• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      指向建模思想在練習課堂中的應用研究

      2020-04-29 06:46程穎
      江西教育C 2020年3期
      關鍵詞:數(shù)學模型題目技能

      程穎

      在數(shù)學課程安排中,練習課具有舉足輕重的作用,是鞏固知識和提高技能的課程。從教學規(guī)律的角度來講,學生要獲得相應的知識和技能,需要多次反復練習,但也會使學生心生厭惡,對練習課不感興趣,認為練習課就是反復做題目,達不到提升總結(jié)方法的目的。因此,練習課需要教師精心設計數(shù)學模型問題,鞏固模型認識,使學生在富有挑戰(zhàn)性的練習中豐富模型思想方法,并獲得成功的體驗。在教學過程中,如果對練習課的功能及特點認識不到位,就會導致教師對練習課的教學目標把握不足,教學設計就顯得單一、枯燥,沒有充分發(fā)揮其價值。數(shù)學模型思想的重要性不言而喻,它不僅可以有效地幫助學生簡化、分析、解決遇到的問題,還能引導學生清晰地認識、理解數(shù)學的意義和應用價值。

      一、思想主線

      小學數(shù)學練習課體現(xiàn)出“兩線三環(huán) ”的特點。“知識線”由基礎練習、變式練習、對比練習、綜合練習組成,“方法線”牽引和貫穿于練習的過程。在教學方式上始終用“方法線”(暗線)引導“知識線”(明線),通過教師的引導,“知識線”(明線)使學生掌握了具體知識,“方法線”(暗線)使學生獲得的知識轉(zhuǎn)化為技能,從而使學生掌握的基礎知識、技能、方法、經(jīng)驗升華為數(shù)學素養(yǎng)。

      二、策略研究

      基礎練習,鞏固模型。一節(jié)好的練習課設計富有意義的練習情境,引導學生通過師生互動、生生互動等途徑對所學知識、方法進行系統(tǒng)回顧,激活學生的思維。在蘇教版四年級下冊《相遇問題》練習課中,筆者首先提出問題:“上一節(jié)課我們學會了解決什么問題?說說此類問題如何解決?又要注意什么?”再出示書上基礎練習,復習鞏固相遇問題最基礎的原型,回憶分析過程、解題策略、數(shù)量關系等。因此,在此過程中,學生輕松地進入練習的環(huán)節(jié),又達到鞏固模型的作用。

      變式練習,深化模型。舉一反三是數(shù)學學習中常見的模式。通過變式,把復雜問題置于原有模型之中,溝通新舊問題間的聯(lián)系,使原有模型得到深化鞏固,輔助構(gòu)建和解決新問題。在練習時,教師采用啟發(fā)式的教學方法,實現(xiàn)對知識和方法的自我內(nèi)化,達到讓每一個學生基礎鞏固、技能強化。教師引導學生分析、畫圖,把“相遇問題”變成以前學過的模型,使之成為較為熟悉的模型。通過分析、比較等方法,借用原認知模型解題,進而能夠以原認知模型的“不變”應數(shù)學問題的“萬變”。

      對比練習,分化模型。練習題中的對比辨析題是對學生信息提取和綜合分析能力的考察。通過典型對比題目的分析,讓學生在比較中明確知識的內(nèi)涵和外延,增強辨析能力,弄清相關數(shù)學模型的區(qū)別,起到分化模型的作用。如“相遇問題”常常出現(xiàn)這樣的辨析題目:“A、B車分別從甲、乙兩地同時相向而行,A每小時行40千米,B每小時行50千米,3小時后兩車相遇。兩地之間的距離是多少千米?相遇時兩車行駛的路程相差多少千米?”兩道題目看似相同,實則不然,都是相遇模型,但是問題不同導致最終的解題過程截然不同。第一問是相遇問題中的求路程之和,第二問是相遇問題中的求路程之差。而學生在做練習時,會因為一類題目做得多了而形成思維定勢,認為相向而行就是求路程之和,這就會審題不清導致解題錯亂。因此,教師要幫助學生養(yǎng)成認真審題的習慣,明辨模型間的區(qū)別,切勿“熟而生笨”。

      綜合練習,豐富模型。在練習題的設計和教學中,教師要讓學生感受到數(shù)學的應用價值和實際意義,不僅考查學生的運用能力,也要重視學生的發(fā)展,促進學生主動學習、積極應用、富于創(chuàng)造、豐富見識。在蘇教版教材中有這樣一道思考題:“甲乙分別從橋的兩端同時出發(fā),兩人往返于橋的兩端之間,甲以每分鐘65米的速度行駛,乙以每分鐘70米的速度,5分鐘兩人第二次相遇,這座橋長是多少米?”以往相遇問題是一次相遇,比較簡單易懂,這里面的“第二次相遇”是學生理解的難點。在解決這個問題時,單單借助熟悉的相遇問題模型是不夠的,還需要聯(lián)系生活實際感受和圖形模型,才能明了其中的數(shù)量關系。教師可以通過精心創(chuàng)設情境,把獲得的知識應用其中,選擇一些符合學生年齡特點、與生活實際息息相關、迎合時代發(fā)展的拓展題和實踐活動,培養(yǎng)學生的應用意識和模型意識,從中體會到數(shù)學模型思想的應用價值。

      面對數(shù)學課程改革,怎樣上好小學數(shù)學練習課,是擺在廣大數(shù)學教育工作者面前的一項重要任務。要提高練習課的效益,教師必須針對小學生的特點優(yōu)化設計練習課,應堅持“學生為本”,植根于學生的“生活與數(shù)學”,以學生的發(fā)展為立足點,將“數(shù)學素養(yǎng)”的培養(yǎng)更多地融入課堂之中。數(shù)學模型思想是應用數(shù)學的藝術,將模型思想貫穿于練習課中,將更好地服務課堂教學,為教學注入生機,有“線”可循,有“法”可依?!簦ㄗ髡邌挝唬航K省南京市江寧區(qū)銅山中心小學)

      猜你喜歡
      數(shù)學模型題目技能
      高級技能
      AHP法短跑數(shù)學模型分析
      活用數(shù)學模型,理解排列組合
      唐朝“高考”的詩歌題目
      關于題目的要求
      秣馬厲兵強技能
      拼技能,享豐收
      畫唇技能輕松
      追根求源
      古塔形變的數(shù)學模型
      山丹县| 柳州市| 综艺| 青川县| 陆良县| 静宁县| 印江| 苏尼特右旗| 濮阳县| 和政县| 日土县| 南投县| 涪陵区| 郓城县| 湾仔区| 巴中市| 扎赉特旗| 抚松县| 芮城县| 奉新县| 喀喇沁旗| 新密市| 安丘市| 昌乐县| 南充市| 吴忠市| 大安市| 赣榆县| 汝阳县| 汾西县| 福州市| 孟州市| 东乌| 时尚| 沛县| 泉州市| 翼城县| 营口市| 三门峡市| 达州市| 汪清县|