廖宇嬌 董光炯
摘要:最近的研究表明,玻色一愛因斯坦凝聚體( Bose-Einstein Condensate,BEC)可作為量子電介質(zhì)材料對(duì)光場(chǎng)產(chǎn)生反作用,實(shí)現(xiàn)光場(chǎng)一物質(zhì)波的協(xié)同操控.然而BEC的色散性質(zhì)還沒有被研究.為此,解析得到了BEC對(duì)大失諧光的一階色散和二階色散的計(jì)算公式.數(shù)值計(jì)算表明,BEC的折射率以及二階色散系數(shù)與紅、藍(lán)失諧的性質(zhì)有關(guān):在紅失諧時(shí),折射率大于1,且二階色散是正常色散;在藍(lán)失諧時(shí),折射率小于1,二階色散為反常色散.二階色散系數(shù)會(huì)隨著失諧量的改變而劇烈變化,當(dāng)失諧量在GHz數(shù)量級(jí)時(shí),表現(xiàn)為強(qiáng)色散介質(zhì).一階色散和紅、藍(lán)失諧的性質(zhì)關(guān)系不大,隨著失諧量的增加,一階色散減小,相應(yīng)的群速度增加.因此,對(duì)于超短脈沖光,BEC是一種新型的色散介質(zhì).
關(guān)鍵詞:玻色一愛因斯坦凝聚;色散;群速度色散
中圖分類號(hào):0436.3
文獻(xiàn)標(biāo)志碼:A
DOI: 10.3969/j.issn.1000-5641.201922013
0 引 言
超冷原子氣體在量子仿真[1-4]、精密測(cè)量[5-6]及量子信息[7-8]等領(lǐng)域發(fā)揮著重要的作用.在這些研究中,激光是對(duì)其進(jìn)行操控的主要手段[9-14].由于超冷氣體的密度通常很低,所以超冷氣體作為一種電介質(zhì)對(duì)大失諧激光的反作用常??梢院雎?然而,近年來(lái)關(guān)于光與原子玻色一愛因斯坦凝聚相互作用研的究表明,在某些情況下,玻色一愛因斯坦凝聚體的反作用(又稱局域場(chǎng)效應(yīng))可以產(chǎn)生可觀察的效應(yīng)[15-17].2008年,中國(guó)科學(xué)院武漢物理與數(shù)學(xué)研究所觀察到大失諧駐波對(duì)玻色一愛因斯坦凝聚體的非對(duì)稱衍射現(xiàn)象,且這個(gè)現(xiàn)象不能被以前的理論所解釋[18],2011年,Zhu等利用局域場(chǎng)效應(yīng)成功解釋了該非對(duì)稱衍射現(xiàn)象[19],2013年,他們又進(jìn)一步預(yù)言了該效應(yīng)引起的玻色一愛因斯坦凝聚體在光晶格中的極化孤子現(xiàn)象[20].2016年,Bons等直接在實(shí)驗(yàn)中測(cè)量到了玻色一愛因斯坦凝聚體的折射率[21],進(jìn)一步證實(shí)了局域場(chǎng)效應(yīng)的存在.局域場(chǎng)效應(yīng)的強(qiáng)度和原子數(shù)目成正比[22-23].通常的玻色一愛因斯坦凝聚體數(shù)目少于或等于106,然而隨著實(shí)驗(yàn)技術(shù)的發(fā)展,在一些實(shí)驗(yàn)室,玻色一愛因斯坦凝聚體的原子數(shù)目已經(jīng)可以達(dá)到108量級(jí)[24-26],而且原子氣體的尺度達(dá)到毫米量級(jí).由此展望,隨著制備大數(shù)目玻色一愛因斯坦凝聚體實(shí)驗(yàn)技術(shù)的日漸成熟,局域場(chǎng)效應(yīng)在激光操控超冷氣體實(shí)驗(yàn)中的作用將越來(lái)越重要.
色散性質(zhì)是所有電介質(zhì)材料的重要光學(xué)性質(zhì).迄今為止,玻色一愛因斯坦凝聚體的色散性質(zhì)還無(wú)人研究.為此,本文推導(dǎo)出了計(jì)算玻色一愛因斯坦凝聚體對(duì)大失諧光的一階和二階色散系數(shù)的公式,利用典型的實(shí)驗(yàn)數(shù)據(jù),數(shù)值計(jì)算了這些系數(shù).與通常的經(jīng)典光學(xué)材料的色散性質(zhì)不同,玻色一愛因斯坦凝聚體的一階和二階色散系數(shù)是空間變化的,而且在某些條件下色散非常巨大.
1 玻色一愛因斯坦凝聚體的色散關(guān)系
2 數(shù)值計(jì)算結(jié)果分析
在數(shù)值計(jì)算中,本文考慮鋰原子玻色一愛因斯坦凝聚體D2線躍遷[28]來(lái)研究色散.再假設(shè)入射光場(chǎng)是脈沖光,持續(xù)時(shí)間小于1 ns,所以近似認(rèn)為物質(zhì)波波函數(shù)在脈沖持續(xù)時(shí)間內(nèi)不隨時(shí)間變化.假設(shè)一個(gè)如圖1所示的雪茄型玻色一愛因斯坦凝聚體,這個(gè)凝聚體在橫向和縱向都被諧振子勢(shì)阱所束縛,其波函數(shù)難以直接解析給出,這里采用變分波函數(shù)[29-31](紅失諧)和△=2 GHz(藍(lán)失諧)時(shí),折射率n的空間分布.圖3給出了失諧量△= -2 THz(紅失諧)和△=2 THz(藍(lán)失諧)時(shí),折射率n的空間分布.可見在原子密度越高的地方折射率越偏離.紅失諧時(shí),折射率n>1;藍(lán)失諧時(shí),折射率n <1.折射率的大小和失諧量有關(guān),隨著失諧量的增加,偏離真空折射率越小.在本文的計(jì)算中,玻色一愛因斯坦凝聚體的折射率偏離真空折射率很小.如要進(jìn)一步提高折射率,可以通過增加原子數(shù)目,或者減小凝聚體的空間分布寬度以提高密度.
在本文的數(shù)值計(jì)算條件下,折射率偏離真空條件很小,但并不意味著色散效應(yīng)很小.通過式(8)、式(9),進(jìn)一步計(jì)算了鋰原子愛因斯坦凝聚體的一階色散β1、群速度色散p的空間分布關(guān)系.失諧量△= 土2 GHz,以及△=土2 THz時(shí),一階色散β1的分布分別如圖4和圖5所示.從圖4、圖5上看,由于原子密度分布不均,一階色散在空間中的分布也不均勻,并且和紅失諧或者藍(lán)失諧無(wú)關(guān).當(dāng)失諧量的大小增加,一階色散值減小.由于一階色散和群速度成反比,所以增加失諧量,可以提高群速度.一階色散和失諧量的符號(hào)關(guān)系不大,β1(△)≈β1(-△),與式(11)一致.
失諧量△= 土2 GHz,以及失諧量△=土2 THz時(shí),二階色散β2的分布分別如圖6和圖7所示.從圖6和圖7上看,紅失諧時(shí),二階色散是正常色散,而在藍(lán)失諧時(shí)是反常色散.隨著失諧量的減小,二階色散系數(shù)急劇地改變.失諧量△= 土2 THz,二階色散和光纖中二階色散相當(dāng).而在失諧量△=土2 GHz時(shí),二階色散卻高出約9個(gè)數(shù)量級(jí)左右(與式(12)一致),這時(shí)凝聚體表現(xiàn)為強(qiáng)群速度色散.
3 結(jié)論
本文解析得到了玻色一愛因斯坦凝聚體對(duì)大失諧光的一階色散和二階色散關(guān)系.本文的研究表明,在紅失諧的情況下,折射率n>1;在藍(lán)失諧的情況下,折射率n
[參考文獻(xiàn)]
[1]
GEORGESCU I M,ASHHAB S, NORI F Quantum simulation EJl. Review of Modern Physics, 2014, 86(1): 153-185DOI: 10.1103/RevModPhys.86.153
[2]
BIOCH I. Ultracold quantum gases in optical lattices EJl. Nature Physics, 2005(1): 23-30. DOI: 10.1038/nphys138
[3]
BIOCH I, DALIBARD J, NASCIMBENE S Quantum simulations with ultracold quantum gases[J]Nature Physics, 2012, 8(4): 267-276. DOI: 10.1038/nphys2259
[4]
BIOCH I, DALIBARD J,ZWERGER W Many-body physics with ultracold gases [J]. Review of Modern Physics, 2008, 80(3): 885-964. DOI: 10.1103/RevRlodPhys.80.885
[5]
DUNNINGHAM J,BURNETT K,PHILLIPS W D Bose-Einstein condensates and precision measurements [J]. PhilosophicalTransactions of the Royal Society A,2006, 363(1834): 2165-2175. DOI: 10.1098/rsta.2005.1636
[6]
BOIXO S, DATTA A,DAVIS M J,et al Quantum metrology with Bose-Einstein condensates[J]AIP Conference Proceedings, 2009,1110(1): 423-426. DOI: 10.1063/1.3131366
[7]
GINSBERG N S,GARNER S R,HAU L V.Coherent control of optical information with matter wave dynamics [J]. Nature, 2007,445: 623-626. DOI: 10.1038/nature05493
[8] HANSEN A,LESLIE L S,BHATTACHARYA M,et al.Transfer and storage of optical information ina spinor Bose-Einsteincondensate [J]. OSA/FiO/LS, 2010: LTujI
[9]
CHU S Cold atoms and quantum control [J]. Nature. 2002, 416: 206-210. DOI: 10.1038/416206a.
[10]
HOHENESTER U, REKDAL P K,BORZ A,et al.Optimal quantum control of Bose-Einstein condensates in ruagnetic microtraps[J]Physical Review A,2007,75:023602. DOI: 10.1103/PhysRevA.75.023602
[11]
HAROUTYUNYAN H L Coherent control of single atoms and Bose-Einstein condensates by light [D] Netherlands: Leiden University,2004.
[12]
ZHAO L,JIANG J,TANG T,et al Dynamics in spinor condensates tuned by a microwave dressing field [J]. Physical Review A,2014, 89(2): 023608. DOI: 10.1103/PhysRevA.89.023608
[13]
CHANG M S,QIN Q,ZHANG W,et al Coherent spinor dynamics in a spin-l Bose condensate[J]. Nature Physics, 2005, 1(2): 111-116. DOI: 10.1038/nphys153.
[14]
BOHI P,RIEDEL M F,HOFFROGGE J, et al Coherent manipulation of Bose-Einstein condensates with state-dependent microwavepotentials on an atom chip [J]. Nature Physics, 2009, 5(8): 592-597. DOI: 10.1038/nphys1329.
[15]
ROBB G R,TESIO E,OPPO G L,et al Quantum threshold for optomechanical self-structuring in a Bose-Einstein condensate[J]Physical Review Letters, 2015, 114(17): 173903. DOI: 10.1103/PhysRevLett.114.173903.
[16]
OSTERMANN S, PIAZZA F, RITSCH H. Spontaneous crystallization of light and ultracold atoms [J] . Physical Review X, 2016, 6(2):021026. D01:10.1103/PhysRevX.6.021026.
[17] RODRIGUES J D, RODRIGUES J A, FERREIRA A V. et al. Photon bubble turbulence in cold atomic gases[J]. arXiv, 2016:1604.08114vl.
[18]
11 K, DENG L. HAGLEY E W, et al. Matter-wave self-imaging by atomic center-of-mass motion induced interference [J]. PhysicalReview Letters, 2008, 101(25): 250401. DOI: 10.1103/PhysRevLett.101.250401.
[19] ZHU J, DONG G, SHNEIDER M N, et al. Strong local-field effect on the dynamics of a dilute atomic gas irradiated by twocounterpropagating optical fields: Beyond standard optical lattices [J]. Physical Review Letters, 2011, 106(21): 210403. DOI:10.1103/PhysRevLett.106.210403.
[20]
DONG G, ZHU J, ZHANG W, et al. Polaritonic solitons in a Bose-Einstein condensate trapped in a soft optical lattice [J]. PhysicalReview Letters, 2013, 110(25): 250401. DOI: 10.1103/PhysRevLett.110.250401.
[21]
BONS P C. DE HAAS R, DE JONG D, et al. Quantum enhancement of the index of refraction in a Bose-Einstein condensate [J].Physical Review Letters, 2016, 116(17): 173602. DOI: 10.1103/PhysRevLett.116.173602.
[22] 秦杰利.旋量玻色-愛因斯坦凝聚體與微波相互.作用中的磁局域應(yīng)
[D] .上海 :華東師范大學(xué), 2016.
[23] 朱江.光與超冷原相互作用中的局域場(chǎng)效應(yīng) [D].上海:華東師范大學(xué), 2014.
[24]
COMPARAT D, FIORETTI A, STERN G, et al . Optimized production of large Bose-Einstein condensates [J] . Physical Review A,006, 73: 043410. DOI: 10.1103/PhysRevA.73.043410.
[25]
STREED E W, CHIKKATUR A P, GUSTAVSON T L, et al. Large atom number Bose-Einstein condensate machines [J] . Review ofScientific Instruments, 2006, 77(2): 023106. DOI: 10.1063/1.2163977.
[26]
VAN DER STAM K M, VAN OOIJEN E D, MEPPELINK R, et al. Large atom number Bose-Einstein condensate of sodium [J]. Review of Scientific Instruments, 2007, 78(1): 013102. DOI: 10.1063/1.2424439.
[27]
AGRAWAL G P. Nonlinear Fiber Optics [M] . 5th ed. New York: Academic Press, 2013.
[28]
GEHM M E. Preparation of an optically-trapped degenerate fermi gas of 6Li: Finding the route to degeneracy[D]. Durham: Duke University, 2003.
[29]
ZHAI Y Y. ZHANG P. CHEN X Z. et al. Bragg diffraction of a matter wave driven by a pulsed nonuniform magnetic field [J].Physical Review A, 2013, 88: 053629. DOI: 10.1103/PhysRevA.88.053629.
[30]
PITAEVSKII L. STRINGARI S . Bose-Einstein Condensation [M] . Oxford: Clarendon Press, 2003.
[31]
PETHICK C J, SMITH H. Bose-Einstein Condensation in Dilute Gases [M] . 2nd ed. Cambridge: Cambridge University Press, 2008.