鎖珍
摘 要:在本篇論文中,我們提出了一種較為新穎的方案,以七比特量子糾纏作為信道,三方兩兩聯(lián)合,在控制粒子的幫助下為第三方制備單量子比特態(tài)。該方案與雙向遠(yuǎn)程態(tài)制備及早期的遠(yuǎn)程態(tài)制備方案相比,具有更好的安全性和較高的靈活性。在文章的最后,對(duì)制備效率進(jìn)行了計(jì)算,并進(jìn)行了相應(yīng)的討論說明。
關(guān)鍵詞:三方受控遠(yuǎn)程態(tài)制備;七量子糾纏態(tài);聯(lián)合態(tài)制備
1.引言
量子糾纏是量子信息中極為重要的資源,在量子通信中起著不可或缺的作用[1-4]。糾纏特性已在各種量子信息處理中得到廣泛應(yīng)用,如量子密鑰分配[5-6], 量子密集編碼[7], 量子安全直接通信[8-9], 超糾纏[10]和量子計(jì)算[11-13]等。其中,量子糾纏的最著名的應(yīng)用之一是遠(yuǎn)程態(tài)制備(RSP)。它最初是由H.K. Lo等人提出的[14],在RSP中,對(duì)于發(fā)送者而言,要制備的目標(biāo)態(tài)的所有信息都是已知的,這就不得不考慮信息的安全性。在RSP中,由于發(fā)送者知道目標(biāo)態(tài)的所有信息而可能引起信息泄漏,為避免信息泄漏,受控的RSP被提出受控遠(yuǎn)程態(tài)制備(CRSP)[15-21]和聯(lián)合遠(yuǎn)程態(tài)制備(JRSP)[22–25]。在CRSP中,引入了控制粒子,在信息的傳遞過程中,只有得到了控制粒子的批準(zhǔn),信息才能有效的傳遞下去,這樣使得信息的安全性得到了有效的提升。在JRSP中,涉及了兩個(gè)以上的發(fā)送者,要發(fā)送的信息被秘密地分成了幾部分,這就意味著單個(gè)發(fā)送者和子組都無(wú)法得出所需狀態(tài)的信息。這使得信息傳遞的安全性大大提升。在這之后,許多修改后的RSP方案被提出,如確定性的遠(yuǎn)程態(tài)制備(DRSP) [26–28]和聯(lián)合控制RSP(JCRSP) [29-30]。
然而,以上這些RSP方案只是單向遠(yuǎn)程制備。之后由Cao等人設(shè)計(jì)了一種受控的雙向遠(yuǎn)程態(tài)制備(CBRSP)協(xié)議[31]。在他們的方案中,兩個(gè)相距甚遠(yuǎn)的參與者可以確定并同時(shí)地交換彼此的單量子態(tài)。隨后出現(xiàn)了一些在不同信道下進(jìn)行的雙方受控遠(yuǎn)程態(tài)制備,如五比特團(tuán)簇態(tài)[31], 六比特糾纏態(tài)[32], 七比特糾纏態(tài)[33]或八比特糾纏態(tài)[34]。本文將以七比特糾纏態(tài)作為量子通道,在第四方的控制下實(shí)現(xiàn)三方兩兩聯(lián)合遠(yuǎn)程態(tài)制備。
本文提出了一種較為新穎的遠(yuǎn)程態(tài)制備的方案,方案中有四個(gè)參與者(Alice, Bob, Charlie and Duke),選擇了一個(gè)七量子糾纏態(tài)作為此次的量子信道,在Duke的控制下來(lái)完成單量子態(tài)的三方兩兩聯(lián)合遠(yuǎn)程制備。最后,計(jì)算了該方案的效率并進(jìn)行了討論。
2.三方受控遠(yuǎn)程態(tài)制備
方案中有四個(gè)合法參與者:Alice,Bob,Charlie和Duke。在參與者Duck的控制下,Alice和Charlie聯(lián)合為Bob制備了一個(gè)單量子態(tài);Bob和Alice聯(lián)合為Charlie制備了一個(gè)單量子態(tài);Bob和Charlie聯(lián)合為Alice制備了一個(gè)單量子態(tài)。假設(shè)Alice和Charlie想要為Bob制備一個(gè)單量子態(tài),可以描述為:
在Fig2中,我們列出了Alice、Bob、Charlie和Duke所有可能的測(cè)量結(jié)果。同時(shí),Duke分別告訴Alice, Bob和Charlie測(cè)量的結(jié)果,并進(jìn)行相應(yīng)的恢復(fù)操作,得到目標(biāo)態(tài)。
3.討論與總結(jié)
本文提出了一種通過七量子態(tài)實(shí)現(xiàn)三方控制的聯(lián)合遠(yuǎn)程制備單個(gè)粒子態(tài)的方案。采用單量子測(cè)量和單量子匹配的方法,使方案更加靈活. 此外,還需要評(píng)估量子資源共享方案的利用效率,通常使用以下公式:
其中qs 表示共享量子信息的比特?cái)?shù), qu表示使用的量子比特?cái)?shù)。本文以7量子位量子態(tài)作為信道,引入3個(gè)輔助粒子,所以 qs=10。Alice, Bob和Charlie分別為一方準(zhǔn)備了一個(gè)量子態(tài),所以 qu=3。由此可見,該方案的最終利用效率為
現(xiàn)在討論一下本方案的安全性。方案中,Alice、Bob和Charlie可以在Duke的幫助下同時(shí)準(zhǔn)備一個(gè)單量子態(tài)。該協(xié)議只需要一次CNOT操作和兩次單量子態(tài)測(cè)量。Alice和Charlie可以使用粒子2和輔助粒子γ1成功地為Bob制備單量子態(tài)。Bob和Alice可以為Charlie制備一個(gè)單量子態(tài),由粒子4和輔助粒子γ2完成。而Charlie和Bob需要使用粒子 6和γ3為Alice制備一個(gè)單量子態(tài)。當(dāng)然,所有操作都需要監(jiān)控者Duke的幫助。當(dāng)且僅當(dāng)監(jiān)控者Duck分別對(duì)相應(yīng)的粒子進(jìn)行適當(dāng)?shù)膯瘟孔訙y(cè)量時(shí)CRSP方案才能成功實(shí)現(xiàn)。Duke的參與大大提高了協(xié)議的安全性。
致謝 本研究由國(guó)家自然科學(xué)基金資助 蘇州市重點(diǎn)產(chǎn)業(yè)技術(shù)創(chuàng)新項(xiàng)目(61104002)教育部系統(tǒng)控制與信息處理重點(diǎn)實(shí)驗(yàn)室(批準(zhǔn)號(hào):Scip201804)資助的課題
參考文獻(xiàn):
[1]Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000).
[2]Lo HK. Classical-communication cost in distributed quantum-information processing: A generalization of quantum-communication complexity - art. no. 012313[J].Physical review, A. Atomic, molecular, and optical physics,2000,62(1):052313-1-052313-8.
[3]Bennett C H , Wiesner S J . Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states[J]. Physical Review Letters, 1992, 69(20):2881-2884.
[4]Bennett, C.H., Brassard, G., Grepeau, C., Jozsa, R., Peres, A. Wootters,W.K.: Teleporting an unknownquantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895(1993).
[5]Ekert, A.K.: Quantum cryptography based on Bells theorem. Phys. Rev. Lett. 67, 661 (1991).
[6]Bennett, C.H., Brassard, G., Mermin, N.D.: Quantum cryptography without Bells theorem. Phys. Rev.Lett. 68, 557 (1992).
[7]Bennett, C.H., Brassard, G., Popescu, S., Schumacher, B., Smolin, J.A., Wootters, W.K.: Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722 (1996).
[8]Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A. 65, 032302 (2002).
[9]Deng, F.G., Long, G.L., Liu, X.S.:Two-step quantum direct communication protocol using theEinstein Podolsky-Rosen pair block. Phys. Rev. A. 68, 042317 (2003).
[10]Ren, B.C., Du, F.F., Deng, F.G.: Hyper entanglement concentration for two-photon four-qubit systems with linear optics. Phys. Rev. A 88, 012302 (2013).
[11]Long, G.L., Xiao, L.: Parallel quantum computing in a single ensemble quantum computer. Phys. Rev. A 69(5), 052303 (2004).
[12]Feng, G., Xu, G., Long, G.: Experimental realization of nonadiabatic holonomic quantum computation. Phys. Rev. Lett. 110(19), 190501 (2013).
[13]Wei, H.R., Deng, F.G.: Universal quantum gates for hybrid systems assisted by quantum dots inside double-sided optical microcavities. Phys. Rev. A. 87(2), 022305 (2013).
[14]Bennett, C.H., Brassard, G., Crpeau, C., Jozsa, R., Peres, A.Wootters,W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70(13), 13-29 (1993).
[15]Peters, N.A., Barreiro, J.T., Goggin, M.E., Wei, T.C., Kwiat, P.G.: Remote state preparation: arbitrary remote control of photon polarization. Phys. Rev. Lett. 94(15), 150502 (2005).
[16]Chen, X.B., Ma, S.Y., Su, Y., Zhang, R., Yang, Y.X.: Controlled remote state preparation of arbitrary two and three qubit states via the Brown state. Quant. Inf. Process. 11(6), 1653-1667 (2012).
[17]Dakic, B., Lipp, Y.O., Ma, X., Ringbauer, M., Kropatschek, S., Barz, S., Paterek, T., Vedral, V., Zeilinger, A.: Quantum discord as resource for remote state preparation. Nat. Phys. 8(9), 666-670 (2012).
[18]Liu, L.L., Hwang, T.: Controlled remote state preparation protocols via AKLT states. Quantum Inf. Process. 13(7), 1639-1650 (2014).
[19]Wang, C., Zeng, Z., Li, X.H.: Controlled remote state preparation via partially entangled quantum channel. Quantum Inf. Process. 14(3), 1077-1089 (2015).
[20]He, Y.H., Lu, Q.C., Liao, Y.M., Qin, X.C., Qin, J.S., Zhou, P.: Bidirectional controlled remote implementation of an arbitrary single qubit unitary operation with EPR and cluster states. Int. J. Theor. Phys. 54(5), 1726-1736 (2015).
[21]Li, Z., Zhou, P.: Probabilistic multiparty-controlled remote preparation of an arbitrary m-qudit state via positive operator-valued measurement. Int. J. Quantum Inf. 10(05), 1250062 (2012).
[22]Chang, L.W., Zheng, S.H., Gu, L.Z., Xiao, D., Yang, Y.X.: Joint remote preparation of an arbitrary five-qubit Brown state via non-maximally entangled channels. Chin. Phys. B. 9, 91-99 (2014).
[23]Peng, J.Y., Luo, M.X., Mo, Z.W.: Joint remote state preparation of arbitrary two-particle states via GHZ-type states. Quantum Inf. Process. 12(7), 2325-2342 (2013).
[24]Li, X., Ghose, S.: Optimal joint remote state preparation of equatorial states. Quantum Inf. Process. 14(12), 4585-4592 (2015).
[25]Yu, R.F., Lin, Y.J., Zhou, P.: Joint remote preparation of arbitrary two-and three-photon state with linear-optical elements. Quantum Inf. Process. 15(11), 4785-4803 (2016).
[26]Leung, D.W., Shor, P.W.: Oblivious remote state preparation. Phys. Rev. Lett. 90(12), 127905 (2003).
[27]Wu,W., Liu,W.T., Chen, P.X., Li, C.Z.: Deterministic remote preparation of pure and mixed polarization states. Phys. Rev. A. 81(4), 042301 (2010).
[28]Li, J.F., Liu, J.M., Feng, X.L., Oh, C.H.: Deterministic remote two-qubit state preparation in dissipative environments. Quantum Inf. Process. 15(5), 2155-2168 (2016).
[29]Wang, D., Ye, L.: Multiparty-controlled joint remote state preparation. Quantum Inf. Process. 12(10), 3223-3237 (2013).
[30]An, N.B., Bich, C.T.: Perfect controlled joint remote state preparation independent of entanglement degree of the quantum channel. Phys. Lett. A. 378(48), 3582-3585 (2014).
[31]Cao, T.B., Nguyen, B.A.: Deterministic controlled bidirectional remote state preparation. Adv. Nat. Sci. Nanosci. 5(1), 015003 (2013).
[32]Zhang, D., Zha, X., Duan, Y., Yang, Y.: Deterministic controlled bidirectional remote state preparation via a six-qubit entangled state. Quantum Inf. Process. 15(5), 2169-2179 (2016).
[33]Zhang, D., Zha, X., Duan, Y., Wei, Z.H.: Deterministic controlled bidirectional remote state preparation via a six-qubit maximally entangled state. Int. J. Theor. Phys. 55(1), 440-446 (2016).
[34]Peng, J.Y., Bai, M.Q., Mo, Z.W.: Bidirectional controlled joint remote state preparation. Quantum Inf. Process. 14(11), 4263-4278 (2015)