朱家紅 夏棟楠 王穎 郭冬 李輝亮 梅文莉 彭世清
摘 要:海南龍血樹是國產(chǎn)血竭的主要基源植物,其血竭主要化學(xué)成分為類黃酮化合物。為進(jìn)一步了解DcWD40-1在類黃酮生物合成中的潛在功能和作用機(jī)制,該研究根據(jù)海南龍血樹轉(zhuǎn)錄組數(shù)據(jù),利用RT-PCR技術(shù)在海南龍血樹中克隆了一個(gè)WD40基因DcWD40-1,該基因全長1 550 bp,包含一個(gè)1 353 bp的開放閱讀框,編碼450個(gè)氨基酸,蛋白質(zhì)分子量50.77 kD,理論等電點(diǎn)5.71。生物信息學(xué)分析顯示,DcWD40-1屬于WD40蛋白家族成員,具有5個(gè)保守的WD40結(jié)構(gòu)域,和其他植物WD40蛋白同源性高,保守性強(qiáng)。利用Genome Walking方法分離了1 503 bp的DcWD40-1啟動(dòng)子序列,該區(qū)域具有典型真核生物啟動(dòng)子結(jié)構(gòu)特征,并含有多個(gè)應(yīng)答激素和脅迫的響應(yīng)元件。表達(dá)分析顯示,血竭誘導(dǎo)劑能夠誘導(dǎo)DcWD40-1的表達(dá),DcWD40-1的變化與血竭形成及類黃酮積累正相關(guān)。此外,DcWD40-1也能對(duì)茉莉酸甲酯、細(xì)胞分裂素、油菜素內(nèi)酯和UV-B處理做出積極響應(yīng)。
關(guān)鍵詞:海南龍血樹,血竭,類黃酮,WD40轉(zhuǎn)錄因子,基因表達(dá)
中圖分類號(hào):Q949.45文獻(xiàn)標(biāo)識(shí)碼:A
Abstract:Hainan Dragon trees (Dracaena cambodiana) are the main plant resources of dragons blood in China,and the main chemical constituents of the dragons blood are flavonoids. The recent studies about dragons blood mainly focus on the chemical constituents and pharmacological activities,while the molecular mechanisms of dragons blood formation remain unknown. WD40 transcription factor plays an important role in flavonoid accumulation. In this study,a WD40 gene named DcWD40-1 was cloned in Dracaena cambodiana based on transcriptome data and RT-PCR techno-logy. The full-length of cDNA of DcWD40-1 was 1 550 bp,containing 1 353 bp opening reading frame (ORF),and encoding 450 amino acids with the calculated molecular weight of 50.77 kD and calculated pI 5.71. Bioinformatics analysis showed that DcWD40-1 belonged to a member of WD40 superfamily,had five conserved WD40 domains,and shared high identities to WD40 proteins with other plants. A 1 503 bp-length promoter region of DcWD40-1 was isolated by Genome Walking method,which had structural characteristics of typical eukaryotic promoters. The promoter region of DcWD40-1 contained lots of hormone responsible elements,such as abscisic acid-responsive element,auxin-responsive element,salicylic acid-responsive element and jasmonic acid-responsive element; also had many cis acting elements related stress such as light,cold,hot and anaerobic inducer. Expression analysis showed that DcWD40-1 was induced by dragons blood inducers,positively related to flavonoids accumulation and formation of dragons blood. In addition,DcWD40-1 can also respond positively to jasmonic acid,cytokinin,brassinosteroid and UV-B treatment. These results will lay the foundation for further study of the potential functions and mechanisms of DcWD40-1 in flavonoid biosynthesis in Dracaena cambodiana.
Key words:Dracaena cambodiana,dragons blood,flavonoids,WD40 transcription factor,gene expression
血竭是一種傳統(tǒng)名貴中藥,具有活血化瘀、消炎鎮(zhèn)痛和止血生肌等功效 (Gupta et al.,2008; Wang et al.,2011)。海南龍血樹 (Dracaena cambodiana)是國產(chǎn)血竭的基源植物 (鄭道君等,2009; Wang et al.,2013)。前期研究表明海南龍血樹血竭中的主要化學(xué)成分以類黃酮化合物為主(Chen et al.,2012; Zheng et al.,2012; Wang et al.,2017)。海南龍血樹及其血竭中的類黃酮化合物具有多種生物學(xué)活性,如抗癌、抗腫瘤、抗炎、抗真菌、凝血酶抑制和抗增殖活性等(Luo et al.,2011; Mei et al.,2013; Wang et al.,2017)。目前,人們對(duì)血竭的化學(xué)成分、藥理活性及臨床應(yīng)用的研究較多,但對(duì)類黃酮積累和血竭形成機(jī)制并不了解 (Zhu et al.,2016)。
植物類黃酮生物合成主要受結(jié)構(gòu)基因(編碼類黃酮生物合成的各種酶類)和調(diào)節(jié)基因(轉(zhuǎn)錄因子)的控制 (Tohge et al.,2017)。WD40轉(zhuǎn)錄因子可與MYB和bHLH轉(zhuǎn)錄因子互作形成MBW復(fù)合體協(xié)同調(diào)控多個(gè)結(jié)構(gòu)基因的表達(dá),參與類黃酮的生物合成(Xu et al.,2015)。WD40蛋白是真核生物中普遍存在的蛋白家族之一,在進(jìn)化中高度保守,通常含有多個(gè)由40~60個(gè)氨基酸殘基組成的WD40重復(fù)基序 (Xu & Min,2011)。目前參與類黃酮合成相關(guān)的WD40基因已在多種植物中得到分離與鑒定,如擬南TTG1 (Baudry et al.,2004)、蘋果MdTTG1 (An et al.,2012)、楊梅MrWD40-1(Liu et al.,2013)、柿DkWDR1 (Naval et al.,2016)、石榴PgWD40 (Bensimhon et al.,2011)、苦蕎麥FtWD40 (Yao et al.,2017)、西紅柿SlAN11 (Gao et al.,2018),但在海南龍血樹中還未見WD40類轉(zhuǎn)錄因子的報(bào)道。
在先前的研究中,項(xiàng)目組采用“無機(jī)鹽誘導(dǎo)劑輸液法”專利技術(shù)對(duì)海南龍血樹進(jìn)行誘導(dǎo)產(chǎn)生了血竭,并對(duì)血竭的成分及誘導(dǎo)前后的轉(zhuǎn)錄組數(shù)據(jù)進(jìn)行了分析,推導(dǎo)出類黃酮生物合成途徑,并篩選獲得一條編碼WD40的基因,推測其可能在類黃酮生物合成過程中具有調(diào)控作用 (Zhu et al.,2016)。本研究將在此基礎(chǔ)上對(duì)該基因進(jìn)行克隆,并分析其時(shí)空表達(dá)特征,為研究其在類黃酮生物合成中的潛在功能和作用機(jī)制奠定基礎(chǔ)。
1 材料與方法
1.1 材料
實(shí)驗(yàn)所需的植物材料海南龍血樹種植于中國熱帶農(nóng)業(yè)科學(xué)院生物技術(shù)研究所內(nèi)。使用10%血竭誘導(dǎo)劑通過輸液的方法注射海南龍血樹莖部,處理后 0、3、6 d取樣,具體參考Zhu et al.(2016);選取生長一致的組培苗移置于液體培養(yǎng)基中7 d后進(jìn)行脅迫紫外輻射脅迫(UV-B)處理和葉片噴施200 μm·茉莉酸(MeJA)、脫落酸(ABA)、細(xì)胞分裂素(CTK)和油菜素內(nèi)酯(BR)處理,處理0、3、12、24 h后取樣。所有樣品采集后,液氮速凍,于-80 ℃保存。
1.2 核酸提取及cDNA合成
總RNA和DNA按照成都福際生物技術(shù)有限公司(FOREGENE)的Plant Total RNA Isolation Kit試劑盒和Plant DNA Isolation Kit提取??俁NA按照江蘇愚公生命科技有限公司(NOVA Yugong Biolabs)的All-in-One First-Strand Synthesis MasterMix (with DNase I)試劑盒的方法反轉(zhuǎn)錄為cDNA。
1.3 DcWD40-1的基因及啟動(dòng)子克隆
根據(jù)海南龍血樹轉(zhuǎn)錄組數(shù)據(jù)中WD40的EST序列,設(shè)計(jì)5′端特異引物WD40F:5′-CTACAAATTCATGTGAGCGG-3′和3′端引物WD40R:5′-CGGCAGCTCAGCTGCCTACAG-3′,分別以cDNA為模板對(duì)DcWD40-1進(jìn)行擴(kuò)增。擴(kuò)增產(chǎn)物經(jīng)瓊脂糖凝膠電泳鑒定,回收目的條帶與pMD19-T載體連接并轉(zhuǎn)化大腸桿菌DH5α,通過菌落PCR鑒定陽性克隆,送諾賽基因公司測序。利用ExPASy在線軟件(https://www.expasy.org/)分析預(yù)測蛋白的氨基酸組成、分子式、分子量和等電點(diǎn);利用PSORT (http://psort1.hgc.jp/form.html)預(yù)測亞細(xì)胞定位;利用DNAMAN軟件進(jìn)行氨基酸序列比對(duì)分析。
利用Clontech公司的Universal Genome Walker 2.0 Kit對(duì)DcWD40-1的啟動(dòng)子進(jìn)行克隆。將基因組DNA經(jīng)EcoRV、StuⅠ、PvuⅡ 和DraⅠ4種內(nèi)切酶酶切后,在T4連接酶作用下與接頭連接。以連接產(chǎn)物為模板,采用接頭引物(AP1和AP2,試劑盒提供)和基因特異引物(PWD:5′-TGGAGGTGGTGGGTATTTCG-3′;PWD2:5′-GATACTCGTTGCTGGATTATAGGA-3′)進(jìn)行兩輪PCR擴(kuò)增。擴(kuò)增產(chǎn)物經(jīng)瓊脂糖凝膠電泳鑒定,回收目的條帶與pMD19-T載體連接并轉(zhuǎn)化大腸桿菌DH5α,通過菌落PCR鑒定陽性克隆,送諾賽基因公司測序。利用在線工具PlantCARE(http://bioinformatics.psb.ugent.be/webtools/plantcare/html/)進(jìn)行啟動(dòng)子元件分析。
1.4 基因表達(dá)分析
利用SYBR Select Master Mix試劑盒在Mx3005P Real-Time PCR System上進(jìn)行qPCR分析。內(nèi)參基因?yàn)锳ctin,引物序列為qDcACT-F(5′-ACCGAGAGAGGGTACTCATT-3′),qDcACT-R (5′-CCAGCTCCTGCTCGTAATC-3′);目的基因引物qWD1-F(5′-GAATGGAGGTGGTGGGTATTT-3′)和qWD1-R (5′-TTTGTTTGATGGAGGAGAGAGA-3′)。qPCR反應(yīng)體積20 μL:10 μL 2×SYBR mix,正反向引物各1 μL (10 μm·),1 μL cDNA模板,7 μL ddH2O。 qPCR反應(yīng)條件:95 ℃ 10 min;95 ℃ 15 s,60 ℃ 30 s,72 ℃ 30 s,40個(gè)循環(huán)。采用 2-ΔΔCt法分析基因的相對(duì)表達(dá)量。
2 結(jié)果與分析
2.1 DcWD40-1的克隆
根據(jù)在海南龍血樹轉(zhuǎn)錄組數(shù)據(jù)中獲得的WD40基因的EST序列,設(shè)計(jì)特異引物對(duì)該基因的全長序列進(jìn)行擴(kuò)增,獲得一條1 500 bp左右的特異條帶。將目的片段連接到T載體上進(jìn)行測序,測序結(jié)果與通過轉(zhuǎn)錄組測序得到結(jié)果一致,將該基因命名為DcWD40-1。本研究獲得的DcWD40-1基因全長1 550 bp,包含一個(gè)1 353 bp完整的開放閱讀框。
2.2 DcWD40-1的分子特征
DcWD40-1編碼蛋白由450個(gè)氨基酸組成,其中甘氨酸(Gly)和絲氨酸(Ser) 最多,有40個(gè),占比達(dá)到8.9%。DcWD40-1蛋白分子式為C2238H3412N634O689S17,預(yù)測分子量為50.77 kD,理論等電點(diǎn)5.71。亞細(xì)胞定位預(yù)測顯示DcWD40-1定位于微體中可能性最大,達(dá)到71.4%。氨基酸序列分析發(fā)現(xiàn),DcWD40-1具有植物WD40轉(zhuǎn)錄因子的結(jié)構(gòu)特征,包含5個(gè)WD40重復(fù)基序。DcWD40-1的氨基酸序列與海棗(Phoenix dactylifera)、油棕(Elaeis guineensis)、深圳擬蘭(Apostasia shenzhenica)和鐵皮石斛(Dendrobium catenatum) 中相應(yīng)WD40氨基酸序列的同源性分別為77.1%、76.9%、75.6%和74.9%。
2.3 DcWD40-1啟動(dòng)子的克隆和序列分析
利用Genome Walking方法分離了DcWD40-1啟動(dòng)子區(qū)1 503 bp,該區(qū)域具有典型真核生物啟動(dòng)子結(jié)構(gòu)特征,包含多個(gè)TATA-box、CAAT-box等基本元件。此外,該啟動(dòng)子序列中含有細(xì)胞分裂素響應(yīng)元件CMRs、脫落酸相應(yīng)元件ABRE、生長素響應(yīng)元件TGA-box、水楊酸響應(yīng)元件TCA-element和茉莉酸響應(yīng)元件CGTCA- motif等激素響應(yīng)元件;還有防衛(wèi)和脅迫響應(yīng)元件TC-rich repeat、厭氧誘導(dǎo)元件激發(fā)子響應(yīng)元件ARE、熱激響應(yīng)元件HSE和低溫響應(yīng)元件LTR以及多個(gè)光相應(yīng)元件,如3-AF1 binding site、 ATCC-motif、 ATCT-motif、 Box I、 GA-劃線處為WD40基序。motif、G-box SP1、GT1-motif等。這說明上述這些激素和脅迫可能影響DcWD40-1的轉(zhuǎn)錄水平。
2.4 DcWD40-1在血竭誘導(dǎo)劑處理下的表達(dá)
無機(jī)鹽能夠誘導(dǎo)血竭的產(chǎn)生,并上調(diào)類黃酮積累相關(guān)基因的表達(dá),因此檢測了DcWD40-1在無機(jī)鹽處理下的表達(dá)特征。定量 PCR結(jié)果顯示,在無機(jī)鹽誘導(dǎo)3 d和6 d后,DcWD40-1的表達(dá)量分別上調(diào)1.6倍和2.5倍(圖3:A);在先前的轉(zhuǎn)錄組數(shù)據(jù)中,無機(jī)鹽誘導(dǎo)3 d和6 d后,DcWD40-1的RPKM值比對(duì)照分別提高3.6倍和6.8倍 (圖3:B)。上述結(jié)果說明血竭誘導(dǎo)劑能夠誘導(dǎo)DcWD40-1的表達(dá)。
2.5? DcWD40-1在脅迫處理下的表達(dá)
植物激素和光照在類黃酮次生代謝物形成中具有重要的調(diào)控作用,因此檢測了DcWD40-1對(duì)激素MeJA、CTK、ABA、和BR,以及UV-B脅迫的響應(yīng)特征。qPCR結(jié)果顯示,除了ABA外 (圖4:C),其他5種處理均能誘導(dǎo)DcWD40-1的表達(dá),其中MeJA和BR處理下,表達(dá)最高點(diǎn)均在處理后24 h,分別是正常水平的2.1倍和6.5倍 (圖4:A,D);CTK處理下,表達(dá)最大值是處理后12 h,上調(diào)6.2倍 (圖4:B);DcWD40-1對(duì)UV-B響應(yīng)積極,處理后3 h表達(dá)量就達(dá)到高點(diǎn),是對(duì)照的74.5倍 (圖4:E)。
3 討論
WD40重復(fù)蛋白是一類古老的蛋白家族,結(jié)構(gòu)高度保守,其廣泛參與植物的生長發(fā)育過程,如信號(hào)轉(zhuǎn)導(dǎo),細(xì)胞分裂、基因表達(dá)調(diào)節(jié)、蛋白質(zhì)泛素化、組蛋白甲基化、基因組穩(wěn)定性以及細(xì)胞周期調(diào)控等過程 (Xu & Min,2011)。已有研究發(fā)現(xiàn)WD40 蛋白與植物類黃酮積累量密切相關(guān)(Xu et al.,2015)。首個(gè)參與類黃酮代謝調(diào)控的WD40基因是矮牽牛PhAN11(De et al.,1997),隨后在多個(gè)植物中鑒定了類黃酮合成相關(guān)的WD40類轉(zhuǎn)錄因子。WD40 蛋白通常與MYB和bHLH轉(zhuǎn)錄因子互作形成MBW復(fù)合體協(xié)同調(diào)控類黃酮生物合成。在MBW 轉(zhuǎn)錄復(fù)合體中,具有DNA 結(jié)合特性的為MYB 和bHLH 成員。WD40轉(zhuǎn)錄因子大多沒有可以識(shí)別的順式作用元件,也沒有任何催化活性,其功能在于穩(wěn)定蛋白互作,增強(qiáng)伙伴的基因活性 (Xu et al.,2014,2015)。WD40轉(zhuǎn)錄因子雖然不能直接調(diào)控類黃酮合成結(jié)構(gòu)基因的表達(dá),但已在多種植物中證實(shí)通過表達(dá)WD40基因能顯著提高轉(zhuǎn)基因植株中的類黃酮含量 (Yao et al.,2017; Gao et al.,2018),這說明WD40轉(zhuǎn)錄因子在類黃酮積累中具有重要的調(diào)控作用。
本研究在海南龍血樹中獲得一個(gè)編碼WD40轉(zhuǎn)錄因子的基因DcWD40-1,該基因編碼蛋白具有植物WD40蛋白的典型結(jié)構(gòu)特征,包含5個(gè)WD40重復(fù)基序。FPKM值和q-PCR分析結(jié)果均顯示無機(jī)鹽誘導(dǎo)劑能夠上調(diào)海南龍血樹DcWD40-1 基因的表達(dá),DcWD40-1的變化與血竭形成及類黃酮積累正相關(guān)(Zhu et al.,2016),說明其在類黃酮生物合成過程中可能具有重要的功能。長期以來,黃酮類化合物一直被認(rèn)為是一種保護(hù)植物組織免受紫外線危害的化學(xué)物質(zhì);光照尤其是紫外輻射能夠誘導(dǎo)植物體內(nèi)類黃酮的積累和相關(guān)基因的表達(dá)(Petrussa et al.,2013)。目前,已證實(shí)茉莉酸、脫落酸、細(xì)胞分裂素和油菜素內(nèi)酯等植物激素在類黃酮生物合成中具有重要的調(diào)控作用(De et al.,2012; Yun et al.,2015; Xin et al.,2017; Koyama et al.,2018 )。6-芐氨基腺嘌(6-BA),一種人工合成的細(xì)胞分裂素,能促進(jìn)海南龍血樹組培苗血竭形成和誘導(dǎo)類黃酮合成相關(guān)基因表達(dá)(楊本鵬等,2009; Wang et al.,2015)。本研究發(fā)現(xiàn),DcWD40-1啟動(dòng)子區(qū)存在1個(gè)茉莉酸響應(yīng)元件CGTCA- motif、4個(gè)CTK響應(yīng)元件CMR以及眾多的光響應(yīng)元件,如3-AF1 binding site、ATCC-motif、 ATCT-motif、Box I、GA-motif、G-box SP1、GT1-motif等。表達(dá)分析進(jìn)一步證實(shí)MeJA、CTK、BR和UV-B能夠顯著上調(diào)DcWD40-1的表達(dá),這說明DcWD40-1可能通過MeJA、CTK、BR和UV-B信號(hào)途徑參與對(duì)類黃酮生物合成的調(diào)控。下一步,我們將繼續(xù)對(duì) DcWD40-1的功能和表達(dá)調(diào)控特征進(jìn)行深入研究,為通過轉(zhuǎn)基因或激素及化學(xué)調(diào)控等方式改變DcWD40-1的表達(dá)來提高海南龍血樹中類黃酮含量奠定基礎(chǔ)。
參考文獻(xiàn):
AN XH,TIAN Y,CHEN KQ,et al.,2012,The apple WD40 protein MdTTG1 interacts with bHLH but not MYB proteins to regulate anthocyanin accumulation [J]. J Plant Physiol,169(7):710-717.
BAUDRY A,HEIM MA,DUBREUCQ B,et al.,2004. TT2,TT8,and TTG1 synergistically specify the expression of BANYULS and proanthocyanidin biosynthesis in Arabidopsis thaliana [J]. Plant J,39(3):366-380
BENSIMHON Z,JUDEINSTEIN S,NADLERHASSAR T,et al.,2011. A pomegranate (Punica granatum L.) WD40-repeat gene is a functional homologue of Arabidopsis TTG1 and is involved in the regulation of anthocyanin biosynthesis du-ring pomegranate fruit development [J]. Planta,234(5):865-881.
CHEN HQ,ZUO WJ,WANG H,et al.,2012. Two new antimicrobial flavanes from dragons blood of Dracaena cambodiana [J]. J Asian Nat Prod Res,14(5):436-440.
DE GN,GHOLAMI A,GOORMACHTIG S,et al.,2012. Transcriptional machineries in jasmonate-elicited plant secondary metabolism [J]. Trends Plant Sci,17(6):349-359.
DE NV,QUATTROCCHIO F,MOL J,et al.,1997. The an11 locus controlling flower pigmentation in petunia encodes a novel WD-repeat protein conserved in yeast,plants,and animals [J]. Genes Dev,11(11):1422-1434.
GAO Y,LIU J,CHEN Y,et al.,2018. Tomato SlAN11 regulates flavonoid biosynthesis and seed dormancy by interaction with bHLH proteins but not with MYB proteins [J]. Hortic Res,5:27.
GUPTA D,BLEAKLEY B,GUPTA RK,2008. Dragons blood:botany,chemistry and therapeutic uses [J]. J Ethnopharm,115(3):361-380.
KOYAMA R,ROBERTO SR,DE RS,et al.,2018. Exogenous abscisic acid promotes anthocyanin biosynthesis and increased expression of flavonoid synthesis genes in Vitis vinifera × Vitis labrusca table grapes in a subtropical region[J]. Front Plant Sci,9:323.
LIU X,F(xiàn)ENG C,ZHANG M,et al.,2013. The MrWD40-1,gene of chinese bayberry (Myrica rubra) interacts with MYB and bHLH to enhance anthocyanin accumulation [J]. Plant Mol Biol Rep,31(6):1474-1484.
LUO Y,WANG H,ZHAO YX,et al.,2011. Cytotoxic and antibacterial flavonoids from dragons blood of Dracaena cambodiana [J]. Planta Med,77(18):2053-2056.
MEI WL,LUO Y,WANG H,et al.,2013. Two new flavonoids from dragons blood of Dracaena cambodiana [J]. Bull Korean Chem Soc,34(6):1791-1794.
NAVAL MDM,GIL-MUOZ F,LLORET A,et al.,2016. A WD40-repeat protein from persimmon interacts with the regulators of proanthocyanidin biosynthesis DkMYB2 and DkMYB4 [J]. Tree Genet Genomes,12(1):1-11.
PETRUSSA E,BRAIDOT E,ZANCANI M,et al.,2013. Plant flavonoids-biosynthesis,transport and involvement in stress responses [J]. Int J Mol Sci,14(7):14950-14973.
TOHGE T,DE LS,F(xiàn)ERNIE AR,2017. Current understanding of the pathways of flavonoid biosynthesis in model and crop plants [J]. J Exp Bot,68(15):4013-4028.
WANG H,JIANG HM,LI FX,et al.,2017. Flavonoids from artificially induced dragons blood of Dracaena cambodiana [J]. Fitoterapia,121(1):1-5.
WANG JY,DAI HF,LI HH,et al.,2015. Molecular and functional characterization of the chalcone synthase gene (DcCHS1) promoter in response to hormones [J]. Plant Omics,8:398-404.
WANG XH,GONG M,TANG L,et al.,2013. Cloning,bioinformatics and the enzyme activity analyses of a phenylalanine ammonia-lyase gene involved in dragons blood biosynthesis in Dracaena cambodiana [J]. Mol Biol Rep,40:97-107.
WANG XH,ZHANG CH,YANG LL,et al.,2011. Production of dragons blood in Dracaena cochinchinensis plants by inoculation of Fusarium proliferatum [J]. Plant Sci,180(2):292-299.
XIN L,LAN Z,AHAMMED GJ,et al.,2017. Nitric oxide mediates brassinosteroid-induced flavonoid biosynthesis in Camellia sinensis L. [J]. J Plant Physiol,214:145-151.
XU C,MIN J,2011. Structure and function of WD40 domain proteins [J]. Protein Cell,2(3):202-214.
XU W,GRAIN D,BOBET S,et al.,2014. Complexity and robustness of the flavonoid transcriptional regulatory network revealed by comprehensive analyses of MYB-bHLH-WDR complexes and their targets in Arabidopsis seed [J]. New Phytol,202(1):132-144.
XU W,DUBOS C,LEPINIEC L,2015. Transcriptional control of flavonoid biosynthesis by MYB-bHLH-WDR complexes [J]. Trends Plant Sci,20(3):176-185.
YANG BP,ZHANG SZ,CAI WW,et al.,2009. Induced formation of dragons blood in the process of tissue culture of Cambodia dragon blood (Dracaena cambodiana Pierre ex Gagnep) [J]. Chin J Trop Crops,30(2):181-185. [楊本鵬,張樹珍,蔡文偉,等,2009. 海南龍血樹組織培養(yǎng)過程中血竭形成的誘導(dǎo)[J]. 熱帶作物學(xué)報(bào),30(2):181-185.]
YAO P,ZHAO H,LUO X,et al.,2017. Fagopyrum tataricum FtWD40,functions as a positive regulator of anthocyanin biosynthesis in transgenic tobacco [J]. J Plant Growth Reg,36(3):1-11.
YUAN LB,PENG ZH,ZHI TT,et al.,2015. Brassinosteroid enhances cytokinin-induced anthocyanin biosynthesis in Arabidopsis seedlings [J]. Biol Plantarum,59(1):99-105.
ZHENG DJ,XIE LS,WANG Y,et al.,2009. Research advances in dragons blood plants in China [J]. Chin Wild Plant Res,28:15-20.[鄭道君,謝良商,王盈,等,2009. 中國血竭基源植物的研究與利用 [J]. 中國野生植物資源,28(6):15-20.]
ZHENG QA,SAITO Y,MATSUO Y,et al.,2012. Flavonoid oligomers from Chinese dragons blood,the red resins of Dracaena cochinchinensis [J]. Nat Prod Bioprospect,2(3):111-116.
ZHU JH,CAO TJ,DAI HF,et al.,2016. De Novo transcriptome characterization of Dracaena cambodiana and analysis of genes involved in flavonoid accumulation during formation of dragons blood [J]. Sci Rep,6:38315.
(責(zé)任編輯 周翠鳴)