• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      七彩神仙魚腦組織轉(zhuǎn)錄組mRNAs差異表達(dá)分析

      2020-02-22 11:20:38劉怡南溫彬陳再忠
      南方農(nóng)業(yè)學(xué)報 2020年11期
      關(guān)鍵詞:轉(zhuǎn)錄組腦組織

      劉怡南 溫彬 陳再忠

      摘要:【目的】挖掘七彩神仙魚(Symphysodon haraldi)腦組織性別差異基因,為揭示腦組織性別相關(guān)基因調(diào)控繁殖生理機(jī)制打下基礎(chǔ)。【方法】利用Illumina HiSeq 6000測序平臺對七彩神仙魚雌、雄腦組織樣本進(jìn)行轉(zhuǎn)錄組測序分析,經(jīng)過濾和Trinity組裝獲得基因,采用DIAMOND進(jìn)行功能注釋;并選取NR、GO、KEGG、Pfam、Swiss-Prot和eggNOG等數(shù)據(jù)庫進(jìn)行比對,篩選出差異表達(dá)候選基因;隨機(jī)選取6個差異表達(dá)基因進(jìn)行實(shí)時熒光定量PCR驗(yàn)證?!窘Y(jié)果】從構(gòu)建的七彩神仙魚腦組織cDNA文庫測序獲得337190200條原始數(shù)據(jù)(Raw reads),經(jīng)質(zhì)量篩選后獲得34109個基因(平均長度1007.00 bp)和67488個轉(zhuǎn)錄本(平均長度694.00 bp)。經(jīng)生物信息學(xué)分析方法篩選,最終獲得85個差異表達(dá)基因(61個在雄魚腦組織中高表達(dá),24個在雌魚腦組織中高表達(dá)),包括黑色素濃集激素(MCH)、催乳素釋放激素(Prlh)、垂體同源結(jié)構(gòu)域轉(zhuǎn)錄因子2(pitx2)、免疫球蛋白家族成員(DSCAM和IGDCC3)、溶質(zhì)載體(UNC93B1)及醛糖還原酶(AKR1B1)等功能基因。與雌魚腦組織相比,雄魚腦組織中涉及細(xì)胞突觸傳遞、激素調(diào)控、信號傳導(dǎo)、黑色素濃集激素、催乳素釋放激素、生長激素和G蛋白偶聯(lián)受體的基因呈下調(diào)趨勢,而涉及離子運(yùn)輸和免疫反應(yīng)的基因呈上調(diào)趨勢。隨機(jī)選取6個差異表達(dá)基因(Prlh、pitx2、MCH、LMX1A、KBP和CRP)進(jìn)行實(shí)時熒光定量PCR驗(yàn)證,結(jié)果顯示,Prlh、pitx2、MCH、LMX1A和KBP基因在雌魚腦組織的相對表達(dá)量較高,而CRP基因在雄魚腦組織的相對表達(dá)量較高?!窘Y(jié)論】MCH、Prlh、pitx2、DSCAM、IGDCC3、UNC93B1、AKR1B1和Nid1等基因在七彩神仙魚腦組織中呈性別差異表達(dá),可能在調(diào)節(jié)腦組織類固醇激素形成及配子發(fā)生的過程中發(fā)揮重要作用,可作為候選基因應(yīng)用于七彩神仙魚腦組織性別相關(guān)基因調(diào)控繁殖生理機(jī)制研究。

      關(guān)鍵詞: 七彩神仙魚;轉(zhuǎn)錄組;腦組織;性別差異基因

      中圖分類號: S965.82 ? ? ? ? ? ? ? ? ? ? ? ? ? ? 文獻(xiàn)標(biāo)志碼: A 文章編號:2095-1191(2020)11-2827-09

      Differential expression analysis of mRNAs based on brain transcriptome in the discus fish(Symphysodon haraldi)

      LIU Yi-nan1,2,3, WEN Bin1,2,3, CHEN Zai-zhong1,2,3*

      (1National Demonstration Center for Experimental Fisheries Science Education(Shanghai Ocean University), Shanghai ?201306, China; 2Shanghai Engineering Research Center of Aquaculture(Shanghai Ocean University), Shanghai ?201306, China; 3Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and

      Rural Affairs(Shanghai Ocean University), Shanghai ?201306, China)

      Abstract:【Objective】Exploring the sex-biased genes in brain tissue of discus fish(Symphysodon haraldi) could lay the foundation for revealing the physiological mechanism of sex-related genes in discus brain that regulated reproduction.【Method】The Illumina HiSeq 6000 sequencing platform was used to perform transcriptome sequencing analysis on the brain tissue of female and male discus fish.The genes were obtained after filtration and assembled by Trinity, and DIAMOND was used for functional annotation. The NR, GO, KEGG, Pfam, Swiss-Prot, and eggNOG database were selec-ted for comparison and filtered out the differential candidate genes.Randomly selected six differentially expressed genes for qRT-PCR validation. 【Result】From the constructed discusbrain cDNA library, 337190200 raw reads were sequenced. After quality screening, 34109 genes(average length 1007.00 bp) and 67488 transcripts(average length 694.00 bp) were obtained. Screened by bioinformatics analysis,obtained total of 85 differentially expressed genes(61 were highly expressed in male fish brain, 24 were highly expressed in female fish brain) were obtained, including melanin-concentrating hormone(MCH), prolactin release Hormone(Prlh), pituitary homeodomain transcription factor 2(pitx2), immunoglobulin family members(DSCAM and IGDCC3), solute carrier(UNC93B1) and aldose reductase(AKR1B1). Compared with female fish, among these genesinmale fish brain tissues,which involved in cell synaptic transmission, hormone regulation, signal transduction, melanin-concentrating hormone, prolactin releasing hormone, growth hormone and G protein-coupled receptors were down-regulated; which involved in ion transport and immune response were up-regulated. Randomly selected six differentially expressed genes(Prlh, pitx2, MCH, LMX1A, KBP and CRP) for validated by qRT-PCR. The results showed that the relative expression levels of Prlh, pitx2, MCH, LMX1A and KBP in female fish brain were high, and the relative expression of CRP in male brain tissue was high. 【Conclusion】Genes such as MCH, Prlh, pitx2, DSCAM, IGDCC3, UNC93B1, AKR1B1 and Nid1 were differentially expressed in the brain tissue of discusfish, which might play an important role in regulating the formation of steroid hormones and gametogenesis, and can be used as candidate genes in the research of discus fish brain tissue sex-biased gene regulating reproduction physiological mechanism.

      Key words: discus fish; transcriptome; brain tissue; sex-biased gene

      Foundation items: Shanghai Natural Science Foundation(20ZR1423600); Shanghai Sailing Program(19YF1419400)

      0 引言

      【研究意義】七彩神仙魚(Symphysodon haraldi)原產(chǎn)于南美洲亞馬遜流域,因其鮮艷的色彩及優(yōu)雅的游姿,被譽(yù)為熱帶觀賞魚之王,在淡水觀賞魚貿(mào)易中占據(jù)重要地位(劉曉東和陳再忠,2008;李浩然等,2015)。七彩神仙魚對水環(huán)境要求苛刻,雌、雄魚完全性成熟需要12個月,成年雄性個體較成年雌性個體大,因此更具觀賞價值。目前,七彩神仙魚的繁殖仍然依靠自然配對,但配對時間和繁殖周期較長,極大限制了七彩神仙魚的規(guī)?;斯し庇诸d?,2017)。在脊椎動物的繁殖過程中,大腦通過下丘腦—垂體—性腺軸(BPG)調(diào)控和維持動物機(jī)體的生殖發(fā)育及其性行為(Weltzien et al.,2004)。BPG軸包含促性腺激素釋放激素(GnRH)和促性腺激素(GTH)等神經(jīng)激素,而這些神經(jīng)激素受大量基因調(diào)控,因此,挖掘七彩神仙魚腦組織中的性別差異基因,對探究腦組織性別相關(guān)基因在兩性繁殖生理中的作用機(jī)理具有重要意義。【前人研究進(jìn)展】目前,已在動物機(jī)體腦組織中發(fā)現(xiàn)一些與性別差異相關(guān)的基因,其作為轉(zhuǎn)錄因子在影響性別發(fā)育的過程中發(fā)揮重要作用。SRY基因是雄性性別決定基因,在腦黑質(zhì)的形成過程中發(fā)揮關(guān)鍵作用(Natàlia et al.,2009);Cbln1基因在雄性小鼠(Mus musculus)中高表達(dá),且在雄性小鼠性別發(fā)育過程中不可或缺(Ikeda et al.,2012);LOC101160739基因與雄性個體的性行為有關(guān)(Pauletto et al.,2018)。在硬骨魚類中,Tcf12基因在雄性鰷魚(Pimephales promelas)個體中參與抗雌性激素反應(yīng),在其性別發(fā)育及繁殖過程中發(fā)揮重要作用(Garcia-Reyero et al.,2009);PSCA基因在雄性黃顙魚(Pelteobagrus fulvidraco)腦組織中特異表達(dá)(Lu et al.,2015);同樣,在雌性魚類腦組織中也存在一些與性別相關(guān)的基因,如fzd10基因參與斑馬魚(Danio rerio)的Wnt信號通路,與雌性個體的性別發(fā)育相關(guān),而spry4基因通過抑制受體酪氨酸激酶(RPTKs)信號,對維持雌性腦組織的正常發(fā)育起關(guān)鍵作用(Santos et al.,2008);Cyp19a1b基因則參與黑鯛(Acanthopagrus schlegeli)雌激素的合成(Wu et al.,2010)。此外,諸多配子基因?qū)Υ嬖谛詣e差異表達(dá)方式,如chd1z/chd1w(Agate et al.,2004)、Utx/Uty(Xu et al.,2005)和Usp9x/Usp9y(Xu et al.,2008)等,其在兩性發(fā)育過程中均發(fā)揮重要作用?!颈狙芯壳腥朦c(diǎn)】本課題組前期已從七彩神仙魚性腺轉(zhuǎn)錄組中鑒定出與性別相關(guān)的基因,并分析其相關(guān)功能(徐哲,2018),但針對七彩神仙魚腦組織中與性別差異表達(dá)相關(guān)的基因尚無研究報道?!緮M解決的關(guān)鍵問題】利用Illumina HiSeq 6000測序平臺對七彩神仙魚轉(zhuǎn)錄組進(jìn)行測序分析,篩選出雌、雄魚腦組織差異表達(dá)基因,為揭示腦組織性別相關(guān)基因調(diào)控繁殖生理機(jī)制打下基礎(chǔ)。

      1 材料與方法

      1. 1 樣品采集

      從上海海洋大學(xué)濱海養(yǎng)殖基地七彩神仙魚養(yǎng)殖車間選取12月齡性成熟七彩神仙魚雄魚3條(99.0±15.8 g/尾)、雌魚3條(90.0±13.2 g/尾)。供試驗(yàn)七彩神仙魚經(jīng)100 mg/L MS-222麻醉后,分別采集其腦組織立即冷凍,-80 ℃液氮保存?zhèn)溆谩?/p>

      1. 2 RNA提取與cDNA文庫構(gòu)建及測序

      按miRNeasy試劑盒(美國QIAGEN公司)說明提取樣本總RNA,經(jīng)質(zhì)檢合格后使用連接有Oligo(dT)的磁珠富集mRNAs。使用六堿基隨機(jī)引物(Random hexamers)合成cDNA第一鏈,隨后加入緩沖液、dNTPs、RNaseH和DNA Polymerase I合成cDNA第二鏈;經(jīng)修復(fù)、篩選后進(jìn)行PCR擴(kuò)增并構(gòu)建cDNA文庫。文庫質(zhì)檢合格后采用Illumina HiSeq 6000進(jìn)行測序分析。

      1. 3 mRNAs轉(zhuǎn)錄組數(shù)據(jù)生物信息學(xué)分析

      測序獲得的原始數(shù)據(jù)(Raw reads)經(jīng)預(yù)處理,使用Cutadapt去除測序接頭,以fqtrim過濾掉不合格序列即得到有效數(shù)據(jù),然后通過Trinity組裝獲得基因并進(jìn)行質(zhì)量評判,包括基因長度、GC含量和N50等。采用DIAMOND進(jìn)行功能注釋,并選取NR、GO、KEGG、Pfam、Swiss-Prot和eggNOG等數(shù)據(jù)庫進(jìn)行比對;同時對比雌、雄魚腦組織中顯著差異表達(dá)的基因[表達(dá)量差異倍數(shù)(log2絕對值)≥1,P≤0.05],并結(jié)合其在NR、GO、KEGG、Pfam、Swiss-Prot和eggNOG等數(shù)據(jù)庫中的注釋信息,篩選出雌、雄魚腦組織間的差異表達(dá)基因。

      1. 4 實(shí)時熒光定量PCR驗(yàn)證

      為了驗(yàn)證測序篩選結(jié)果的準(zhǔn)確性和可靠性,采用實(shí)時熒光定量PCR隨機(jī)在mRNAs轉(zhuǎn)錄組中選擇6個差異表達(dá)基因進(jìn)行驗(yàn)證。擴(kuò)增引物(表1)采用Primer 5.0進(jìn)行設(shè)計(jì),并委托南京建成科技有限公司合成。實(shí)時熒光定量PCR擴(kuò)增程序:95 ℃預(yù)變性2 min;95 ℃ 10 s;60 ℃ 20 s;進(jìn)行40個循環(huán);72 ℃延伸60 s。經(jīng)SYBR通道檢測熒光信號,發(fā)現(xiàn)18S rRNA在七彩神仙魚雌、雄魚腦組織中無差別且穩(wěn)定表達(dá),因此將其作為本研究的管家基因。管家基因和目的基因的擴(kuò)增效率相同,采用2-ΔΔCt法換算目的基因相對表達(dá)量。

      2 結(jié)果與分析

      2. 1 mRNAs轉(zhuǎn)錄組組裝及功能注釋結(jié)果

      利用Illumina HiSeq 6000平臺對構(gòu)建的七彩神仙魚腦組織cDNA文庫進(jìn)行測序分析,結(jié)果在6個cDNA文庫中共獲得337190200條Raw reads;經(jīng)質(zhì)量篩選后獲得34109個基因(平均長度1007.00 bp)和67488個轉(zhuǎn)錄本(平均長度694.00 bp)。將34109個基因輸入NR、GO、KEGG、Pfam、Swiss-Prot和eggNOG等數(shù)據(jù)庫中進(jìn)行比對,結(jié)果(表2)顯示,在NR數(shù)據(jù)庫中共比對出16220個基因(占47.55%),比對得到序列最多的是尼羅羅非魚(Oreochromis niloticus)(占30.04%),其次是斑馬擬麗魚(Maylandia zebra)(占9.61%)和新亮麗鯛(Neolamprologus brichardi)(占7.34%),說明七彩神仙魚轉(zhuǎn)錄組測序比對得到親緣關(guān)系最近的物種是羅非魚。在eggNOG數(shù)據(jù)庫中共比對出15242個基因(占44.69%),發(fā)現(xiàn)大量基因參與細(xì)胞運(yùn)輸、囊泡運(yùn)輸、信號轉(zhuǎn)導(dǎo)、蛋白質(zhì)翻譯及轉(zhuǎn)錄等過程。在GO數(shù)據(jù)庫中共比對出13624個基因(占39.94%),分別包含在25個生物過程(Biological process)、15個細(xì)胞組成(Cellular component)和10個分子功能(Molecular function)中(圖1)。在生物過程中,以參與生化過程、DNA模板轉(zhuǎn)錄調(diào)節(jié)、發(fā)育過程及信號傳導(dǎo)過程的基因最多;在細(xì)胞組成中,以參與細(xì)胞膜及膜組成的基因最多;在分子功能中,則以參與金屬離子結(jié)合、分子功能及ATP結(jié)合過程的基因最多。

      在生物體中,不同基因產(chǎn)物會通過有序的相互協(xié)調(diào)而行使其生物學(xué)功能。在KEGG數(shù)據(jù)庫中有12746個基因(占37.37%)被富集到3274個KEGG信號通路,可劃分為有機(jī)系統(tǒng)、新陳代謝、人類疾病、遺傳信息加工、環(huán)境信息處理和細(xì)胞過程等六大類(圖2)。其中,以參與細(xì)胞過程的基因最多(占18.29%),主要參與細(xì)胞運(yùn)輸、分解代謝及生長調(diào)節(jié)過程;有11.86%的基因參與有機(jī)系統(tǒng),包括內(nèi)分泌系統(tǒng)、循環(huán)系統(tǒng)和免疫系統(tǒng);有15.35%的基因參與新陳代謝,包括氨基酸代謝、脂質(zhì)代謝和碳水化合物代謝;有5.60%的基因參與人類疾病,主要涉及內(nèi)分泌代謝疾病和傳染疾病;有12.21%的基因參與遺傳信息加工,包括翻譯、折疊、分類和降解;有15.07%的基因參與環(huán)境信息處理,主要涉及信號傳導(dǎo)和信號分子相互作用。

      2. 2 七彩神仙魚雌、雄魚腦組織間的差異表達(dá)基因

      依據(jù)雌、雄魚腦組織表達(dá)量差異倍數(shù)(log2絕對值)≥1且P≤0.05的標(biāo)準(zhǔn),篩選七彩神仙魚雌、雄魚腦組織間的差異表達(dá)基因,結(jié)果獲得85個差異表達(dá)基因。85個差異表達(dá)基因在6個樣品中的具體表達(dá)情況詳見圖3。與雌魚相比,有61個差異表達(dá)基因在雄魚腦組織中呈上調(diào)表達(dá)、24個差異表達(dá)基因呈下調(diào)表達(dá)。將部分差異表達(dá)基因的GO功能注釋結(jié)果與KEGG信號通路富集分析結(jié)果進(jìn)行對比,結(jié)果(表3)發(fā)現(xiàn):(1)涉及細(xì)胞突觸傳遞、激素調(diào)控及信號傳導(dǎo)的基因呈差異表達(dá),且呈下調(diào)趨勢;(2)涉及黑色素濃集激素、催乳素釋放激素、生長激素和G蛋白偶聯(lián)受體的基因呈差異表達(dá),也呈下調(diào)趨勢;(3)涉及離子運(yùn)輸和免疫反應(yīng)的基因也呈差異表達(dá),但呈上調(diào)趨勢。

      2. 3 實(shí)時熒光定量PCR驗(yàn)證結(jié)果

      隨機(jī)選取6個差異表達(dá)基因(Prlh、pitx2、MCH、LMX1A、KBP和CRP),采用實(shí)時熒光定量PCR檢測其在七彩神仙魚雌、雄魚腦組織中的表達(dá)情況,結(jié)果(圖4)顯示,Prlh、pitx2、MCH、LMX1A和KBP基因在雌魚腦組織中的相對表達(dá)量較高,而CRP基因在雄魚腦組織中的相對表達(dá)量較高??梢?,實(shí)時熒光定量PCR驗(yàn)證結(jié)果與Illumina HiSeq 6000測序結(jié)果基本一致,說明Illumina HiSeq 6000測序結(jié)果準(zhǔn)確可靠。

      3 討論

      本研究對七彩神仙魚雌、雄魚腦組織轉(zhuǎn)錄組進(jìn)行測序、組裝和注釋,結(jié)果獲得85個差異表達(dá)基因;與雌魚相比,有61個差異表達(dá)基因在雄魚腦組織中呈上調(diào)表達(dá)、24個差異表達(dá)基因呈下調(diào)表達(dá)。這些差異表達(dá)基因主要涉及到激素合成、細(xì)胞組成、信號傳導(dǎo)和免疫反應(yīng)等方面。MCH是一種由下丘腦外側(cè)神經(jīng)元產(chǎn)生的高效增強(qiáng)食物攝取的調(diào)節(jié)因子(Tritos and Maratos-Flier,1999),已有研究證實(shí)GnRH神經(jīng)元所在區(qū)域存在MCH神經(jīng)纖維,且在GnRH神經(jīng)元活動的視前區(qū)高表達(dá),對GnRH神經(jīng)元有直接或間接的調(diào)節(jié)作用,而影響GnRH和促黃體素的分泌(Williamson et al.,2005)。GnRH通過調(diào)節(jié)MCH而調(diào)控魚類的攝食情況(Amiya et al.,2008),即MCH可作為能量調(diào)節(jié)與生殖調(diào)節(jié)間的另一種潛在整合信號,通過下丘腦的食欲調(diào)節(jié)因子影響神經(jīng)系統(tǒng)的生殖功能(Smith and Grove,2002)。因此,MCH基因在七彩神仙魚雌魚腦組織中高表達(dá)可能與其生殖功能存在密切聯(lián)系。Prlh神經(jīng)纖維可投射到垂體中,促使垂體前葉細(xì)胞分泌催乳素并廣泛參與神經(jīng)分泌及自主神經(jīng)調(diào)節(jié)(Wang et al.,2012),在下丘腦—垂體—卵巢軸中發(fā)揮重要作用(Kataoka et al.,2001),或通過大腦視前區(qū)中的GnRH神經(jīng)元介導(dǎo)促黃體生成激素分泌(Watanobe,2001);此外,Prlh可刺激人類垂體腺分泌生長激素。pitx2是POU1F-PROP1通路的成員之一(Davis et al.,2010),在腦和垂體等器官的發(fā)育過程中發(fā)揮重要作用(Rodríguez-León et al.,2008;Liu et al.,2013)。pitx2通過調(diào)節(jié)POU1F1、LHX3及PROP1等垂體轉(zhuǎn)錄因子,而影響催乳素、促黃體生成激素、促卵泡激素和生長激素的分泌。此外,pitx2基因在胚胎、成體體細(xì)胞及生殖細(xì)胞中均有表達(dá),在生物體胚胎至性成熟階段發(fā)揮著性別調(diào)控作用(Nandi et al.,2011)。本研究發(fā)現(xiàn)MCH、Prlh和pitx2基因在七彩神仙魚雌魚腦組織中高表達(dá),推測這些基因在調(diào)節(jié)七彩神仙魚腦組織性別相關(guān)激素的合成與釋放過程中發(fā)揮重要作用。

      在七彩神仙魚雄魚腦組織中也存在一些高表達(dá)的差異表達(dá)基因,包括DSCAM、IGDCC3、UNC93B1、AKR1B1和Nid1等基因。DSCAM是細(xì)胞答黏附分子(Ig-CAM)免疫球蛋白家族的成員之一,在果蠅、小鼠及人類的神經(jīng)系統(tǒng)中廣泛表達(dá),具有較高的表達(dá)水平,可能在神經(jīng)系統(tǒng)的發(fā)育及神經(jīng)網(wǎng)絡(luò)的形成過程中發(fā)揮重要作用(Schmucker et al.,2000)。劉聰輝(2016)研究表明,DSCAM基因除了在哺乳動物的腦組織中高表達(dá)外,還在精巢中特異性表達(dá),且參與精子的形成及精卵識別過程,但在卵巢中幾乎不表達(dá)。IGDCC3是免疫球蛋白家族的DCC類成員,在腦組織中大量表達(dá),且在精巢中的表達(dá)量是在卵巢中的5倍(Fagerberg et al.,2014)。UNC93B1是一種Toll樣受體(TLRs)信號調(diào)節(jié)劑,在TLRs從內(nèi)質(zhì)網(wǎng)向內(nèi)溶酶體的運(yùn)輸過程中扮演重要角色(Lee et al.,2013)。在大腦皮質(zhì)、海馬體和小腦中均發(fā)現(xiàn)有UNC93A基因表達(dá),且在許多神經(jīng)元包括GnRH神經(jīng)元中也有表達(dá)(Ceder et al.,2017)。AKR1B1是多元醇形成途徑的成員,是一種利用煙酰胺腺嘌呤二核苷酸磷酸(NADPH)作為電子供體將葡萄糖還原成山梨醇的生物酶,而山梨醇是精子的能量來源(Oates,2012),因此AKR1B1與精子的運(yùn)動存在密切聯(lián)系,其在精子、附睪上皮和附睪小體細(xì)胞中均有表達(dá),且以在附睪近端和中段的表達(dá)活性最高(Frenette et al.,2003)。在小鼠的相關(guān)研究中還發(fā)現(xiàn),Nid1與精巢的正常生理代謝有關(guān),在精巢雄性激素受體及睪丸支持細(xì)胞中均有表達(dá)(Tainaka et al.,2012)。上述差異表達(dá)基因在七彩神仙魚雄魚腦組織中高表達(dá),故推測其在七彩神仙魚雄性生殖系統(tǒng)中發(fā)揮重要作用。

      本研究基于Illumina HiSeq高通量測序技術(shù)分析七彩神仙魚雌、雄魚腦組織性別差異基因的表達(dá)情況,并通過生物信息學(xué)分析方法進(jìn)行篩選,最終獲得85個差異表達(dá)基因(61個在雄魚腦組織中高表達(dá),24個在雌魚腦組織中高表達(dá)),其中MCH、Prlh、pitx2、DSCAM、IGDCC3、UNC93B1、AKR1B1和Nid1等基因可能在調(diào)節(jié)大腦類固醇激素形成及配子發(fā)生的過程中發(fā)揮重要作用,可作為候選基因應(yīng)用于七彩神仙魚腦組織性別相關(guān)基因調(diào)控繁殖生理機(jī)制研究。

      4 結(jié)論

      MCH、Prlh、pitx2、DSCAM、IGDCC3、UNC-93B1、AKR1B1和Nid1等基因在七彩神仙魚雌、雄魚腦組織中呈明顯的差異表達(dá),可能在調(diào)節(jié)大腦類固醇激素形成及配子發(fā)生的過程中發(fā)揮重要作用,可作為候選基因應(yīng)用于七彩神仙魚腦組織性別相關(guān)基因調(diào)控繁殖生理機(jī)制研究。

      參考文獻(xiàn):

      李浩然,歐仁建,邱軍強(qiáng),郭微微,楊先樂,胡鯤. 2015. 立達(dá)霉對七彩神仙魚卵水霉病的防治效果[J]. 南方農(nóng)業(yè)學(xué)報,46(4):697-701. [Li H R,Ou R J,Qiu J Q,Guo W W,Yang X L,Hu K. 2015. Control effect of Ridomil on saprolegniasis infected discus fish(Symphysodon aequifasciatus) zygotes[J]. Journal of Southern Agriculture,46(4):697-701.]

      林睿涓. 2017. 七彩神仙魚(Symphysodon haraldi)性腺轉(zhuǎn)錄組分析及vasa基因的時空表達(dá)[D]. 上海:上海海洋大學(xué). [Lin R J. 2017. Gonad transcriptome of discus fish (Symphysodon haraldi) and expression of vasa gene[D]. Shanghai:Shanghai Ocean University.]

      劉聰輝. 2016. 長牡蠣免疫球蛋白超家族(IgSF)成員結(jié)構(gòu)與功能的研究[D]. 北京:中國科學(xué)院大學(xué). [Liu C H. 2016. The structural and functional study of the immunoglobulin superfamily members in Crassostrea gigas[D]. Beijing:University of Chinese Academy of Sciences.]

      劉曉東,陳再忠. 2008. 七彩神仙魚皮膚色素細(xì)胞觀察及類胡蘿卜素組分分析[J]. 上海水產(chǎn)大學(xué)學(xué)報,17(3):339-343. [Liu X D,Chen Z Z. 2008. Study on the chromatophores and the carotenoid components in the skin of discus fish (Symphysodon spp.)[J]. Journal of Shanghai Fisheries University,17(3):339-343.]

      徐哲. 2018. 七彩神仙魚(Symphysodon aequifasciatus)性腺mRNAs與miRNAs表達(dá)分析[D]. 上海:上海海洋大學(xué). [Xu Z. 2018. Integrating analyse of mRNAs and miRNAs in the gonad of Smphysodon aequifasciatus[D]. Shanghai:Shanghai Ocean University.]

      Agate R J,Choe M,Arnold A P. 2004. Sex differences in structure and expression of the sex chromosome genes CHD1Z and CHD1W in zebra finches[J]. Molecular Bio-logy and Evolution,21(2):384-396.

      Amiya N,Amano M,Yamanome T,Yamamori K,Takahashi A. 2008. Effects of background color on GnRH and MCH levels in the barfin flounder brain[J]. General and Comparative Endocrinology,155(1):88-93.

      Ceder M M,Lekholm E,Hellsten S V,Perland E,F(xiàn)redriksson R. 2017. The neuronal and peripheral expressed membrane-bound UNC93A respond to nutrient availability in mice[J]. Frontiers in Molecular Neuroscience,10:351. doi:10.3389/fnmol.2017.00351.

      Davis S W,Castinetti F,Carvalho L R,Ellsworth B S,Potok M A,Lyons R H,Brinkmeier M L,Raetzman L T,Ca-rninci P,Mortensen A H,Hayashizaki Y,Arnhold I J P,Mendon?a B B,Brue T,Camper S A. 2010. Molecular mechanisms of pituitary organogenesis:In search of novel regulatory genes[J]. Molecular and Cellular Endocrino-logy,323(1):4-19.

      Fagerberg L,Hallstr?m B M,Oksvold P,Kampf C,Djurei-novic D,Odeberg J,Habuka M,Tahmasebpoor S,Danielsson A,Edlund K,Asplund A,Sj?stedt E,Lundberg E,Al-Khalili Szigyarto C,Skogs M,Takanen J O,Berling H,Tegel H,Mulder J,Nilsson P,Schwenk J M,Lindskog C,Danielsson F,Mardinoglu A,Sivertsson A,von Feilitzen K,F(xiàn)orsberg M,Zwahlen M,Olsson I,Navani S,Huss M,Nielsen J,Ponten F,Uhlén M. 2014. Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics[J]. Molecular & Cellular Proteomics,13(2):397-406.

      Frenette G,Lessard C,Madore E,F(xiàn)ortier M A,Sullivan R. 2003. Aldose reductase and macrophage migration inhibitory factor are associated with epididymosomes and spermatozoa in the bovine epididymis[J]. Biology of Reproduction,69(5):1586-1592.

      Garcia-Reyero N,Kroll K J,Liu L,Orlando E F,Watanabe K H,Sepúlveda M S,Villeneuve D L,Perkins E J,Ankley G T,Denslow N D. 2009. Gene expression responses in male fathead minnows exposed to binary mixtures of an estrogen and antiestrogen[J]. BMC Genomics,10:308. doi:10.1186/1471-2164-10-308.

      Ikeda Y,Tajima S,Izawa-Ishizawa Y,Kihira Y,Ishizawa K,Tomita S,Tsuchiya K,Tamaki T. 2012. Estrogen regulates hepcidin expression via GPR30-BMP6-dependent signaling in hepatocytes[J]. PLoS One,7(7):e40465.

      Kataoka Y,Iijima N,Yano T,Kakihara K,Hayashi S,Hinuma S,Honjo H,Hayashi S,Tanaka M,Ibata Y. 2001. Gona-dal regulation of PrRP mRNAs expression in the nucleus tractus solitarius and ventral and lateral reticular nuclei of the rat[J]. Brain Research,87(1):42-47.

      Lee B L,Moon J E,Shu J H,Yuan L,Newman Z R,Schekman R,Barton G M. 2013. UNC93B1 mediates differential trafficking of endosomal TLRs[J]. eLife,2:e00291. doi:10.7554/eLife.00291.

      Liu Y,Huang Y,Zhu G Z. 2013. Cyclin A1 is a transcriptio-nal target of PITX2 and overexpressed in papillary thyroid carcinoma[J]. Molecular and Cellular Biochemistry,384(1-2):221-227.

      Lu J G,Zheng M,Zheng J J,Liu J,Liu Y Z,Peng L N,Wang P P,Zhang X F,Wang Q S,Luan P X,Mahbooband S,Sun X W. 2015. Transcriptomic analyses reveal novel genes with sexually dimorphic expression in yellow catfish(Pelteobagrus fulvidraco) brain[J]. Marine Biotechnology(New York),17(5):613-623.

      Nandi S S,Ghosh P,Roy S S. 2011. Expression of PITX2 homeodomain transcription factor during rat gonadal deve-lopment in a sexually dimorphic manner[J]. Cellular Phy-siology and Biochemistry,27(2):159-170.

      Natàlia G R,Kroll K J,Liu L,Orlando E F,Watanabe K H,Sepúlveda M S,Villeneuve D L,Perkins E J,Ankley G T,Denslow N D. 2009. Gene expression responses in male fathead minnows exposed to binary mixtures of an estrogen and antiestrogen[J]. BMC Genomics,10:308. doi:10.1186/1471-2164-10-308.

      Oates P J. 2002. Polyol pathway and diabetic peripheral neuropathy[J]. International Review of Neurobiology,50:325-392.

      Pauletto M,Manousaki T,F(xiàn)erraresso S,Babbucci M,Tsakogia-nnis A,Louro B,Vitulo N,Quoc V H,Carraro R,Bertotto D,F(xiàn)ranch R,Maroso F,Aslam M L,Sonesson A K,Simionati B,Malacrida G,Cestaro A,Caberlotto S,Sarropoulou E,Mylonas C C,Power D M,Patarnello T,Cana-rio A V M,Tsigenopoulos C,Bargelloni L. 2018. Geno-mic analysis of Sparus aurata reveals the evolutionary dynamics of sex-biased genes in a sequential hermaphrodite fish[J]. Communications Biology,1:119. doi:10.1038/s42003-018-0122-7.

      Rodríguez-León J,Esteban C R,Martí M,Santiago-Josefat B,Dubova I,Rubiralta X,Belmonte J C I. 2008. Pitx2 regulates gonad morphogenesis[J]. Proceedings of the Natio-nal Academy of Sciences of the United States of America,105(32):11242-11247.

      Santos E M,Kille P,Workman V L,Paull G C,Tyler C R. 2008. Sexually dimorphic gene expression in the brains of mature zebrafish[J]. Comparative Biochemistry and Physiology. Part A. Molecular and Integrative Physiology,149(3):314-324.

      Schmucker D,Clemens J C,Shu H,Worby C A,Xiao J,Muda M,Dixon J E,Zipursky S L. 2000. Drosophila DSCAM is an axon guidance receptor exhibiting extraordinary molecular diversity[J]. Cell,101(6):671-684.

      Smith M S,Grove K L. 2002. Integration of the regulation of reproductive function and energy balance:Lactation as a model[J]. Frontiers in Neuroendocrinology,23(3):225-256.

      Tainaka H,Takahashi H,Umezawa M,Tanaka H,Nishimune Y,Oshio S,Takeda K. 2012. Evaluation of the testicular toxicity of prenatal exposure to bisphenol a based on microarray analysis combined with MeSH annotation[J]. The Journal of Toxicological Sciences,37(3):539-548.

      Tritos N A,Maratos-Flier E. 1999. Two important systems in energy homeostasis:Melanocortins and melanin-concentrating hormone[J]. Neuropeptides,33(5):339-349.

      Wang Y J,Wang C Y,Wu Y,Wu Y T,Huang G A,Li J,Leung F C. 2012. Identification of the receptors for prolactin-releasing peptide(PrRP) and Carassius RFamide peptide(C-RFa) in chickens[J]. Endocrinology,153(4):1861-1874.

      Watanobe H. 2001. In vivo release of prolactin-releasing peptide in rat hypothalamus in association with luteinizing hormone and prolactin surges[J]. Neuroendocrinology,74(6):359-366.

      Weltzien F A,Andersson E,Andersen ?,Shalchian-Tabrizi K,Norberg B. 2004. The brain-pituitary-gonad axis in male teleosts,with special emphasis on flatfish(Pleuronectiformes)[J]. Comparative Biochemistry and Physiology. Part A. Molecular and Integrative Physiology,137(3):447-477.

      Williamson H S,Grove K L,Smith M S. 2005. Melanin concentrating hormone(MCH):A novel neural pathway for regulation of GnRH neurons[J]. Brain Research,1041(2):117-124.

      Wu G C,Tomy S,Lee M F,Lee Y H,Yueh W S,Lin C J,Lau E L,Chang C F. 2010. Sex differentiation and sex change in the protandrous black porgy,Acanthopagrus schlegeli[J]. General and Comparative Endocrinology,167(3):417-421.

      Xu J,Deng X X,Watkins R,Disteche C M. 2008. Sex-speci-fic differences in expression of histone demethylases Utx and Uty in mouse brain and neurons[J]. The Journal of Neuroscience,28(17):4521-4527.

      Xu J,Taya S,Kaibuchi K,Arnold A P. 2005. Sexually dimorphic expression of Usp9x is related to sex chromosome complement in adult mouse brain[J]. The European Journal of Neuroscience,21(11):3017-3022.

      (責(zé)任編輯 蘭宗寶)

      收稿日期:2020-02-18

      基金項(xiàng)目:上海市自然科學(xué)基金項(xiàng)目(20ZR1423600);上海市揚(yáng)帆人才計(jì)劃項(xiàng)目(19YF1419400)

      作者簡介:*為通訊作者,陳再忠(1972-),博士,教授,主要從事觀賞魚繁殖遺傳育種生物學(xué)研究工作,E-mail:chenzz@shou.edu.cn。劉怡南(1994-),研究方向?yàn)橛^賞魚繁殖生物學(xué),E-mail:liuyinan941024@163.com

      猜你喜歡
      轉(zhuǎn)錄組腦組織
      小腦組織壓片快速制作在組織學(xué)實(shí)驗(yàn)教學(xué)中的應(yīng)用
      芒果苷對自發(fā)性高血壓大鼠腦組織炎癥損傷的保護(hù)作用
      中成藥(2017年6期)2017-06-13 07:30:35
      多穗柯轉(zhuǎn)錄組分析及黃酮類化合物合成相關(guān)基因的挖掘
      基于轉(zhuǎn)錄組測序的山茱萸次生代謝生物合成相關(guān)基因的挖掘
      金釵石斛轉(zhuǎn)錄組SSR位點(diǎn)信息分析
      人參屬藥用植物轉(zhuǎn)錄組研究進(jìn)展
      愈癇靈方對PTZ致癇大鼠腦組織海馬CA3區(qū)TLR4、NF-kBP65、TNF-α表達(dá)的影響
      DNA雙加氧酶TET2在老年癡呆動物模型腦組織中的表達(dá)及其對氧化應(yīng)激中神經(jīng)元的保護(hù)作用
      大豆轉(zhuǎn)錄組測序研究進(jìn)展綜述
      山楂葉總黃酮對2型糖尿病大鼠腦組織的保護(hù)作用
      南平市| 元谋县| 客服| 宽城| 湟源县| 常熟市| 和田市| 长治县| 益阳市| 德保县| 武清区| 南通市| 田阳县| 芜湖市| 吴川市| 南宫市| 安庆市| 惠水县| 镇安县| 赞皇县| 三门县| 洞口县| 北川| 锡林浩特市| 葫芦岛市| 昭通市| 鄂尔多斯市| 东安县| 衢州市| 鄂伦春自治旗| 常德市| 怀安县| 新源县| 社旗县| 青川县| 玉屏| 吴忠市| 康平县| 宜良县| 彰武县| 简阳市|