTT檢測(cè)細(xì)胞增殖初步驗(yàn)證了VE-cad-Fc功能化透明質(zhì)酸水凝膠對(duì)hUC-MSCs黏附與增殖的影響.RGD功能化透明質(zhì)酸作為陽(yáng)性對(duì)照.如圖4(a)所示,相較于HA-AC、Fc-binding peptide、RGD組和VE-cad/Fc-binding (-),VE-cad/Fc-binding(+)實(shí)驗(yàn)組細(xì)胞的黏附得到了顯著改善.MTT細(xì)胞增殖實(shí)驗(yàn)結(jié)果(見(jiàn)圖4(b))顯示,在經(jīng)時(shí)培養(yǎng)的各時(shí)間點(diǎn)(4,h,24,h,48,h),VE-cad/Fc-binding(+)實(shí)驗(yàn)組的細(xì)胞增殖活性顯著高于各對(duì)照組.上述結(jié)果證明,在透明質(zhì)酸水凝膠中,VE-cad-Fc在水凝膠中的穩(wěn)定固定是發(fā)揮其生物學(xué)活性、改善水凝膠生物功能的重要影響因素.
圖3?VE-cad-Fc功能化透明質(zhì)酸水凝膠的合成
圖4 hUC-MSCs在不同因子修飾透明質(zhì)酸水凝膠表面的黏附與增殖
利用水凝膠仿生細(xì)胞體外三維微環(huán)境,實(shí)現(xiàn)細(xì)胞的體外三維培養(yǎng)已成為近年水凝膠研究的熱點(diǎn).本研究初次利用VE-cad-Fc功能化透明質(zhì)酸水凝膠三維培養(yǎng)hUC-MSCs,通過(guò)活細(xì)胞染色觀察了水凝膠中細(xì)胞的分布及存活.如圖5所示,在三維培養(yǎng)1,d、3,d、7,d后,活細(xì)胞染色顯示VE-cad-Fc功能化水凝膠hUC-MSCs分布均勻、細(xì)胞呈克隆化增殖,活細(xì)胞染色結(jié)果顯示細(xì)胞增殖活性與MTT細(xì)胞活性檢測(cè)水凝膠表面細(xì)胞的增殖活性結(jié)果一致,即VE-cad-Fc功能化透明質(zhì)酸水凝膠具有良好的細(xì)胞相容性,促進(jìn)hUC-MSCs的三維生長(zhǎng).說(shuō)明VE-cad-Fc的修飾可以維持hUC-MSCs在透明質(zhì)酸水凝膠中的長(zhǎng)期存活.
透明質(zhì)酸具有親水性強(qiáng)、無(wú)毒、可降解及生物相容性好等優(yōu)點(diǎn),以其為主要原料制備的透明質(zhì)酸基水凝膠常用于可控藥物釋放、組織修復(fù)和三維細(xì)胞培養(yǎng)等領(lǐng)域[18].但是天然透明質(zhì)酸所形成的水凝膠無(wú)論是細(xì)胞黏附,還是細(xì)胞因子活性調(diào)控等均有待進(jìn)一步改進(jìn)[19].因此,通過(guò)透明質(zhì)酸分子主、側(cè)鏈化學(xué)修飾,接枝具有促進(jìn)細(xì)胞特異性黏附與增殖的活性因子的研究,已成為現(xiàn)代透明質(zhì)酸應(yīng)用研發(fā)的熱點(diǎn).
圖5?三維培養(yǎng)中hUCMSCs的存活
通過(guò)透明質(zhì)酸側(cè)鏈進(jìn)行修飾(酰胺化、開(kāi)環(huán)、酯化、接枝等),及其化學(xué)鍵合功能性活性分子,從而提升其生物學(xué)功能特性[20].VE-cad-Fc融合蛋白已經(jīng)被證實(shí)對(duì)于內(nèi)皮細(xì)胞的生長(zhǎng)以及其功能發(fā)揮具有非常好的促進(jìn)作用.另外,我們近期利用VE-cad-Fc作為細(xì)胞培養(yǎng)基質(zhì)培養(yǎng)胚胎干細(xì)胞,成功實(shí)現(xiàn)了胚胎干細(xì)胞的功能維持.本研究中,我們通過(guò)兩步邁克爾加成反應(yīng)成功制備了丙烯酰肼化通明質(zhì)酸,進(jìn)一步通過(guò)點(diǎn)擊化學(xué)實(shí)現(xiàn)了其化學(xué)鍵合Fc-binding peptide,最終成功實(shí)現(xiàn)了VE-cad-Fc功能化的透明質(zhì)酸水凝膠的制備(見(jiàn)圖4).
hUC-MSCs作為一種來(lái)源廣泛、免疫原性低以及具有免疫調(diào)節(jié)性的功能性細(xì)胞被廣泛用于臨床研究.本研究VE-cad-Fc功能化后的透明質(zhì)酸水凝膠相比于未經(jīng)修飾的透明質(zhì)酸水凝膠具有良好的間充質(zhì)干細(xì)胞親和性.水凝膠表面二維培養(yǎng)中,細(xì)胞的黏附是影響細(xì)胞的存活的首要因素.本研究結(jié)果表明,經(jīng)VE-cad-Fc功能化后,hUC-MSCs在水凝膠表面的黏附與增殖情況得到了明顯改善,這為細(xì)胞在功能化水凝膠中的長(zhǎng)期存活提供了基礎(chǔ).同時(shí),間充質(zhì)干細(xì)胞在水凝膠中長(zhǎng)期三維培養(yǎng)結(jié)果也表明,VE-cad-Fc功能化透明質(zhì)酸水凝膠能夠保持hUC-MSCs的長(zhǎng)期?存活.
細(xì)胞黏附性多肽(RGD)通過(guò)與細(xì)胞表面的整合素特異性結(jié)合,介導(dǎo)細(xì)胞黏附,已被廣泛用于透明質(zhì)酸水凝膠的功能化研究[21-23].本研究中,對(duì)比RGD功能化透明質(zhì)酸水凝膠,我們發(fā)現(xiàn)VE-cad-Fc功能化透明質(zhì)酸水凝膠在促進(jìn)細(xì)胞的黏附與增殖方面與RGD具有同樣的效果(見(jiàn)圖4(a)),而且能夠維持間充質(zhì)干細(xì)胞在水凝膠內(nèi)呈克隆化增殖(見(jiàn)圖5(b)).本研究結(jié)果顯示:VE-cad-Fc融合蛋白在水凝膠中的鍵合方式對(duì)其生物學(xué)功能實(shí)現(xiàn)具有重要的影響作用,其具體分子機(jī)制還有待進(jìn)一步研究.
已有研究表明VE-cad-Fc在血管形成和功能維持中具有作用[10].因此,我們推測(cè),VE-cad-Fc功能化透明質(zhì)酸水凝膠無(wú)論是作為一種體外功能細(xì)胞的培養(yǎng)基質(zhì),還是作為細(xì)胞移植載體,均將會(huì)帶來(lái)細(xì)胞功能的顯著提升,該功能化的水凝膠材料在組織工程、再生醫(yī)學(xué)等領(lǐng)域也將有非常廣闊的應(yīng)用前景.
本實(shí)驗(yàn)通過(guò)對(duì)透明質(zhì)酸側(cè)鏈進(jìn)行化學(xué)接枝及交聯(lián)修飾,成功制備了VE-cad-Fc功能化透明質(zhì)酸水凝膠.相比于未經(jīng)修飾的透明質(zhì)酸水凝膠,該功能化水凝膠不僅顯著改善了hUC-MSCs的黏附與增殖,同時(shí)促進(jìn)hUC-MSCs在水凝膠中呈克隆化增殖、生長(zhǎng).作為一種細(xì)胞培養(yǎng)基質(zhì)材料,VE-cad-Fc功能化透明質(zhì)酸水凝膠在后續(xù)的研究中也必將對(duì)hUC-MSCs的培養(yǎng)及細(xì)胞治療研發(fā)產(chǎn)生重要的影響,為其在再生醫(yī)學(xué)研究中的應(yīng)用研發(fā)奠定基礎(chǔ).
[1] 崔?媛,段?潛,李艷輝. 透明質(zhì)酸的研究進(jìn)展[J]. 長(zhǎng)春理工大學(xué)學(xué)報(bào):自然科學(xué)版,2011,34(3):101-106. Cui Yuan,Duan Qian,Li Yanhui. The research progress in hyaluronic acid[J]. Journal of Changchun University of Science and Technology:Social Sciences Edition,2011,34(3):101-106(in Chinese).
[2] Grigorij K,?oltés L,Robert S,et al. Hyaluronic acid:A natural biopolymer with a broad range of biomedical and industrial applications[J]. Biotechnology Letters,2007,29(1):17-25.
[3] Caliari S R,Burdick J A. A practical guide to hydrogels for cell culture[J]. Nat Methods,2016,13(5):405-414.
[4] Hanjaya-Putra D,Bose V,Shen Y I,et al. Controlled activation of morphogenesis to generate a functional human microvasculature in a synthetic matrix[J]. Blood,2011,118(3):804-815.
[5] Cosgrove B D,Mui K L,Driscoll T P,et al. N-cadherin adhesive interactions modulate matrix mechanosensing and fate commitment of mesenchymal stem cells[J]. Nature Materials,2016,15(12):1297-1306.
[6] Zhu M,Lin S,Sun Y,et al. Hydrogels functionalized with N-cadherin mimetic peptide enhance osteogenesis of hMSCs by emulating the osteogenic niche[J]. Biomaterials,2015,77:44-52.
[7] Jcm V L,Lee M K,Qin E C,et al. Three dimensional conjugation of recombinant N-cadherin to a hydrogel for in vitro anisotropic neural growth[J]. J Mater Chem B Mater Biol Med,2016,4(42):6803-6811.
[8] Carmeliet P,Lampugnani M G,Moons L,et al. Targeted deficiency or cytosolic truncation of the VE-cadherin gene in mice impairs VEGF-mediated endothelial survival and angiogenesis[J]. Cell,1999,98(2):147-157.
[9] Harris E S,Nelson W J. VE-cadherin:At the front,center,and sides of endothelial cell organization and function[J]. Current Opinion in Cell Biology,2010,22(5):651-658.
[10] Xu K,Shuai Q,Li X,et al. Human VE-cadherin fusion protein as an artificial extracellular matrix enhancing the proliferation and differentiation functions of endothelial cell[J]. Biomacromolecules,2016,17(3):756-766.
[11] He N,Chen X,Wang D,et al. VE-cadherin regulates the self-renewal of mouse embryonic stem cells via LIF/Stat3 signaling pathway[J]. Biomaterials,2018,158:34-43.
[12] Bronckaers A,Hilkens P,Martens W,et al. Mesenchymal stem/stromal cells as a pharmacological and therapeutic approach to accelerate angiogenesis[J]. Pharmacology & Therapeutics,2014,143(2):181-196.
[13] Luo Y,Kirker K R,Prestwich G D. Cross-linked hyaluronic acid hydrogel films: New biomaterials for drug delivery[J]. Journal of Controlled Release,2000,69(1):169-184.
[14] Tokatlian T,Cam C,Segura T. Non-viral DNA delivery from porous hyaluronic acid hydrogels in mice[J]. Biomaterials,2014,35(2):825-835.
[15] Lam J,Segura T. The modulation of MSC integrin expression by RGD presentation[J]. Biomaterials,2013,34(16):3938-3947.
[16] 趙正達(dá),袁偉忠,顧書(shū)英,等. 點(diǎn)擊化學(xué)及其在生物醫(yī)學(xué)領(lǐng)域的應(yīng)用[J]. 化學(xué)進(jìn)展,2010,22(2/3):417-426.Zhao Zhengda,Yuan Weizhong,Gu Shuying,et al. Click chemistry and its growing applications in biomedical field[J]. Progress in Chemistry,2010,22(2/3):417-426(in Chinese).
[17] Yang H,Gurgel P V,Jr Williams D K,et al. Binding site on human immunoglobulin G for the affinity ligand HWRGWV[J]. Journal of Molecular Recognition,2010,23(3):271-282.
[18] 王姜玲,冉維志. 透明質(zhì)酸及其衍生物的現(xiàn)狀和發(fā)展趨勢(shì)[J]. 黑龍江醫(yī)藥科學(xué),2014,37(6):117-118. Wang Jiangling,Ran Weizhi. Current status and development trend of hyaluronic acid and its derivatives[J]. Heilongjiang Medicine and Pharmacy,2014,37(6):117-118(in Chinese).
[19] 梁嘉碧,李?俊,汪?婷. 原位交聯(lián)透明質(zhì)酸水凝膠的制備及體外生物相容性研究[J]. 中國(guó)修復(fù)重建外科雜志,2016,30(6):767-771.Liang Jiabi,Li Jun,Wang Ting. Preparation and biocompatibility of in situ crosslinking hyaluronic acid hy-drogel[J]. Chinese Journal of Reparative and Reconstructive Surgery,2016,30(6):767-771(in Chinese).
[20] Collins M N,Birkinshaw C. Hyaluronic acid based scaffolds for tissue engineering—A review[J]. Carbohydr Polym,2013,92(2):1262-1279.
[21] Lei Y,Gojgini S,Lam J,et al. The spreading,migration and proliferation of mouse mesenchymal stem cells cultured inside hyaluronic acid hydrogels[J]. Biomaterials,2011,32(1):39-47.
[22] Caliari S R,Vega S L,Kwon M,et al. Dimensionality and spreading influence MSC YAP/TAZ signaling in hydrogel environments[J]. Biomaterials,2016,103:314-323.
[23] Li S,Nih L R,Bachman H,et al. Hydrogels with precisely controlled in tegrin activation dictate vascular patterning and permeability[J]. Nature Materials,2017,16(9):953-961.
Preparation and Characterization of VE-cad-Fc Functionalized Hyaluronic Acid Hydrogel
Yang Jun1, 2,Xie Jinghui1, 2,Gao Chao1, 2,Liu Kaizheng1, 2
(1. College of Life Science,Nankai University,Tianjin 300071,China;2. Key Laboratory of Bioactive Materials of Ministry of Education,Nankai University,Tianjin 300071,China)
To improve the biofunction of hyaluronic acid(HA) hydrogel, acryloyl hydrazide hyaluronic acid(HA-AC) was first synthesized by Michael addition reaction and click chemistry reaction, and then functionalized by human vascular endothelial cadherin fusion protein(VE-cad-Fc). Subsequently,its impact on the culturing of human umbilical cord mesenchymal stem cell(hUC-MSCs)was studied. Nuclear magnetic resonance spectroscopy and gelation time detection showed that the substitution rate of acrylation was 16% for HA,and the gelation time of the fusion protein-modified HA-AC upon mixture with DTT crosslinking agent was about 30 min. The quantitative determination of VE-cad-Fc by enzyme-linked immunosorbent assay(ELISA) showed that Fc domain specific binding(Fc-binding) polypeptides chemically bound in the HA-AC can significantly enhance the long-term stability of the fusion protein. The impacts of the hydrogel on hUC-MSCs was further characterized by a live cell staining experiment and the assay of cell adhesion and proliferation in 2D/3D cell culture. The results showed that immobilization of fusion protein in the hydrogel by Fc domain can significantly improve the adhesion,proliferation,and long-term clonal growth of hUC-MSCs in the gel. As a cell culture substrate(2D/3D culture),the fusion protein-functionalized hydrogel can be widely applied in several fields,such as tissue engineering and regenerative medicine.
hydrogel;hyaluronic acid;human umbilical cord mesenchymal stem cell;cell adhesion;cell proliferation
O636
A
0493-2137(2019)01-0033-07
2018-03-06;
2018-03-23.
楊?軍(1968—??),女,博士,教授.
楊?軍,yangjun106@nankai.edu.cn.
國(guó)家自然科學(xué)基金資助項(xiàng)目(31771067,31370965);國(guó)家重點(diǎn)研發(fā)計(jì)劃資助項(xiàng)目(2016YFC1101304);天津市應(yīng)用基礎(chǔ)與前沿技術(shù)研究計(jì)劃重點(diǎn)資助項(xiàng)目(17JCZDJC37600);教育部創(chuàng)新團(tuán)隊(duì)資助項(xiàng)目(IRT13023).
the National Natural Science Foundation of China(No.31771067,No.31370965),the National Key Research and Development Program of China(No.2016YFC1101304),the Tianjin Research Program of Application Foundation and Advanced Technology(No.17JCZDJC37600),the Ministry of Education Innovation Team Funding Project(No.IRT13023).
10.11784/tdxbz201803015
(責(zé)任編輯:田?軍)