朱文珍 馮慢慢 李浩然 遲曉琦 韓曉華
[摘要] 目的 探討ANO1抑制劑T16A inh-A01(A01)對(duì)血管緊張素Ⅱ(AngⅡ)誘導(dǎo)的血管平滑肌細(xì)胞(VSMC)增殖及細(xì)胞外調(diào)節(jié)蛋白激酶(ERK)信號(hào)通路蛋白的影響。方法 用AngⅡ、A01處理VSMC 24 h,采用四甲基偶氮唑藍(lán)(MTT)法檢測(cè)細(xì)胞存活率,采用Western blot法檢測(cè)增殖細(xì)胞核抗原(PCNA)、磷酸化ERK(p-ERK)蛋白表達(dá)。結(jié)果 與對(duì)照組相比,AngⅡ使細(xì)胞存活率升高至(121.2±2.4)%,10~20 μmol/L A01能夠明顯抑制該作用(F=63.64,P<0.01)。AngⅡ處理細(xì)胞后,PCNA蛋白表達(dá)水平升高,該效應(yīng)可被20 μmol/L A01部分抑制(F=15.82,P<0.01)。此外,AngⅡ還增加了p-ERK蛋白的表達(dá),該作用也可被A01顯著抑制(F=36.01,P<0.01)。結(jié)論 A01對(duì)AngⅡ誘導(dǎo)的VSMC增殖具有抑制作用,該作用可能與激活ERK信號(hào)通路相關(guān)。
[關(guān)鍵詞] ANO1抑制劑;血管緊張素Ⅱ;血管;肌細(xì)胞,平滑肌;細(xì)胞增殖
[中圖分類(lèi)號(hào)] R544;R329.25 ?[文獻(xiàn)標(biāo)志碼] A ?[文章編號(hào)] 2096-5532(2020)02-0190-04
doi:10.11712/jms.2096-5532.2020.56.056 [開(kāi)放科學(xué)(資源服務(wù))標(biāo)識(shí)碼(OSID)]
[網(wǎng)絡(luò)出版] http://kns.cnki.net/kcms/detail/37.1517.R.20200409.0847.001.html;2020-04-09 11:09
[ABSTRACT] Objective To investigate the effect of ANO1 inhibitor T16A inh-A01 (A01) on angiotensin Ⅱ (Ang Ⅱ)-induced proliferation of vascular smooth muscle cells (VSMCs) and extracellular regulated protein kinase (ERK) signaling pathway proteins. ?Methods VSMCs were treated with Ang Ⅱ and A01, respectively, for 24 h. The survival rate of cells was determined by MTT assay, and the protein expression of proliferating cell nuclear antigen (PCNA) and phosphorylated ERK (p-ERK) was determined by Western blot. ?Results Ang Ⅱ increased the survival rate of cells to 121.2%±2.4% (as compared with that of the control group), which could be significantly inhibited by 10-20 μmol/L A01 (F=63.64,P<0.01). After the cells were treated with Ang Ⅱ, the protein expression level of PCNA was increased, which could be partially inhibited by 20 μmol/L A01 (F=15.82,P<0.01). In addition, Ang Ⅱ increased the protein expression of p-ERK, which could also be significantly inhibited by A01 (F=36.01,P<0.01). ?Conclusion A01 can inhibit Ang Ⅱ-induced proliferation of VSMCs, which may be related to activation of the ERK signaling pathway.
[KEY WORDS] ANO1 inhibitor; angiotensin Ⅱ; blood vessels; myocytes, smooth muscle; cell proliferation
原發(fā)性高血壓是導(dǎo)致動(dòng)脈粥樣硬化、腦卒中等心腦血管疾病的高危因素,因此,如何有效防治高血壓的發(fā)生發(fā)展對(duì)于預(yù)防心腦血管疾病至關(guān)重要。腎素-血管緊張素系統(tǒng)(RAS)是調(diào)節(jié)體液平衡和血壓的重要系統(tǒng)。大量的研究結(jié)果表明,血液循環(huán)或組織內(nèi)RAS的異常激活是導(dǎo)致高血壓形成和發(fā)展的重要發(fā)病機(jī)制之一[1]。血管緊張素Ⅱ(AngⅡ)是RAS的主要活性物質(zhì),不僅可以誘導(dǎo)血管收縮和外周血管阻力增加,還可以通過(guò)激活細(xì)胞外調(diào)節(jié)蛋白激酶(ERK)和蛋白激酶C(PKC)、增加細(xì)胞內(nèi)活性氧(ROS)和鈣水平等信號(hào)通路,刺激血管平滑肌細(xì)胞(VSMC)的異常增殖和遷移,從而促進(jìn)血管重構(gòu)的發(fā)生[2-3]。ANO1是新近發(fā)現(xiàn)的鈣激活氯通道(CaCC),在心血管系統(tǒng)有廣泛的分布[4-5]。ANO1參與血管舒縮功能的調(diào)節(jié),利用ANO1特異性抑制劑T16A inh-A01(A01)可以明顯抑制VSMC的CaCC電流,并抑制甲氧胺誘導(dǎo)的血管條收縮[6-7]。在肺動(dòng)脈高壓研究中,ANO1促進(jìn)了肺動(dòng)脈血管細(xì)胞的增殖[8]。我們的前期研究顯示,AngⅡ上調(diào)了VSMC的ANO1蛋白表達(dá),但是ANO1表達(dá)上調(diào)是否參與了AngⅡ誘導(dǎo)的VSMC增殖,需要進(jìn)一步探討。本研究主要觀察了ANO1抑制劑A01對(duì)AngⅡ誘導(dǎo)的VSMC增殖的影響及ERK信號(hào)通路的變化,以期為高血壓血管重構(gòu)的防治提供新的治療策略?,F(xiàn)將結(jié)果報(bào)告如下。
1 材料與方法
1.1 試劑和儀器
AngⅡ購(gòu)自ApexBio公司,A01購(gòu)自Sigma公司,增殖細(xì)胞核抗原(PCNA)、ERK和磷酸化ERK(p-ERK)抗體由Cell Signaling Technology公司提供,β-actin抗體為北京博奧森公司產(chǎn)品,四甲基偶氮唑藍(lán)(MTT)購(gòu)自Solarbio(北京)公司,DMEM高糖培養(yǎng)粉為Gibco公司產(chǎn)品,胎牛血清為BI公司產(chǎn)品,RIPA裂解液購(gòu)自碧云天生物科技研究所,BCA蛋白定量檢測(cè)試劑盒為T(mén)hermo公司產(chǎn)品。所用儀器包括CO2培養(yǎng)箱、超凈工作臺(tái)、pectraMax M5多功能酶標(biāo)儀和Western 顯影儀。
1.2 VSMC的原代培養(yǎng)
取體質(zhì)量100 g的Wistar大鼠,用80 g/L水合氯醛(400 mg/kg)麻醉,置于體積分?jǐn)?shù)0.70的乙醇中浸泡后,在無(wú)菌操作臺(tái)內(nèi)迅速打開(kāi)胸腔,取出胸主動(dòng)脈,去除血管內(nèi)皮,將血管條剪成小塊(大小約1 mm3),置于培養(yǎng)瓶的底面貼壁5 h后翻轉(zhuǎn)培養(yǎng)瓶,使組織塊浸在含體積分?jǐn)?shù)為0.20胎牛血清的DMEM培養(yǎng)液中,在37 ℃、含體積分?jǐn)?shù)0.05 CO2培養(yǎng)箱中培養(yǎng)1周左右。VSMC在血管塊的周?chē)N壁長(zhǎng)出,當(dāng)細(xì)胞達(dá)到60%~70%融合后進(jìn)行傳代,選取生長(zhǎng)狀態(tài)良好的第5~8代細(xì)胞進(jìn)行實(shí)驗(yàn)。
1.3 實(shí)驗(yàn)分組及藥物處理
實(shí)驗(yàn)1觀察A01對(duì)AngⅡ誘導(dǎo)VSMC細(xì)胞活力的影響,將細(xì)胞分為對(duì)照組(無(wú)藥物處理)、AngⅡ組(用100 μmol/L AngⅡ孵育24 h)、A01+AngⅡ組(分別用1、5、10、20 μmol/L A01和100 μmol/L AngⅡ孵育24 h)、A01組(用20 μmol/L A01孵育24 h)。實(shí)驗(yàn)2觀察A01對(duì)AngⅡ誘導(dǎo)的VSMC中PCNA蛋白表達(dá)的影響,將細(xì)胞分為對(duì)照組(無(wú)任何藥物處理)、AngⅡ組(用100 μmol/L AngⅡ孵育24 h)、A01+AngⅡ組(應(yīng)用20 μmol/L A01和100 μmol/L AngⅡ孵育24 h)、A01組(用20 μmol/L A01孵育24 h)。實(shí)驗(yàn)3觀察A01對(duì)AngⅡ誘導(dǎo)的VSMC中ERK信號(hào)通路的影響,將細(xì)胞分對(duì)照組(無(wú)藥物處理)、AngⅡ組(用100 μmol/L AngⅡ孵育5 min)、A01+AngⅡ組(用20 μmol/L A01和100 μmol/L AngⅡ孵育5 min)以及A01組(用20 μmol/L A01孵育5 min)。
1.4 細(xì)胞存活率檢測(cè)
采用MTT法檢測(cè)細(xì)胞存活率。調(diào)整VSMC密度為108/L,取細(xì)胞懸液以每孔100 μL接種于96孔板(每孔10 000個(gè)細(xì)胞)。藥物處理結(jié)束后,吸除培養(yǎng)液,每孔加入5 g/L MTT 20 μL繼續(xù)避光培養(yǎng)4 h,棄上清,每孔加二甲基亞砜(DMSO)150 μL溶解藍(lán)色的甲瓚顆粒,室溫避光孵育10 min,用酶標(biāo)儀測(cè)定波長(zhǎng)570 nm 處的吸光度(A570)。實(shí)驗(yàn)重復(fù)3次,取平均值。
1.5 Western blot檢測(cè)PCNA、p-ERK蛋白表達(dá)
藥物處理結(jié)束后提取蛋白,用BCA蛋白定量試劑盒檢測(cè)蛋白濃度。每個(gè)樣品以20 μg蛋白上樣,經(jīng)SDS-PAGE電泳后轉(zhuǎn)移至PVDF膜上,用100 g/L的脫脂奶粉溶液室溫封閉1 h,分別加入PCNA(1∶2 000)、ERK(1∶1 000)、p-ERK(1∶1 000)和β-actin(1∶10 000)抗體(一抗),在4 ℃搖床上孵育過(guò)夜,以TBST洗膜3次后,加入二抗,在室溫下?lián)u床上孵育1 h,以TBST再洗膜3次后,用ECL發(fā)光劑顯影。用Image J軟件分析條帶灰度值。結(jié)果以PCNA/β-actin和p-ERK/ERK的比值表示。實(shí)驗(yàn)重復(fù)3次,取平均值。
1.6 統(tǒng)計(jì)學(xué)分析
應(yīng)用SPSS 22.0軟件進(jìn)行統(tǒng)計(jì)學(xué)分析,所得計(jì)量資料結(jié)果以±s表示,雙因素影響組間比較采用雙因素方差分析,多因素影響組間比較采用析因設(shè)計(jì)方差分析,以P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
2 結(jié) ?果
2.1 A01對(duì)細(xì)胞存活率的影響
對(duì)照組細(xì)胞存活率為(100.0±1.7)%,AngⅡ處理細(xì)胞24 h后細(xì)胞存活率升高至(121.2±2.4)%,1、5、10、20 μmol/L A01使細(xì)胞存活率分別降至(112.6±1.5)%、(109.9±1.5)%、(84.3±1.9)%和(78.3±1.8)%(n=3)。雙因素方差分析顯示,AngⅡ和A01兩種因素存在交互效應(yīng)(F=114.68,P<0.01),進(jìn)而進(jìn)行簡(jiǎn)單效應(yīng)分析。20 μmol/L A01+AngⅡ組細(xì)胞存活率較AngⅡ組明顯下降,差異具有統(tǒng)計(jì)學(xué)意義(F=63.64,P<0.01)。A01組細(xì)胞存活率為(99.0±2.0)%,與對(duì)照組比較差異無(wú)統(tǒng)計(jì)學(xué)意義(P>0.05),表明單純應(yīng)用20 μmol/L A01處理對(duì)細(xì)胞存活率沒(méi)有明顯影響,可以排除A01毒性作用。
2.2 A01對(duì)PCNA蛋白表達(dá)的影響
對(duì)照組、AngⅡ組、A01+AngⅡ組、A01組細(xì)胞PCNA蛋白表達(dá)水平分別為(100.0±4.1)%、(161.8±8.1)%、(106.2±1.4)%和(100.0±10.4)%(n=3)。析因設(shè)計(jì)方差分析顯示,AngⅡ和A01兩種因素存在交互效應(yīng)(F=15.94,P<0.01),進(jìn)而進(jìn)行簡(jiǎn)單效應(yīng)分析。AngⅡ組與對(duì)照組相比PCNA蛋白表達(dá)明顯上調(diào),差異具有統(tǒng)計(jì)學(xué)意義(F=23.65,P<0.01);與AngⅡ組相比,A01+AngⅡ組PCNA蛋白表達(dá)下降,差異具有統(tǒng)計(jì)學(xué)意義(F=15.82,P<0.01),而單獨(dú)使用A01對(duì)PCNA蛋白表達(dá)沒(méi)有明顯影響(P>0.05)。見(jiàn)圖1。
2.3 A01對(duì)p-ERK蛋白表達(dá)的影響
對(duì)照組、AngⅡ組、A01+AngⅡ組、A01組細(xì)胞p-ERK蛋白的表達(dá)水平分別為(100.0±0.6)%、(154.3±8.3)%、(90.1±10.3)%和(97.0±3.8)%(n=3)。析因設(shè)計(jì)方差分析顯示,AngⅡ和A01兩種因素存在交互效應(yīng)(F=8.15,P<0.05),進(jìn)而進(jìn)行簡(jiǎn)單效應(yīng)分析。與對(duì)照組相比,AngⅡ組p-ERK蛋白表達(dá)明顯上調(diào)(F=21.50,P<0.01);與AngⅡ組相比,A01+AngⅡ組蛋白表達(dá)明顯下降,差異具有統(tǒng)計(jì)學(xué)意義(F=36.01,P<0.01);而單獨(dú)使用A01對(duì)p-ERK蛋白表達(dá)沒(méi)有明顯影響(P>0.05)。見(jiàn)圖2。
3 討 ?論
長(zhǎng)期的高血壓會(huì)引起血管結(jié)構(gòu)和功能的改變,即血管重構(gòu),是導(dǎo)致高血壓惡化發(fā)展和靶器官損傷的重要病理生理學(xué)基礎(chǔ)[9]。血管重構(gòu)通過(guò)細(xì)胞增殖、凋亡和遷移以及細(xì)胞外基質(zhì)重排而改變血管結(jié)構(gòu)和功能,其中VSMC作為血管壁的主體細(xì)胞,其增殖及收縮功能增強(qiáng)在高血壓的發(fā)生發(fā)展過(guò)程中發(fā)揮了至關(guān)重要的作用[10]。VSMC增殖和血管纖維化是血管重塑和硬化的兩個(gè)重要變化,是高血壓發(fā)生和發(fā)展的動(dòng)力[11-13]。
AngⅡ?yàn)镽AS中的最主要的活性物質(zhì),血液循環(huán)和血管壁局部產(chǎn)生的AngⅡ可結(jié)合血管緊張素1型受體(AT1R),通過(guò)激活PLC/IP3、PKC、MAPK等多條信號(hào)通路,促進(jìn)VSMC的蛋白和DNA合成以及細(xì)胞遷移[14]。AngⅡ作為有絲分裂原,能夠加速細(xì)胞周期進(jìn)程[15],刺激VSMC蛋白合成,使得VSMC異常增殖[16],導(dǎo)致血管重構(gòu)。ANO1存在于血管平滑肌的各個(gè)部位[17-18],是血管平滑肌上的CaCC,可以參與血管功能的調(diào)節(jié)。有文獻(xiàn)報(bào)道,ANO1高表達(dá)促進(jìn)了肺血管的重構(gòu)[4]。ANO1有助于增強(qiáng)人類(lèi)心臟成纖維細(xì)胞中的CaCC電流,并且這受AngⅡ通過(guò)AT1R途徑的作用所調(diào)節(jié)[19]。高血壓大鼠血管組織中ANO1是高表達(dá)的,并且ANO1可促進(jìn)細(xì)胞增殖[20]。研究表明,ANO1參與VSMC的增殖和高血壓誘導(dǎo)的腦血管重塑[21]。我們的前期實(shí)驗(yàn)已表明,AngⅡ增加了正常大鼠原代培養(yǎng)VSMC上ANO1的表達(dá),提示ANO1可能參與了AngⅡ誘導(dǎo)的VSMC的增殖過(guò)程。PCNA是評(píng)價(jià)細(xì)胞是否處于增殖狀態(tài)的重要標(biāo)記[22],其表達(dá)水平可反映VSMC的增殖活性。本文的研究結(jié)果顯示,ANO1抑制劑A01能夠顯著抑制AngⅡ誘導(dǎo)的VSMC的活性及PCNA蛋白表達(dá)。以上結(jié)果提示,在VSMC中AngⅡ通過(guò)增加細(xì)胞活性促進(jìn)增殖,并且AngⅡ與ANO1之間相互促進(jìn),共同參與了高血壓的發(fā)展。
ERK屬于絲裂原活化蛋白激酶家族。ERK信號(hào)通路由有絲分裂原刺激激活并在調(diào)節(jié)細(xì)胞增殖和分化中具有重要地位。ERK信號(hào)通路參與多種生物學(xué)反應(yīng),包括刺激生長(zhǎng)因子的釋放,參與細(xì)胞增殖、遷移、侵襲和凋亡的調(diào)控等。其中細(xì)胞增殖主要體現(xiàn)在細(xì)胞數(shù)量增加和PCNA蛋白表達(dá)水平升高。ERK信號(hào)通路參與調(diào)節(jié)成骨細(xì)胞的增殖已經(jīng)被證實(shí)[23],ERK1/2激活影響VSMC增殖肥大[24-26]。越來(lái)越多的研究表明,VSMC增殖、遷移通過(guò)ERK信號(hào)通路實(shí)現(xiàn)[27]。
本文研究結(jié)果表明,A01通過(guò)抑制ERK信號(hào)途徑抑制由AngⅡ誘導(dǎo)的VSMC增殖。當(dāng)局部的RAS功能增強(qiáng)時(shí),AngⅡ通過(guò)ERK信號(hào)通路使得ANO1高表達(dá),VSMC異常增殖,導(dǎo)致高血壓血管重構(gòu)。ANO1對(duì)心血管功能的調(diào)控是國(guó)際上新的研究熱點(diǎn),阻斷或逆轉(zhuǎn)高血壓血管重構(gòu)是高血壓防治的關(guān)鍵環(huán)節(jié),希望本實(shí)驗(yàn)結(jié)果能為高血壓血管重構(gòu)的防治提供新的治療策略。
[參考文獻(xiàn)]
[1] MCKINNEY C A, FATTAH C, LOUGHREY C M, et al.Angiotensin-(1-7) and angiotensin-(1-9): function in cardiac and ? vascular remodeling[J]. Clinical Science, 2014,126(12):815-827.
[2] BORGHI C, URSO R, CICERO A F. Renin-angiotensin system at the crossroad of hypertens-ion and hypercholesterolemia[J]. Nutrition, Metabolism, and Cardiovascular Diseases: NMCD, 2017,27(2):115-120.
[3] EGUCHI S, KAWAI T, SCALIA R, et al. Understanding angiotensin Ⅱ type 1 receptor signaling in vascular pathophysio-logy[J]. Hypertension, 2018,71(5):804-810.
[4] YANG Y D, CHO H, KOO J Y, et al. TMEM16A confers receptor-activated calcium-dependent chloride conductance[J]. Nature, 2008,455(7217):1210-1215.
[5] SCHROEDER B C, CHENG T, JAN Y N, et al. Expression cloning of TMEM16A as a calcium-activated chloride channel subunit[J]. Cell, 2008,134(6):1019-1029.
[6] DAVIS A J, SHI J, PRITCHARD H A, et al. Potent vasorelaxant activity of the TMEM16A inhibitor T16A(inh)-A01[J]. British Journal of Pharmacology, 2013,168(3):773-784.
[7] HEINZE C, SENIUK A, SOKOLOV M V, et al. Disruption of vascular Ca2+-activated chloride currents lowers blood pressure[J]. Journal of Clinical Investigation, 2014,124(2):675-686.
[8] ALLAWZI A M, VANG A, CLEMENTS R T, et al. Activation of anoctamin-1 limits pulmonary endothelial cell proliferation via p38-mitogen-activated protein kinase-dependent apoptosis[J]. American Journal of Respiratory Cell and Molecular Biology, 2018,58(5):658-667.
[9] HERMIDA R C, AYALA D E, FERNNDEZ J R, et al. Hypertension: new perspective on its definition and clinical ma-nagement by bedtime therapy substantially reduces cardiovascular disease risk[J]. European Journal of Clinical Investigation, 2018,48(5):e12909.
[10] XIAO Q, PRUSSIA A, YU K, et al. Regulation of bestrophin Cl channels by calcium: role of the C terminus[J]. Journal of General Physiology, 2008,132(6):681-692.
[11] RIZZONI D, AGABITI R E. Small artery remodeling in hypertension and diabetes[J]. Curr Hypertens Rep, 2006,8(1):90-95.
[12] PONTICOS M, SMITH B D. Extracellular matrix synthesis in vascular disease hypertension, and atherosclerosis[J]. Biomed Res, 2014,28(1):25-39.
[13] XU J, SHI G P. Vascular wall extracellular matrix proteins and vascular diseases[J]. Biochim Biophys Acta, 2014,1842:2106-2119.
[14] THOMAS G C, NEEB Z P, BULLEY S, et al. TMEM16A channels generate Ca2+-activated Cl- currents in cerebral artery smooth muscle cells[J]. American Journal of Physiolo-gy-Heart and Circulatory Physiology, 2011,301(5):H1819-H1827.
[15] MEHTA P K, GRIENDLING K K. Angiotensin Ⅱ cell signaling: physiological and pathological effects in the cardiovascular system[J]. American Journal of Physiology-Cell Physio-logy, 2007,292(1):C82-C97.
[16] KIM S, WAO H. Molecular and cellular mechanisms of angioteminⅡ-mediated cardiovascular and renal diseases[J]. Pharmacological Reviews, 2000,52(1):11-34.
[17] MANOURY B, TAMULEVICIUTE A, TAMMARO P. TMEM16A/anoctamin 1 protein mediates calcium-activated chloride currents in pulmonary arterial smooth muscle cells[J]. The Journal of Physiology, 2010,588(Pt 13):2305-2314.
[18] FORREST A S, JOYCE T C, HUEBNER M L, et al. Increased TMEM16A-encoded calcium-activated chloride channel activity is associated with pulmonary hypertension[J]. American Journal of Physiology-Cell Physiology, 2012,303(12):C1229-C1243.
[19] EI CHEMALY A, NOREZ C, MAGAUD C, et al. ANO1 contributes to angiotensinⅡ-activated Ca2+ dependent Cl-current in human atrial fibroblasts[J]. Journal of Molecular and Cellular Cardiology, 2014,68:12-19.
[20] WANG Bingxiang, LI Chunlin, HUAI Ruituo, et al. Overexpression of ANO1/TMEM16A, an arterial Ca2+-activated Cl channel, contributes to spontaneous hypertension[J]. Journal of Molecular and Cellular Cardiology, 2015,82:22-32.
[21] ZENG Jiawei, CHEN Baoyi. Transmembrane member 16A participates in hydrogen peroxide-induced apoptosis by facilitating mitochondria-dependent pathway in vascular smooth muscle cells[J]. British Journal of Pharmacology, 2018,175(18):3669-3684.
[22] MAGA G, HUBSCHER U. Proliferating cell nuclear antigen (PCNA): a dancer with many partners[J]. Journal of Cell Science, 2003,116(Pt 15):3051-3060.
[23] LAU K H, BAYLINK D J. Molecular mechanism of action of fluoride on bone cells[J]. J Bone Miner Res, 1998,13:1660-1667.
[24] LIAO D F, MONIA B, DEAN N, et al. Protein kinase C-zeta mediates angiotensin Ⅱ activation of ERK1/2 in vascular smooth muscle cells[J]. J Biol Chem, 1997,272:6146-6150.
[25] LEE D H, KIM J E, KANG Y J, et al. Insulin like growth factor binding protein-5 regulates excessive vascular smooth muscle cell proliferation in spontaneously hypertensive rats via ERK1/2 phosphorylation[J]. The Korean Journal of Physiology & Pharmacology, 2013,17(2):157-162.
[26] LIU G, HITOMI H, RAHMAN A, et al. High sodium augments angiotensin Ⅱ-induced vascular smooth muscle cell proliferation through the ERK1/2-dependent pathway[J]. Hypertension Research, 2014,37(1):13-18.
[27] KIM J Y, KIM K H, LEE W R, et al. Apamin inhibits PDGF-BB-induced vascular smooth muscle cell proliferation and migration through suppressions of activated Akt and Erk signaling pathway[J]. Vascul Pharmacol, 2015,70:8-14.
(本文編輯 馬偉平)