張 文,董志強(qiáng),黃 睿,景昕宇,呂祥偉,邱宇平*
海洋多孔介質(zhì)中微塑料和富勒烯的共遷移
張 文1,2,董志強(qiáng)1,2,黃 睿1,景昕宇1,呂祥偉1,邱宇平1,2*
(1.同濟(jì)大學(xué)環(huán)境科學(xué)與工程學(xué)院,污染控制與資源化研究國(guó)家重點(diǎn)實(shí)驗(yàn)室,上海 200092;2.上海污染控制與生態(tài)安全研究院,上海 200092)
采用海水和天然海砂,模擬構(gòu)建了一維柱狀的海洋多孔介質(zhì)體系,研究了粒徑1μm的聚苯乙烯微塑料(PS)與富勒烯(C60)在海水飽和砂柱中的共遷移行為.結(jié)果發(fā)現(xiàn):單體系下,15mg/L PS的穿透率(eff)和最大穿透濃度(MEC)可分別達(dá)到36.8%和0.42;而15mg/L的C60團(tuán)聚明顯,其eff和MEC值僅分別為16.8%和0.22.當(dāng)15mg/L PS與15mg/L C601:1共存時(shí),PS能與部分C60形成穩(wěn)定共團(tuán)聚體,促進(jìn)C60遷移;但反之C60卻抑制了PS遷移.如果將雙體系下PS的濃度由15mg/L增至45mg/L,PS對(duì)C60的遷移促進(jìn)則轉(zhuǎn)變?yōu)檫w移抑制,這主要源于PS-C60共團(tuán)聚體體積的增大和數(shù)量的增加.
微塑料;富勒烯;海洋體系;共遷移
近岸海洋環(huán)境是陸源顆粒態(tài)污染物蓄積的重要場(chǎng)所[1].微塑料(粒徑小于5mm)和人工納米工程材料(如富勒烯)是典型的顆粒污染物[2-3],前者源于顆粒塑料產(chǎn)品的人為排放和大體積塑料垃圾的環(huán)境分解;而后者在催化和生物醫(yī)藥領(lǐng)域有著廣泛的應(yīng)用,會(huì)隨廢水的排放進(jìn)入海洋環(huán)境[4-5].研究指出:微塑料在海洋多孔介質(zhì)中的團(tuán)聚狀態(tài)和遷移能力取決于塑料顆粒的大小[6];對(duì)比而言,富勒烯在高鹽度水體環(huán)境中(>120mmol/L NaCl)基本以顆粒團(tuán)聚和低遷移特征為主[7-8].微塑料與富勒烯兩類(lèi)膠體共存于海洋環(huán)境中是否會(huì)發(fā)生相互作用,進(jìn)而影響各自的團(tuán)聚和遷移是本文關(guān)注的焦點(diǎn).
本研究將探索聚苯乙烯(PS)微塑料小球和富勒烯(C60)在海水飽和一維砂柱中的共遷移行為,考察海水中二元膠體的團(tuán)聚特征,微觀觀測(cè)海砂表面膠體顆粒的保留狀況并輔以DLVO相互作用能計(jì)算,揭示PS和C60在海洋多孔介質(zhì)中的共遷移機(jī)制.
天然海砂收集于福建平潭海峽,干燥后過(guò)濾除去雜質(zhì)(如海洋生物殘留物等),進(jìn)一步篩分得到75~1000μm的砂粒,最后用去離子水反復(fù)沖洗,于105°C烘干后使用.激光粒度儀(LA-960, HORIBA, Ltd., Japan)測(cè)得海砂平均粒徑為(0.44±0.05)mm.孔隙率為44.6%.
熒光聚苯乙烯微球(PS)購(gòu)自上海輝質(zhì)生物科技有限公司,粒徑約1μm,表面含有少量的羧基(~100mmol/g).富勒烯(C60)購(gòu)自上海阿拉丁試劑公司,純度99.9%.采用甲苯萃取法配制C60膠體溶液[9-10].使用總有機(jī)碳分析儀(日本島津股份有限公司)測(cè)得C60懸浮液中的總有機(jī)碳濃度約為33mg/L,避光4 °C保存?zhèn)溆?人工海水根據(jù)Kester法配置[11].
通過(guò)馬爾文激光粒度儀(Marlvern Instruments, Ltd., Worcestershire, UK)測(cè)定35‰ 鹽度海水溶液中,PS和C60的水合粒徑(DLS)和電位.其中DLS值每隔2min 記錄一次數(shù)據(jù),連續(xù)記錄40min,得到團(tuán)聚動(dòng)力學(xué)曲線.將PS和C60膠體溶液置于石英比色皿中,采用紫外分光光度計(jì)(UV-2550, Shimadzu Scientific Instruments, Columbia, MD)測(cè)定上清液40min內(nèi)吸光度的變化,得到沉降曲線.
采用一維柱動(dòng)態(tài)遷移實(shí)驗(yàn)探究PS和C60在海洋多孔介質(zhì)中的遷移行為.有機(jī)玻璃柱長(zhǎng)10cm,內(nèi)徑為1cm,柱中裝填約(11.50±0.5)g天然海砂,砂柱平均長(zhǎng)度約為(9.00±0.20)cm.利用膠管連接進(jìn)水口和蠕動(dòng)泵,以此控制溶液注入速度.柱子的頂端和底端存在50μm不銹鋼篩網(wǎng),以防止天然海砂流失.
實(shí)驗(yàn)前,以(2.20±0.11)mL/min的流速,自下而上持續(xù)通入100mL海水使填充柱達(dá)到飽和.同時(shí),用橡膠球敲打填充柱以排除砂子間的氣泡,并起到穩(wěn)定柱子孔隙率的作用.將配置好的PS和C60溶液先用超聲波清洗機(jī)(SK3200HP, KUDOS, 中國(guó))超聲10min,然后用于柱遷移實(shí)驗(yàn).膠體溶液自下而上從500mL玻璃燒杯中連續(xù)泵入填充柱40min后,改用背景海水溶液注入柱內(nèi)10min.每隔2min(約1.47孔隙體積數(shù),PV)收集出流液,以測(cè)定遷移過(guò)程中PS和C60的濃度.在單體系中,PS和C60的濃度,采用紫外分光光度計(jì)(UV-2550, Shimadzu Scientific Instruments, Columbia, MD)測(cè)定,波長(zhǎng)為350nm(標(biāo)準(zhǔn)曲線見(jiàn)圖1a).在雙體系中,采用熒光分光光度計(jì)(FluoroMax-4, HORIBA, America)直接測(cè)定PS的濃度,其中激發(fā)/發(fā)射波長(zhǎng)分別為488nm/525nm,激發(fā)和發(fā)射狹縫寬度均為5nm,C60的存在不影響PS熒光強(qiáng)度(標(biāo)準(zhǔn)曲線見(jiàn)圖1b).C60的濃度可通過(guò)差減法計(jì)算獲得:根據(jù)PS的濃度反算出PS在350nm紫外吸收率,通過(guò)混合體系總吸光度減去PS吸光度,進(jìn)一步得到C60在350nm的吸光度,最后根據(jù)紫外吸光標(biāo)準(zhǔn)曲線得到C60的濃度[8,12].每組實(shí)驗(yàn)進(jìn)行3次以上平行實(shí)驗(yàn),實(shí)驗(yàn)數(shù)據(jù)取平均值.
(a)紫外分光光度計(jì), (b)熒光分光光度計(jì)
此外,為了直觀地描述PS和C60在砂柱中的保留情況,通過(guò)掃描電子顯微鏡(S4800, Hitachi, Japan)觀察填充柱入口端砂樣表面顆粒附著狀態(tài).
本研究采用DLVO理論計(jì)算PS-PS,C60-C60和 PS-C60的相互作用能(TOT),即范德華力(VDW)和靜電力(EDL)之和:
范德華作用能[13-14]:
式中:1和2是膠體粒子的半徑;為膠體離子間相互作用距離;是有效Hamaker常數(shù)(PS為4.04× 10?21J,C60為6.70×10?21J,PS與C60為5.20×6.70× 10?21J)[15-16].
雙電子層相互作用[17]:
式中:B為Boltzmann常數(shù)(1.38×10?23J/K);為開(kāi)爾文溫度(298K);為不同的離子價(jià)態(tài)(本文中=1,因?yàn)楹K拇蟛糠殖煞譃镹aCl);e是元電荷(1.6×10?19C);為德拜長(zhǎng)度(500mmol/L NaCl溶液中值約2.3× 109m?1);為表面電勢(shì)能,無(wú)量綱參數(shù):
式中:是膠體表面電位[18].
單獨(dú)的PS和C60在海水體系中的團(tuán)聚曲線和沉降曲線如圖2所示.PS(15和45mg/L)水合粒徑(DLS)保持在1μm左右(圖2a),接近初始尺寸(~1μm),說(shuō)明PS在海水體系中未發(fā)生團(tuán)聚.沉降曲線表明,40min時(shí)上清液的/0(相對(duì)濃度)高達(dá)0.94,顯示PS具有較好的穩(wěn)定性(圖2b).相比而言,C60(15mg/L) 在海水中具有較低的穩(wěn)定性:在40min內(nèi),其水合粒徑從(0.274±0.067)μm迅速增加到(0.727±0.090)μm (圖2a);相對(duì)濃度(/0)在40min內(nèi)下降為0.79 (圖2b).透射電鏡結(jié)果進(jìn)一步表明:PS和C60在海水中分別呈出單分散(圖3a)和團(tuán)聚狀態(tài)(圖3b).
△ 15mg/L PS ▲ PS/C60=1:1 □ 45mg/L PS ■ PS/C60=3:1 ○ 15mg/L C60
圖3 單體系和雙體系下海水中PS和C60的透射電鏡圖
表1 不同實(shí)驗(yàn)條件下PS和 C60的Zeta電位與遷移參數(shù)
注:MEC為最大穿透濃度;eff為穿透率.
圖4 單體系下PS-PS (15mg/L)和C60-C60及雙體系下PS- C60 (1:1)之間的DLVO能量相互作用分布
膠體表面電荷是決定膠體穩(wěn)定性的主要因素[19-20].表面電荷越多,膠體穩(wěn)定性越高[11].海水體系中PS和C60的Zeta 電位存在較大的差異:其中,PS具有較高的負(fù)電位值(-27.5±1.5)mV(15mg/L)和(-29.0±1.3)mV (45mg/L);而15mg/L C60的Zeta電位則僅為(-11.3±0.6)mV (表1). DLVO能量計(jì)算(圖4)進(jìn)一步顯示:海水中PS(15mg/L)顆粒間存在較高能壘,約284.3BT,這說(shuō)明顆粒間靜電斥力占主導(dǎo)作用,能維持PS相對(duì)穩(wěn)定;而C60顆粒間不存在能壘,表明C60顆粒間范德華引力作用高于靜電排斥作用,導(dǎo)致C60易發(fā)生團(tuán)聚[17-21].
PS和C60混合體系(質(zhì)量比1:1和3:1)中,膠體的水合粒徑逐漸增加,并最終超過(guò)單體系下PS和C60任一膠體的粒徑(圖2a),這說(shuō)明雙體系中生成了更大團(tuán)聚體.40min時(shí)雙體系的/0為0.82,略高于單體系15mg/L C60的相對(duì)懸浮濃度(0.79),明顯低于15mg/L PS的/0(0.91~0.94) (圖2b),這暗示C60有可能主導(dǎo)雙體系的穩(wěn)定性.
值得注意的是,PS/C60=3:1雙體系在40min內(nèi)的團(tuán)聚粒徑(1.544μm)明顯高于其1:1混合時(shí)的團(tuán)聚粒徑(1.203μm)(圖2a).這表明增加PS的質(zhì)量可抑制體系的穩(wěn)定性.而之前的研究表明,0.2μm PS和C60雙體系的穩(wěn)定性卻隨著PS質(zhì)量的增加而提升[13].造成現(xiàn)象反差的原因在于:相同質(zhì)量濃度下,1μm PS的顆粒數(shù)量遠(yuǎn)小于0.2μm PS的數(shù)量(約為后者的1/125),因此PS更容易被大量C60所覆蓋,從而形成大顆粒團(tuán)聚體.當(dāng)1μm PS濃度增加時(shí),這些被C60覆蓋的PS,碰撞幾率得到提升,團(tuán)聚體粒徑會(huì)進(jìn)一步增加.透射電鏡證實(shí),與PS/C60=1:1的初級(jí)團(tuán)聚(圖3c)相比,當(dāng)PS/C60=3:1時(shí),C60能通過(guò)架橋作用將PS緊密地連在一起,從而形成更大的團(tuán)聚體.
PS-C60共團(tuán)聚體的形成可能與膠體溶液的Zeta電位有關(guān),雙體系下膠體的電位(-16.7±1.6)mV要高于單體系PS的電位(-27.5±1.5)mV(表1).根據(jù)DLVO理論計(jì)算可知,PS和C60在海水中的作用能壘不存在(圖4),說(shuō)明PS和C60之間的范德華引力占主導(dǎo),從而形成了共團(tuán)聚體[20,22].此外,PS和C60表面所帶的苯環(huán),可通過(guò)形成π-π作用促進(jìn)共團(tuán)聚體的形成[16,22-23].
15mg/L PS最大穿透濃度(MEC,相對(duì)濃度)為 0.42,溶質(zhì)流出率(eff)為36.8%(表1).PS的穿透曲線呈現(xiàn)出緩慢上升的趨勢(shì)(圖5a),表明海水中PS在多孔介質(zhì)中的遷移行為主要受到阻隔作用的影響[24].原因在于:沙粒表面可供PS附著的位點(diǎn)有限,隨著PS的不斷注入,位點(diǎn)數(shù)逐漸減少,進(jìn)而導(dǎo)致隨后的PS不能有效附著,因此顆粒遷移能力逐漸增加.掃描電鏡圖顯示,附著在沙粒表面的PS主要以單獨(dú)個(gè)體存在(圖6a).這從側(cè)面證實(shí)PS占據(jù)了附著位點(diǎn)后,會(huì)排斥其他PS顆粒[8,24].45mg/L PS的穿透曲線與15mg/L PS 基本重合(圖5a),說(shuō)明本研究條件下濃度變化并不影響PS的遷移行為.
圖5b顯示,C60的穿透曲線呈現(xiàn)下降趨勢(shì),即隨著C60的不斷注入,其在多孔介質(zhì)的保留能力不斷增大,遷移能力逐漸減弱,這種遷移行為被稱(chēng)為成熟現(xiàn)象[6,25].這一方面是因?yàn)镃60的粒徑隨著時(shí)間不斷增加,導(dǎo)致后面注入的C60粒徑較大,更易于被多孔介質(zhì)截留[26].另一方面是由于C60顆粒間吸引作用較強(qiáng),已附著在介質(zhì)表面的C60,為隨后注入的C60提供了更多的附著位點(diǎn),使得多孔介質(zhì)表面的納米顆粒沉積層由單層轉(zhuǎn)變?yōu)槎鄬覽27].觀察圖6b可知,沙粒表面確實(shí)存在大量的C60團(tuán)聚體或多層附著的C60.
與單體系的15mg/L PS相比,雙體系(1:1)下PS的穿透能力明顯降低,其MEC和eff分別降為0.18和14.8%(表1).這表明多孔介質(zhì)中共存C60膠體顯著抑制了PS的遷移.通常而言,共存膠體可以通過(guò)降低原膠體表面電荷和形成共團(tuán)聚體等作用,來(lái)抑制原膠體遷移[6,28].表1顯示,雙體系膠體溶液的表面負(fù)電荷含量(-16.7±1.6)mV,低于單體系 PS的表面負(fù)電荷含量(-27.5±1.5)mV.根據(jù)DLVO理論,納米顆粒表面負(fù)電的減少會(huì)導(dǎo)致其與表面負(fù)電多孔介質(zhì)間的靜電排斥作用減弱,從而增加顆粒在介質(zhì)表面的附著,降低顆粒遷移能力[29].透射電鏡結(jié)果揭示,大量的C60附著在PS的表面,增加了膠體的粒徑(圖3c).這種粒徑的增加,將顯著提升遷移過(guò)程中的截留作用,從而導(dǎo)致其遷移能力的下降[30].此外,C60的附著還會(huì)使得PS的表面更加粗糙,這也會(huì)增強(qiáng)PS在沙粒表面的保留能力[31].
圖6 PS和C60在柱入口端沙粒表面的掃描電鏡圖
C60共存使得PS穿透曲線呈現(xiàn)下降趨勢(shì)(圖5a).這說(shuō)明C60影響下PS的遷移從阻隔作用主導(dǎo)變?yōu)槌墒熳饔弥鲗?dǎo).圖6c顯示,大顆粒的團(tuán)聚體(PS-C60-PS)出現(xiàn)在沙粒的表面,證實(shí)了PS間阻隔作用的消失,成熟現(xiàn)象的發(fā)生.主要原因可能是:在多孔介質(zhì)的孔道中,由于空間狹小,顆粒間的碰撞幾率更大[24,32].
同樣,PS也影響著C60的遷移.1:1雙體系下,C60的穿透曲線要高于單體系(圖5b);同時(shí)C60的MEC從0.22升至0.27,eff從16.8%提升為23.2%(表1),這說(shuō)明PS的存在提升了C60的遷移能力.這可能與雙體系下膠體的表面負(fù)電荷(-16.7±1.6)mV高于單體系C60表面負(fù)電荷(-11.3±0.6)mV有關(guān).另一方面,在海水及其飽和沙柱中,PS的表面附著大量C60,使得PS充當(dāng)載體攜帶C60遷移(圖6c).
之前的研究表明,0.2μm PS 與C601:1 混合,C60的eff高達(dá)29.3%[8],而本研究中1μm PS存在時(shí),C60的eff僅為23.2%(表1).這是因?yàn)橄嗤|(zhì)量濃度下,1μm PS的顆粒數(shù)量較少,不能夠提供足夠多的載體攜帶C60,因此C60團(tuán)聚體依然存在于共遷移過(guò)程中(圖6c).
如將共存1μm PS的濃度提升至45mg/L (即PS/C60=3:1),PS與C60各自的遷移能力均會(huì)低于二者單體系下的遷移能力(圖5).其中C60最大穿透濃度從0.22降低至0.20,PS 的最大穿透濃度從0.44降為0.13(表1).質(zhì)量濃度比3:1混合的PS/C60(-17.3± 1.1)mV比1:1混合的PS/C60(-16.7±1.6)mV具有更負(fù)的表面電荷(表1),這本應(yīng)導(dǎo)致前者具有更高的遷移能力,但結(jié)果并非如此[29].考察團(tuán)聚體粒徑變化發(fā)現(xiàn), 3:1的PS/C60能形成更大且復(fù)雜的團(tuán)聚體(PS- C60-PS)(圖3d),進(jìn)而導(dǎo)致PS/C60在多孔介質(zhì)中的遷移能力顯著下降[30].SEM(圖6d)也輔證,遷移后沙粒表面存在著大量的PS-C60-PS復(fù)雜團(tuán)聚體.因此,提升1μm PS的質(zhì)量濃度并不能起到進(jìn)一步促進(jìn)C60遷移的效果,反而會(huì)抑制其遷移.
3.1 單體系下,由于靜電斥力和勢(shì)壘的存在,1μm的PS在海水體系中穩(wěn)定分散,在海砂中遷移能力較強(qiáng);而C60因其表面電荷少,在海水中團(tuán)聚與沉降明顯,遷移能力較弱.
3.2 雙體系下,PS和C60容易形成共團(tuán)聚.當(dāng)PS/ C60=1:1時(shí),部分C60附著在PS表面,形成PS/C60初級(jí)團(tuán)聚體,抑制PS的遷移;同時(shí)PS可作為載體,在一定程度提升C60的遷移能力.
3.3 當(dāng)PS/C60=3:1時(shí),初級(jí)團(tuán)聚體數(shù)量增加,并能通過(guò)C60的架橋作用互相連接,形成大塊的次級(jí)團(tuán)聚體,使得PS和C60發(fā)生相互抑制遷移現(xiàn)象.
[1] Hochella M F, Mogk D W, Ranville J, et al. Natural, incidental, and engineered nanomaterials and their impacts on the Earth system [J]. Science, 2019,363(6434):eaau8299.
[2] Thompson R C, Olsen Y, Mitchell R P, et al. Lost at sea: where is all the plastic? [J]. Science, 2004,304(5672):838-838.
[3] Batley G E, Kirby J K, McLaughlin M J. Fate and risks of nanomaterials in aquatic and terrestrial environments [J]. Accounts of Chemical Research, 2012,46(3):854-862.
[4] Andrady A L. Microplastics in the marine environment [J]. Marine Pollutution Bulletin, 2011,62(8):1596-1605.
[5] Bogdanov A, Deininger D, Dyuzhev G. Development prospects of the commercial production of fullerenes [J]. Technical Physics, 2000, 45(5):521-527.
[6] Dong Z Q, Qiu Y P, Zhang W, et al. Size-dependent transport and retention of micron-sized plastic spheres in natural sand saturated with seawater [J]. Water Research, 2018,143:518-526.
[7] Zhang W, Rattanaudompol U S, Li H, et al. Effects of humic and fulvic acids on aggregation of aqu/nC60nanoparticles [J]. Water Research, 2013,47(5):1793-1802.
[8] Dong Z Q, Zhang W, Qiu Y P, et al. Cotransport of nanoplastics (NPs) with fullerene (C60) in saturated sand: Effect of NPs/C60ratio and seawater salinity [J]. Water Research, 2019,148:469-478.
[9] Snow S D, Kim K C, et al. Functionalized fullerenes in water: A closer look [J]. Environmental Science and Technology, 2015,49(4):2147- 2155.
[10] Aich N, Boateng L K, Sabaraya I V, et al. Aggregation kinetics of higher-order fullerene clusters in aquatic systems [J]. Environmental Science and Technology, 2016,50(7):3562-3571.
[11] Kester D R, Duedall I W, Connors D N, et al. Preparation of artificial seawater [J]. Limnology and Oceanography, 1967,12(1):176-179.
[12] Peng S G, Wu D, Ge Z, et al. Influence of graphene oxide on the transport and deposition behaviors of colloids in saturated porous media [J]. Environmental Pollution, 2017,225:141-149.
[13] Hoek E M, Agarwal G K. Extended DLVO interactions between spherical particles and rough surfaces [J]. Journal of Colloid and Interface Science, 2016,298(1):50-58.
[14] Cao T C, Szilagyi I, Oncsik T, et al. Aggregation of colloidal particles in the presence of multivalent co-ions:the inverse schulze–hardy rule [J]. Langmuir, 2015,31(24):6610-6614.
[15] Canseco V, Djehiche A, Bertin H, et al. Deposition and re-entrainment of model colloids in saturated consolidated porous media: Experimental study [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009,352(1-3):5-11.
[16] Chen K L, Elimelech M. Aggregation and deposition kinetics of fullerene (C60) nanoparticles [J]. Langmuir, 2006,22(26):10994- 11001.
[17] Zhou D X, Abdel-Fattah A I, Keller A A. Clay particles destabilize engineered nanoparticles in aqueous environments [J]. Environmental Science and Technology, 2012,46(14):7520-7526.
[18] Wang H T, Dong Y, Zhu M, et al. Heteroaggregation of engineered nanoparticles and kaolin clays in aqueous environments [J]. Water Research, 2015,80:130-138.
[19] Petosa A R, Jaisi D P, Quevedo I R, et al. Aggregation and deposition of engineered nanomaterials in aquatic environments: role of physicochemical interactions [J]. Environmental Science and Technology, 2010,44(17):6532-6549.
[20] Quik J T, Velzeboer I, Wouterse M, et al. Heteroaggregation and sedimentation rates for nanomaterials in natural waters [J]. Water Research, 2014,48:269-279.
[21] 周麗霞,張淑娟,潘丙才.碳納米管在水溶液中的聚集和沉降行為研究 [J]. 南京大學(xué)學(xué)報(bào)(自然科學(xué)), 2014,50(4):405-413. Zhou L X, Zhang S J, Pan B C. The aggregation and deposition of carbon nanotubes in aquatic environment [J]. Journal of Nanjing University (Natural Science), 2014,50(4):405-413.
[22] Wang H T, Adeleye A S, Huang Y X, et al. Heteroaggregation of nanoparticles with biocolloids and geocolloids [J]. Advances in Colloid and Interface Science, 2015,226:24-36.
[23] Mashayekhi H, Ghosh S, Du P, et al. Effect of natural organic matter on aggregation behavior of C60fullerene in water [J]. Journal of Colloid and Interface Science, 2012,374(1):111-117.
[24] Song Z F, Yang X, Chen F M, et al. Fate and transport of nanoplastics in complex natural aquifer media: Effect of particle size and surface functionalization [J]. Science of the Total Environment, 2019,669: 120-128.
[25] Babakhani P, Bridge J, Doong R A, et al. Continuum-based models and concepts for the transport of nanoparticles in saturated porous media: a state-of-the-science review [J]. Advances in Colloid and Interface Science, 2017,246:75-104.
[26] Li Y S, Wang Y G, Pennell K D, et al. Investigation of the transport and deposition of fullerene (C60) nanoparticles in quartz sands under varying flow conditions [J]. Environmental Science and Technology, 2008,42(19):7174-7180.
[27] Nascimento A G, Totola M R, Souza C S, et al. Temporal and spatial dynamics of blocking and ripening effects on bacterial transport through a porous system: A possible explanation for CFT deviation [J]. Colloids and Surfaces B-biointerfaces, 2006,53(2):241-244.
[28] Li M, He L, Zhang M Y, et al. Cotransport and deposition of iron oxides with different-sized plastic particles in saturated quartz sand [J]. Environmental Science and Technology, 2019,53(7):3547-3557.
[29] Torkzaban S, Bradford S A, Walker S L. Resolving the coupled effects of hydrodynamics and DLVO forces on colloid attachment in porous media [J]. Langmuir, 2007,23(19):9652-9660.
[30] Xu S P, Gao B, Saiers J E. Straining of colloidal particles in saturated porous media [J]. Water Resources Research, 2006,42(12):1-10.
[31] Bradford S A, Kim H, Shen C Y, et al. Contributions of nanoscale roughness to anomalous colloid retention and stability behavior [J]. Langmuir, 2017,33(38):10094-10105.
[32] Zhang W, Morales V L, Cakmak M E, et al. Colloid transport and retention in unsaturated porous media: Effect of colloid input concentration [J]. Environmental Science and Technology, 2010, 44(13):4965-4972.
Cotransport of microplastics and fullerene in marine porous media.
ZHANG Wen1,2, DONG Zhi-qiang1,2, HUANG Rui1, JING Xin-yu1, Lü Xiang-wei1, QIU Yu-ping1,2*
(1.State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China;2.Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China)., 2019,39(12):5063~5068
A simulated one-dimensional column system was established with seawater and natural sea sand to investigate the cotransport of 1μm polystyrene microplastics (PS) and fullerene (C60) in seawater-saturated marine media. The results showed that, in single suspension, the mass percentage recovered from the effluent (eff) and maximum effluent concentration (MEC) of the well-dispersed PS (15mg/L) were 36.8%, and 0.42, respectively, while the aggregation (agglomeration) of C60at 15mg/L was obviously presented with 16.8% ofeffand 0.22 of MEC, respectively. When 15mg/L PS and 15mg/L C60were coexisted, PS might form stable co-aggregates with part of C60thereby promote the transport of C60. Conversely, C60inhibited the transport of PS. If the concentration of PS in binary suspension increased from 15mg/L to 45mg/L, the enhancing effect of PS on transport of C60was eventually transformed into the inhibition of C60transport, which was mainly due to the increase in the volume and number of PS-C60co-aggregates.
microplastics;fullerene (C60);marine environment;cotransport
X145
A
1000-6923(2019)12-5063-06
張 文(1994-),女,江蘇蘇州人,同濟(jì)大學(xué)碩士研究生,主要研究方向?yàn)槲⑺芰檄h(huán)境過(guò)程與歸趨.發(fā)表論文4篇.
2019-06-03
中央高?;究蒲袠I(yè)務(wù)費(fèi)(22120180244)
* 責(zé)任作者, 教授, ypqiu@#edu.cn
中國(guó)環(huán)境科學(xué)2019年12期