張碩,賀泳超,羅舒婷,2,康光宗
(1.湖南科技大學 建筑與藝術設計學院,湖南 湘潭,411100;2.湘潭市建筑設計院,湖南 湘潭,411100)
城市下墊面不斷硬化,地表徑流總量隨之逐漸增加,極大地影響了城市水循環(huán)系統(tǒng)的正常運行,繼而引發(fā)一系列如洪澇災害頻發(fā)、水生態(tài)惡化、水資源短缺等城市水危機。為解決城市水危機,海綿城市建設理念日益發(fā)展完善,隨著住房和城鄉(xiāng)建設部頒布《海綿城市建設技術指南—低影響開發(fā)雨水系統(tǒng)建設》,國內各城市積極參與海綿城市申報和建設工作,專家學者們對如何建設海綿城市展開了深入思考和討論[1]。源于美國的低影響開發(fā)措施(Low Impact Development,簡稱LID)也被大量的借鑒在實際工程建設中。目前,國外對LID的研究應用比較成熟,國內的海綿城市理論發(fā)展也日趨完善,低影響開發(fā)建設逐步落實深化。我國一些城市和區(qū)域率先在海綿城市道路方面做出了探索:池州市[2]、西咸新區(qū)秦皇大道[3]、深圳市光明新區(qū)[4-5]等。但現有研究對道路的低影響開發(fā)設施組合的方式的研究還不夠充分。本次研究立足于道路的LID措施改造,依托SWMM軟件建立模型,通過比較各類道路LID設施的效果,從而得出適合的道路改造優(yōu)化策略,為其他城區(qū)既有道路“海綿化”建設提供參考依據與數據支持。
研究區(qū)降水量較充沛,但季節(jié)分布不均,年際變化大,全年降水量為1 200~1 500 mm。
根據道路設計施工圖紙測量得出道路總長6.74 km,總面積為383 040 m2,路幅寬60 m。其中主路與輔路為 100%不透水面積,人行道為50%不透水面積,兩側綠化帶與中央分隔帶為100%透水面積。不透水面積為265 080 m2,占總面積69.2%;透水面積為117 960 m2,占總面積30.8%。
SWMM軟件建模前所需的參數數據大致分為3大類:實際數據、經驗參考數據、合成數據,上述數據來源于設計規(guī)劃資料、規(guī)劃手冊[6-7]和相關文獻,具體獲得方法見表1。
表1 模型基本參數來源
以實際工程設計CAD圖紙為底圖,將道路排水井口概化為排水節(jié)點,概化后排水節(jié)點共169個,深度為5 m,各節(jié)點底高范圍為34.46~55.19 m,雨水管段共332條,每段管長40 m,管徑1 000 mm,管段坡度為0.3%,末端排放口共10個。
本次研究將研究區(qū)域依據工程設計坡度數據,將道路平面劃分為人行道區(qū)域、主(輔)路區(qū)域和綠化帶區(qū)域,水流方向為:人行道→輔路→排水節(jié)點←綠化帶←主路。規(guī)劃子匯水區(qū)域,將研究區(qū)域劃分為86個子匯水區(qū)劃分區(qū)的形狀各異,但面積不一。排水系統(tǒng)及子匯水區(qū)面積的概化結果詳見圖1。
圖1 概化部分圖
產流演算模型采用動態(tài)波法,選用30 s為計算時間步長;滲入模型采用Horton滲透模型。主要水文參數初始值經由SWMM用戶手冊及研究區(qū)域特征確定,具體選值見表2。管網參數取值主要依據工程設計圖紙,節(jié)點深度范圍為1.040~2.516 m,節(jié)點內底標高為42.128~44.300 m,管道橫截面形狀為圓形,管段最大深度為1 m,粗糙系數查詢用戶手冊后為0.015。
芝加哥雨型在國內短歷時上應用最為普遍[8],湖南地區(qū)峰值比例為0.33[9],暴雨歷時宜為120 min,分別模擬重現期為1、2、3、5、10年的降雨序列。由于湘潭市暴雨強度公式尚未編制,且該項目位于湘潭與長沙交接處,故本次參照長沙市暴雨強度公式執(zhí)行,計算式為i= ( 6.890 + 6 .25lgP) /(t+4.367)0.602,式中:i為暴雨強度,mm/min;P為設計降雨重現期,a;t為降雨歷時,min。
結合國內外研究經驗,并根據研究區(qū)域水文環(huán)境和土壤條件等因素,對透水瀝青路面、透水磚、植草溝設計詳見表3。
在模型中設置雨量計記錄降雨數據。模型模擬降雨事件及流量實測值來自湘潭市水文局監(jiān)測的3場降雨,降雨事件的基本特征見表4。通過模型模擬開展區(qū)域內LID設施設計參數優(yōu)化研究,其中2010、2012、2013年降雨量接近湘潭多年平均降雨量,可代表近年來典型降雨情況。
通過試錯法對各個參數進行多次調試,最終得到各下墊面參數見表5。實測與模擬水量過程圖見圖2,修正參數后的模型,在3場降雨條件下納什效率系數ENS依次為0.707、0.719與0.811,接近于1,說明模型模擬的徑流過程線與實測徑流過程線擬合度較高,模型表現出較好的適用性。
表2 主要參數初始值
表3 LID參數取值
表4 監(jiān)測降雨事件的基本特征值
表5 參數率定后最終取值
圖2 實測與模擬水量過程圖
在圖2(a)、(b)、(c)的地表徑流模擬連續(xù)性誤差依次為-0.15%、-0.12%、-0.14%,流量演算模擬連續(xù)性誤差依次為-0.11%、-0.09%、-0.05%,連續(xù)性誤差在±10%以內。模型參數設置效果較好,可信度較高。
模型建成并執(zhí)行參數率定后,分別輸入重現期為1、2、3、5、10年的降雨時間序列,并分別執(zhí)行雨洪模擬運算,得出在無LID措施布設條件下的雨洪模擬數值組。在模型LID控制編輯器中輸入透水瀝青、透水磚以及植草溝參數,利用LID組編輯器,根據節(jié)1的布設方案,分別將LID設施賦予在相應的子匯水區(qū)上;將3類單一型LID措施組合成4種方案:方案一:透水瀝青+透水磚;方案二:透水瀝青+植草溝;方案三:透水磚+植草溝;方案四:透水瀝青+透水磚+植草溝。分析LID措施組合對雨洪模擬過程的影響,選擇最佳雨洪控制方案。
根據模型輸出數據,繪制LID措施組合分析圖(即圖3),首先縱向分析在不同降雨重現期條件下,各組合型 LID措施對徑流總量、峰值流量的削減效率和徑流開始時間、峰值流量出現時間的延遲能力;其次橫向比較不同降雨重現期條件下,各組合型 LID措施的效果大小。
由圖3可知,在研究的5個降雨重現期中,各方案徑流削減效果差距明顯,徑流削減率大小分別為:方案四>方案二>方案一>方案三。各方案徑流開始時間延遲的效果大小為:方案四>方案二>方案一>方案三。當降雨重現期為 1、2、3年時,峰值流量削減效果大小為:方案四>方案二>方案 一>方案三;重現期為5和10年時,峰值流量削減效果大小為:方案四>方案二>方案三>方案一。
圖3 LID措施組合分析
降雨重現期為1、2、3年時,峰值流量出現時間延遲效果大小為:方案四>方案二>方案三>方案一;降雨重現期為5、10年時,峰值流量出現時間延遲效果大小為:方案四>方案三>方案二>方案一。
方案四在同一重現期下的出流量削減效果、峰值流量削減效果、洪峰出現時間延遲效果以及徑流開始時間延遲效果均好于其他方案。但隨著重現期的增加,方案四的作用效果會逐漸減弱。研究結果表明:在只考慮作用效果的前提下,方案四(透水瀝青+透水磚+植草溝)為最佳優(yōu)化方案。
布設最佳優(yōu)化方案四(透水瀝青+透水磚+植草溝)后,當降雨重現期為1、2年時,徑流被完全削減。當降雨重現期為1、2、3年相對高頻降雨時,總徑流量削減率為依次92.16%、88.58%、84.77%,削減效果最好;當降雨重現期為5、10年相對低頻降雨時,總徑流量削減率為78.34%和69.81%,削減效果很好,但次于高頻降雨。當降雨重現期為3年相對高頻降雨時,徑流開始時間延遲高達41.4 min,但其他相對低頻降雨的徑流開始時間延遲了9.4~23.9 min,較高頻降雨的延遲效果差。降雨重現期為1、2、3、5年相對高頻降雨時,峰值流量削減率為依次91.49%、90.64%、85.71%、78.23%,削減效果最好;當降雨重現期為10年相對低頻降雨時,峰值流量削減率為68.57%,削減效果非常好,但次于高頻降雨。當降雨重現期為3年時,峰值流量出現時間延遲高達55.6 min,但其他相對低頻降雨的峰值流量出現延遲了10.2~34 min,延遲效果很好,但次于高頻降雨。
本研究基于SWMM構建湘潭市芙蓉大道雨洪模型,模擬分析無LID措施道路和4類LID措施組合成方案在降雨重現期分別為1、2、3、5和10年時的雨洪影響效果,對比分析4種方案在不同重現期下的雨洪影響,得出以下主要結論。
(1)在研究條件下,4類 LID措施組合方案中,在只考慮作用效果的前提下,方案四(透水瀝青+透水磚+植草溝)為最佳優(yōu)化方案。
(2)布設最佳優(yōu)化方案四后,高頻次降雨重現期條件下,徑流可完全削減,出流量削減率最高可達92.16%,峰值流量削減率最高可達91.49%。
(3)各LID設施的效果與重現期有關:研究表明,布設LID設施后,地表透水比例變大,滲透性增加,降雨下滲量增大,因此總徑流量與峰值流量減小,地表徑流出現時間滯后,峰值流量出現時間延遲。與此同時,隨著重現期越大,降雨強度相應變強,布設LID設施后的道路結構用于地表下滲量和滯納量的時間越短,當降雨達到一定強度時,布設LID設施還未達到飽和就產生徑流匯流,進而導致對徑流總量、徑流開始時間、峰值流量和峰值出現時間的削減或延遲效果降低。所以布設 LID設施在相對高頻降雨(重現期較小)條件下的徑流遲滯效果更為明顯。