耿元文 林琴琴 王湘怡 李若明 田振軍
摘 要:目的:探討間歇運(yùn)動(dòng)激活心梗 (myocardial infarction, MI) 大鼠腎臟miR-34a/SIRT1/Trx-1通路抑制腎臟氧化應(yīng)激反應(yīng)改善腎臟功能的作用。方法:3月齡雄性SD大鼠,隨機(jī)分為假手術(shù)組 (Sham)、心肌梗死組 (MI)和心梗+間歇有氧運(yùn)動(dòng)組(ME),每組12只。MI組采用心臟左冠狀動(dòng)脈前降支 (LAD) 結(jié)扎法建立MI模型。Sham組大鼠實(shí)施假手術(shù),ME 組大鼠在MI 手術(shù)后1周進(jìn)行4周跑臺(tái)運(yùn)動(dòng)。ME組適應(yīng)性訓(xùn)練1周 (10~15 m/min,30 min/d,共5 d)。正式訓(xùn)練起始速度10 min×10 m/min (40%~50% VO2 max) 熱身,以7 min×25 m/min(85%~90% VO2 max) 和3 min×15 m/min ( 50%~60% VO2 max)交替進(jìn)行大中等強(qiáng)度間歇運(yùn)動(dòng)。總時(shí)間為60 min,每周訓(xùn)練5 d,連續(xù)訓(xùn)練4 w。訓(xùn)練結(jié)束后次日取材,測(cè)定各組大鼠心電圖變化,采用紫外分光光度法測(cè)定腎臟MDA含量、T-AOC和GSH-Px活性,ELISA法測(cè)定腎臟LDH活性、血清Trx-1水平以及血清和尿液NAG水平,RT-qPCR 檢測(cè)腎臟miR-34a和Trx-1表達(dá)變化,Western Blot 檢測(cè)腎臟SIRT1、SOD1、SOD2、NOX2和NOX4蛋白表達(dá)。結(jié)果:與Sham組比較,MI組大鼠腎臟MDA含量和LDH活性顯著增加,T-AOC和GSH-Px活性顯著降低;腎臟miR-34a表達(dá)顯著增加,SIRT1、SOD1和SOD2表達(dá)顯著減少,NOX2和NOX4表達(dá)顯著增加;腎臟Trx-1 mRNA表達(dá)增多,血清Trx-1水平升高,血清及尿液NAG表達(dá)顯著升高。與MI組比較,間歇運(yùn)動(dòng)顯著降低MI大鼠腎臟MDA含量和LDH活性,增加T-AOC和GSH-Px活性,上調(diào)SIRT1、SOD1、SOD2和Trx-1的表達(dá),抑制NOX2、NOX4和miR-34a表達(dá),降低血清及尿液NAG表達(dá)。血清 Trx-1與NAG表達(dá)呈顯著正相關(guān);腎臟SIRT1蛋白表達(dá)與NOX2、NOX4、MDA和LDH表達(dá)呈顯著負(fù)相關(guān);與SOD1、SOD2、T-AOC和GSH-Px表達(dá)呈顯著正相關(guān)。腎臟miR-34a表達(dá)與SIRT1表達(dá)呈顯著負(fù)相關(guān), 與MDA和LDH蛋白表達(dá)呈顯著正相關(guān),與SOD1、SOD2、T-AOC和GSH-Px表達(dá)呈顯著負(fù)相關(guān)。結(jié)論:間歇運(yùn)動(dòng)抑制MI大鼠腎臟miR-34a表達(dá),激活其下游SIRT1/Trx-1調(diào)控的NOX4信號(hào)通路。表明,miR-34a/SIRT1/Trx-1信號(hào)通路在間歇運(yùn)動(dòng)抑制心梗大鼠腎臟氧化應(yīng)激中發(fā)揮重要作用。
關(guān)鍵詞:間歇運(yùn)動(dòng); 心肌梗死; 氧化應(yīng)激; miR-34a; SIRT1
中圖分類號(hào):G804.2 文獻(xiàn)標(biāo)識(shí)碼:A 文章編號(hào):1006-2076(2020)06-0044-10
Abstract: Objective:To determine the effects of aerobic interval training (AIT) on the expressions of microRNA-34a (miR-34a), SIRT1 and Trx-1 and renal oxidative stress in rats with myocardial infarction (MI). Methods:male Sprague Dawley rats were randomly divided into Sham-operated group (Sham), Sedentary MI group (MI) and MI with AIT group (ME) (n=12). The MI model was established by ligation the left anterior descending coronary artery(LAD). Rats in ME were subjected to 8 weeks treadmill exercise training. (AIT:60 min/day with 10 min of warm-up at 10 m/min (40%~50%VO2 max) and 50 min of exercise at 25 m/min 7 min (85%~90% VO2 max) interspersed with 3 min at 15 m/min ( 50%~60% VO2 max)). After training renal function was evaluated. The levels of renal MDA content, T-AOC and GSH-Px activity by ultraviolet spectrophotometry. The activity of LDH in renal was determined by microplate assay. The levels of serumrx-1and serum, urine NAG were assessed by ELISA. The expression of renal miR-34a, Trx-1 was examined by RT-q PCR. The expression of renal SIRT1 protein was examined by western blotting. Results:Compared with the Sham group, MI increased the expression of renal MDA, LDH, NOX2, NOX4, Trx-1 mRNA and the level of serum Trx-1, serum and urine NAG, and the expression of renal miR-34a. Meanwhile, MI inhibited the expression of renal T-AOC, GSH-Px, SIRT1, SOD1 and SOD2. Compared with the MI group, AIT inhibited the expression of renal MDA, LDH, NOX2, NOX4, serum and urine NAG and the expression of renal miR-34a. Meanwhile, AIT up-regulated the expression of renal T-AOC, GSH-Px, SIRT1, SOD1, SOD2 and renal Trx-1 mRNA and the level of serum Trx-1. The serum level of Trx-1 was positively related to the level of NAG. The expression of SIRT1 protein was negatively related to the expression of NOX2, NOX4, MDA and LDH, and positively related to the xpression of SOD1, SOD2, T-AOC and GSH-Px. The expression of miR-34a was negatively related to the expression of SIRT1, SOD1, SOD2, T-AOC and GSH-Px protein, and positively related to the expression of MDA and LDH. Conclusion:AIT inhibits the level of renal miR-34a, activates the downstream SIRT1/Trx-1 regulated NOX4 signaling pathway. It shows that the miR-34a/ SIRT1/Trx-1 signaling pathway plays an important role in the inhibition of AIT on oxidative stress in the kidneys of rats with myocardial infarction.
Key words: aerobic interval training; myocardial infarction; oxidative stress; miR-34a; SIRT1
眾所周知,心肌梗死(myocardial infarction,MI)心輸出量減少,腎臟血流連續(xù)減少,誘發(fā)腎臟氧化應(yīng)激和炎癥反應(yīng)[1~2],導(dǎo)致急性腎臟損傷(acute kidney injury,AKI),繼發(fā)腎功能紊亂。研究證實(shí),氧化應(yīng)激是AKI的主要決定因素,氧化應(yīng)激水平升高與NADPH氧化酶(NADPH oxidase,NOX) 活化有關(guān),其是生成活性氧的主要酶體[3]。NADPH氧化酶家族有7種亞型,分別是NOX1-5以及2種雙氧化酶DUOX-1和DUOX-2,其中NOX4是腎臟中的主要形式,NOX2也同時(shí)表達(dá)[4]。研究發(fā)現(xiàn),NOXs上調(diào)表達(dá)在腎臟氧化應(yīng)激和腎臟損傷中發(fā)揮重要作用[5],腎臟缺血缺氧誘發(fā)NOX2和NOX4表達(dá)增加,氧化應(yīng)激增強(qiáng),細(xì)胞凋亡增多,而抑制NOX4表達(dá)可顯著減少腎臟缺血導(dǎo)致的氧化應(yīng)激和細(xì)胞凋亡,減緩腎臟損傷[6]。 提示,NOX4是腎臟氧化應(yīng)激損傷進(jìn)程的重要靶點(diǎn)。大量研究證實(shí),有氧運(yùn)動(dòng)增強(qiáng)抗氧化能力并減弱正常及疾病大鼠腎臟氧化應(yīng)激[7-8]。有氧運(yùn)動(dòng)可顯著減少M(fèi)I大鼠腎臟脂質(zhì)過(guò)氧化,增強(qiáng)腎臟抗氧化能力[7],減輕高鹽飲食引起的腎臟氧化應(yīng)激[8]。另有研究證實(shí),間歇運(yùn)動(dòng)較有氧運(yùn)動(dòng)更有效保護(hù)腎臟功能[9-10]。但間歇運(yùn)動(dòng)是否抑制MI大鼠腎臟NOX4表達(dá),抑制腎臟氧化應(yīng)激,目前尚無(wú)文獻(xiàn)報(bào)道。
研究證實(shí),多種生物分子和信號(hào)通路影響氧化應(yīng)激。microRNAs(miRs)通過(guò)抑制mRNA轉(zhuǎn)錄或促進(jìn)mRNA降解,成為許多生物進(jìn)程的調(diào)節(jié)者[11],其作為信號(hào)分子參與腎臟損傷發(fā)生機(jī)制與病理生理過(guò)程。體內(nèi)外研究證實(shí),腎臟損傷后miR-27a-3p和miR-320等表達(dá)水平與腎臟氧化應(yīng)激水平同步上調(diào),抑制其表達(dá)可顯著減輕腎臟氧化應(yīng)激反應(yīng),減少腎臟損傷[12-13]。提示,miRs可作為腎臟疾病的生物標(biāo)記物和/或潛在治療靶點(diǎn)。miR-34家族成員miR-34a在氧化應(yīng)激[14]、炎癥[15]和細(xì)胞凋亡[16]中起重要作用,且證實(shí)直接靶向NAD +依賴性核III類組蛋白去乙?;竤irtuin 1(SIRT1)[17]。已知SIRT1通過(guò)去乙?;蚺c幾種靶蛋白相互作用來(lái)抑制氧化應(yīng)激、炎癥和細(xì)胞凋亡而發(fā)揮腎臟保護(hù)作用[18]。體內(nèi)外實(shí)驗(yàn)研究證實(shí),腎毒性大鼠、小鼠及腎臟細(xì)胞中miR-34a表達(dá)增加,SIRT1表達(dá)降低,氧化應(yīng)激水平升高[19]。另研究證實(shí),硫氧還蛋白-1 (Thioredoxin-1, Trx-1),一種具有氧化還原/炎癥調(diào)節(jié)特性且普遍存在的硫醇蛋白,通過(guò)抑制氧化應(yīng)激保護(hù)代謝綜合征心血管功能[20]和橫紋肌溶解相關(guān)急性腎損傷的腎臟功能[21]。研究發(fā)現(xiàn),SIRT1上調(diào)表達(dá)顯著增加衣霉素誘導(dǎo)近端腎小管細(xì)胞和內(nèi)質(zhì)網(wǎng)應(yīng)激小鼠腎小管中Trx的表達(dá),抑制腎臟氧化應(yīng)激[22]。表明,miR-34a/ SIRT1介導(dǎo)的Trx-1信號(hào)傳導(dǎo)是控制腎臟氧化應(yīng)激的重要途徑。研究證實(shí),運(yùn)動(dòng)通過(guò)調(diào)控miRs表達(dá)參與腎臟生理病理進(jìn)程[23-24]。但運(yùn)動(dòng)是否激活MI腎臟miR-34a/SIRT1/Trx-1信號(hào)通路,抑制氧化應(yīng)激反應(yīng),保護(hù)腎臟功能,目前尚無(wú)文獻(xiàn)報(bào)道。因此,本研究擬探討間歇運(yùn)動(dòng)對(duì)MI大鼠腎臟miR-34a和氧化應(yīng)激的影響及其可能機(jī)制,為運(yùn)動(dòng)改善MI的病理進(jìn)程及其機(jī)制探討和相關(guān)治療靶點(diǎn)篩選提供實(shí)驗(yàn)依據(jù)。
1 材料與方法
1.1 主要儀器和試劑
主要試劑:TRIzol(購(gòu)于Inventragtion)、反轉(zhuǎn)錄試劑盒(購(gòu)于TAKARA)、兔抗多克隆抗體SIRT1(購(gòu)于Bioworld)、兔抗單克隆抗體超氧化物歧化酶(superoxide dismutase,SOD) 1、SOD2、NOX2和NOX4(購(gòu)于Abcam)、PCR引物(購(gòu)于上海生工)、ELISA試劑盒(購(gòu)于美國(guó)R&D公司)、氧化應(yīng)激試劑盒丙二醛(malondialdehyde,MDA)、乳酸脫氫酶(lactate dehydrogenase,LDH)、總抗氧化能力(total antioxidant capacity,T-AOC)、谷胱甘肽過(guò)氧化物酶(glutathione peroxidase,GSH-Px)(購(gòu)于南京建成生物科技有限公司)等。
主要儀器: PowerLab 8/30生理信號(hào)采集系統(tǒng)、Bio-Rad電泳儀和轉(zhuǎn)移槽、Bio-Rad凝膠成像系統(tǒng)、BX51奧林巴斯光學(xué)顯微鏡、Thermo低溫高速離心機(jī)、尼康熒光顯微鏡、Bio-Rad PCR擴(kuò)增儀等。
1.2 動(dòng)物分組與MI模型制備
動(dòng)物分組:3月齡雄性SD大鼠36只 (購(gòu)自西安交通大學(xué)醫(yī)學(xué)院實(shí)驗(yàn)動(dòng)物中心,動(dòng)物質(zhì)量合格證號(hào):陜醫(yī)動(dòng)證字SCXK2012-098),體重180~220 g,國(guó)家標(biāo)準(zhǔn)嚙齒類動(dòng)物干燥飼料喂養(yǎng),自由飲食。動(dòng)物室內(nèi)溫度為20℃~29℃,濕度為50%~60%。動(dòng)物隨機(jī)分為假手術(shù)組 (Sham組)、心肌梗死組 (MI組)和心梗+間歇有氧運(yùn)動(dòng)組 (ME組),每組12只。Sham組大鼠常規(guī)籠內(nèi)安靜飼養(yǎng),MI 組采用左冠狀動(dòng)脈前降支 ( LAD) 結(jié)扎法,制備MI 模型。ME 組進(jìn)行為期4周的小動(dòng)物跑臺(tái)運(yùn)動(dòng)。
MI模型制備:5%戊巴比妥鈉腹腔麻醉,采用大鼠呼吸面罩進(jìn)行呼吸機(jī)輔助呼吸 (60次/min,潮氣量16 mL,呼吸比1∶2),多道生理信號(hào)采集處理系統(tǒng)記錄大鼠肢導(dǎo)心電圖 (ECG)。開胸暴露心臟,于左心耳根部和肺動(dòng)脈圓錐左緣交界下2 mm 處用5/0手術(shù)線結(jié)扎左冠狀動(dòng)脈前降支(LAD),結(jié)扎后肉眼可見結(jié)扎遠(yuǎn)端心肌顏色逐漸變淺或變白,主要局限在LV,靠近心尖部最為明顯。利用心電圖監(jiān)測(cè)評(píng)價(jià)MI模型,大鼠MI 后心電圖出現(xiàn)S-T段抬高或T波倒置現(xiàn)象。由此斷定MI模型造模成功。然后逐層縫合關(guān)胸。為了排除手術(shù)因素干擾,Sham組大鼠手術(shù)過(guò)程同上,但僅穿線而不結(jié)扎LAD。ME組大鼠在MI模型成功后1 周開始訓(xùn)練。
1.3 間歇有氧運(yùn)動(dòng)方案
運(yùn)動(dòng)方案參考Wisloff訓(xùn)練模型[25]。ME組大鼠術(shù)后1周進(jìn)行跑臺(tái)運(yùn)動(dòng)。適應(yīng)性訓(xùn)練1周 (10~15 m/min,30 min/d,共5 d)。正式訓(xùn)練起始速度10 min×10 m/min (40%~50%VO2max) 熱身,以7 min×25 m/min(85%~90% VO2max) 和3 min×15 m/min(50%~60%VO2 max)交替進(jìn)行大中等強(qiáng)度間歇運(yùn)動(dòng)。總時(shí)間為60 min,每周訓(xùn)練5 d,連續(xù)訓(xùn)練4 w。上述運(yùn)動(dòng)方案無(wú)大鼠死亡。
1.4 樣本處理及生化指標(biāo)測(cè)定
4周運(yùn)動(dòng)結(jié)束后次日,測(cè)定心電圖,腹主動(dòng)脈取血及膀胱取尿后,迅速摘取腎臟,液氮驟冷,轉(zhuǎn)移至-80℃超低溫冰箱保存?zhèn)溆谩?/p>
血液及尿液樣本離心后棄沉淀留取上清液,嚴(yán)格參照試劑盒說(shuō)明對(duì)腎臟MDA、LDH、T-AOC、GSH-Px進(jìn)行測(cè)定;運(yùn)用ELISA法,嚴(yán)格按照試劑盒(R&D公司)操作步驟對(duì)血清Trx-1及血清和尿液中N-乙酸-β-D-葡萄糖苷酶(N-acetyl-beta-D-glucosaminidase, NAG)的含量進(jìn)行測(cè)定。
1.5 Western Blot
采用RIPA提取腎臟總蛋白質(zhì),Bradford法測(cè)定蛋白濃度。10~12% SDS聚丙烯酰胺凝膠垂直電泳分離后,轉(zhuǎn)至PVDF膜,3% BSA室溫?fù)u床封閉1 h后,分別加入兔抗多克隆抗體SIRT1 (1∶400)、兔抗單克隆抗體SOD1(1∶50 000)、SOD2(1∶5000)、NOX2(1∶5000)、NOX4(1∶5000),4℃過(guò)夜,室溫復(fù)溫30 min后,加入HRP標(biāo)記的羊抗兔IgG二抗抗體 (1∶10 000) 孵育1 h,TBST清洗,ECL發(fā)光。內(nèi)參為GAPDH (1∶8000)。
1.6 RT-qPCR
用TRIzol試劑提取腎臟總RNA,嚴(yán)格按照反轉(zhuǎn)錄試劑盒說(shuō)明書操作步驟反轉(zhuǎn)錄合成cDNA,后進(jìn)行RT-qPCR反應(yīng),內(nèi)參為GAPDH。引物序列如下:Trx-1上游引物:5′-CTG ATCGAGAGCAAGGAAGC-3′,下游引物:5′-TCA AGGAACACCACATTGGA-3′,擴(kuò)增產(chǎn)物長(zhǎng)度為158 bp;GAPDH 上游引物:5′-ACAGCAA CAGGGT GGT GGAC-3′,下游引物:5′-TTTGAGGGTGCAGCGAACTT-3′,擴(kuò)增產(chǎn)物為252 bp。反應(yīng)條件如下:95℃ 10 min,1 循環(huán);95℃ 15 s,60℃ 30 s,72℃ 30 s,40 循環(huán);72℃ 10 min。每個(gè)樣品重復(fù)檢測(cè)3次。利用2-△△Ct法計(jì)算相對(duì)基因表達(dá)量。
用TRIzol試劑提取腎臟總RNA,按microRNA反轉(zhuǎn)錄試劑盒說(shuō)明書方法反轉(zhuǎn)錄合成cDNA,再以此cDNA為模板按PCR試劑盒進(jìn)行PCR反應(yīng)。引物和探針由寶生物工程有限公司(TaKaRa)設(shè)計(jì)和合成,U6為內(nèi)參。反應(yīng)條件如下:95℃ 30 s,1 個(gè)循環(huán);95℃ 5 s,60℃ 20 s,39 個(gè)循環(huán)。每個(gè)樣品重復(fù)檢測(cè)3次。利用2-△△Ct法計(jì)算miR-34a的相對(duì)表達(dá)量。
1.7 數(shù)據(jù)統(tǒng)計(jì)
所有數(shù)據(jù)均運(yùn)用采用SPSS 17.0 for Windows統(tǒng)計(jì)軟件對(duì)所獲得的實(shí)驗(yàn)數(shù)據(jù)進(jìn)行統(tǒng)計(jì)分析,所有數(shù)據(jù)以均數(shù)±標(biāo)準(zhǔn)差 (x[TX-*4]±s)表示。統(tǒng)計(jì)學(xué)方法采用單因素方差分析 (one-way analysis of variance, ANOVA)。顯著性差異選擇P<0.05和P<0.01水平。
2 研究結(jié)果與分析
2.1 間歇運(yùn)動(dòng)顯著改善心梗大鼠心功能
心電圖結(jié)果顯示:間歇運(yùn)動(dòng)前假手術(shù)組大鼠心電圖正常,P、Q、R、S、T 各波段規(guī)則;心梗手術(shù)后大鼠心電圖出現(xiàn)S-T 段抬高或T 波倒置現(xiàn)象,由此斷定MI 模型造模成功;間歇運(yùn)動(dòng)后ME 組大鼠心電圖趨于正常,表明間歇運(yùn)動(dòng)對(duì)心梗大鼠是安全有效的,具有保護(hù)作用,且顯著改善心功能(圖1)。
2.2 間歇運(yùn)動(dòng)顯著抑制心梗大鼠腎臟miR-34a的表達(dá)
RT-qPCR結(jié)果顯示:與Sham組比較,MI組大鼠腎臟miR-34a表達(dá)顯著增加 (P<0.01);與MI組比較,ME組腎臟miR-34a表達(dá)顯著減少 (P<0.01)。表明心梗大鼠腎臟組織miR-34a表達(dá)升高,間歇運(yùn)動(dòng)干預(yù)可明顯抑制腎臟組織miR-34a表達(dá)(圖2)。
2.3 間歇運(yùn)動(dòng)顯著增加心梗大鼠腎臟SIRT1的表達(dá)
Western blot結(jié)果顯示:與Sham組比較,MI組大鼠腎臟SIRT1表達(dá)顯著減少 (P<0.01);與MI組比較,ME組大鼠腎臟SIRT1表達(dá)顯著增加 (P<0.01)(圖3)。
2.4 間歇運(yùn)動(dòng)顯著增加心梗大鼠血清及腎臟Trx-1的表達(dá)
ELISA結(jié)果顯示:與Sham組比較,MI組大鼠腎臟Trx-1 mRNA表達(dá)增多,血清Trx-1水平升高 (均為P<0.01);與MI組比較,ME組大鼠腎臟Trx-1 mRNA表達(dá)增多,血清Trx-1水平升高(均為P<0.01)。這表明心梗大鼠腎臟組織Trx-1應(yīng)激性升高,間歇運(yùn)動(dòng)干預(yù)可顯著促進(jìn)腎臟組織Trx-1表達(dá)(圖4)。
2.5 間歇運(yùn)動(dòng)顯著抑制心梗大鼠腎臟NOX2和NOX4的表達(dá)
Western blot結(jié)果顯示:與Sham組比較,MI組大鼠腎臟NOX2和NOX4表達(dá)顯著增加(P<0.01);與MI組比較,ME組大鼠腎臟NOX2和NOX4表達(dá)顯著減少 (P<0.01) (圖5)。
2.6 間歇運(yùn)動(dòng)顯著增加心梗大鼠腎臟SOD1和SOD2的表達(dá)
Western blot結(jié)果顯示:與Sham組比較,MI組大鼠腎臟SOD1和SOD2表達(dá)顯著減少 (P<0.01);與MI組比較,ME組大鼠腎臟SOD1和SOD2表達(dá)顯著增加 (P<0.01)(圖6)。
2.7 間歇運(yùn)動(dòng)顯著增加心梗大鼠腎臟T-AOC和GSH-PX水平,抑制腎臟MDA和LDH的表達(dá)
結(jié)果顯示:與Sham組比較,MI組大鼠腎組織勻漿中MDA含量和LDH活性顯著升高(P<0.01),T-AOC總抗氧化能力和GSH-PX活性顯著降低(P<0.01);與MI組比較,ME組大鼠腎組織勻漿中MDA含量和LDH活性顯著降低(P<0.01),T-AOC總抗氧化能力和GSH-PX活性顯著升高(P<0.01) (表1)。
2.8 間歇運(yùn)動(dòng)顯著抑制心梗大鼠血清及尿液NAG的表達(dá)
ELISA結(jié)果顯示:與Sham組比較,MI組大鼠血清及尿液NAG表達(dá)顯著升高(P<0.01);與MI組比較,ME組大鼠血清及尿液NAG表達(dá)顯著減少 (P<0.01)。這表明心梗受損導(dǎo)致腎功能紊亂,間歇運(yùn)動(dòng)干預(yù)可有效改善腎臟功能紊亂(圖7)。
2.9 腎臟miR-34a表達(dá)與SIRT1、Trx-1、氧化應(yīng)激變化的相關(guān)性
相關(guān)性分析結(jié)果顯示,MI后血清 Trx-1與NAG表達(dá)呈顯著正相關(guān)(r=0.98,P<0.01)。腎臟SIRT1蛋白表達(dá)與NOX2、NOX4、MDA和LDH表達(dá)呈顯著負(fù)相關(guān)(r=-0.947,P<0.01;r=-0.931,P<0.01; r=-0.935,P<0.01;r=-0.856,P<0.01),與SOD1、SOD2、T-AOC和GSH-Px表達(dá)呈顯著正相關(guān)(r =0.880,P<0.01; r=0.943,P<0.01; r =0.957,P<0.01; r=0.850,P<0.01)。表明,隨著腎臟SIRT1表達(dá)的增加,MI大鼠腎臟氧化應(yīng)激減少。 MI及MI間歇運(yùn)動(dòng)后,腎臟miR-34a表達(dá)與SIRT1表達(dá)呈顯著負(fù)相關(guān)(r=-0.928,P<0.01),與MDA和LDH蛋白表達(dá)呈顯著正相關(guān)(r=0.964,P<001;r=0.972,P<0.05),與SOD1、SOD2、T-AOC和GSH-Px表達(dá)呈顯著負(fù)相關(guān)(r=-0.969,P<0.01;r=-0.937,P<0.01;r=-0.942,P<0.01;r=-0.830,P<001)。 表明,大鼠腎臟miR-34a表達(dá)與腎臟氧化應(yīng)激密切關(guān)系。
3 討論
研究發(fā)現(xiàn),除心臟損傷外,MI靶向遠(yuǎn)隔器官損傷,包括大腦、肝臟和腎臟等[26]。先前的報(bào)道證實(shí),MI后不久腎功能迅速下降[27]。心臟受損繼發(fā)腎損害進(jìn)展的發(fā)病機(jī)制很復(fù)雜,就病理而言,氧化應(yīng)激是MI的主要原因之一。由MI引起靶器官損害的嚴(yán)重程度與這個(gè)變量直接相關(guān)。新近研究證實(shí),心肌缺血和缺血再灌注(ischemia reperfusion,I/R)顯著增加血漿和腎臟MDA水平,下調(diào)腎臟SOD1、SOD2、GSH-Px和過(guò)氧化氫酶(catalase,CAT)基因表達(dá),增加腎損傷標(biāo)志物白細(xì)胞介素-18和腎損傷分子-1 (kidney injury molecule-1,KIM-1)的表達(dá)[28]。另研究證實(shí),MI顯著增加循環(huán)和腎臟MDA水平,降低SOD和T-AOC活性,減弱腎臟抗氧化能力,導(dǎo)致腎臟形態(tài)結(jié)構(gòu)和功能受損[29]。本研究與上述研究相一致,結(jié)果顯示,MI大鼠腎臟MDA含量和LDH活性顯著升高, SOD1和SOD2蛋白表達(dá)下降,T-AOC和GSH-PX活性顯著降低,腎損傷標(biāo)志物NAG的血清和尿液水平顯著升高。結(jié)果提示,MI后腎臟氧化應(yīng)激水平升高,抗氧化能力降低,腎臟功能受損。在正常和病理情況下,NOX是腎臟氧化應(yīng)激的主要來(lái)源[5],而NOX4主要在嚙齒動(dòng)物的腎臟中表達(dá)[30]。體內(nèi)外研究證實(shí),AKI導(dǎo)致腎臟NOX4基因和蛋白表達(dá)增加,NOX4基因沉默可顯著減輕AKI導(dǎo)致的腎臟細(xì)胞凋亡和炎癥反應(yīng);利用NOX4基因沉默AKI小鼠進(jìn)一步研究證實(shí), NOX4沉默可恢復(fù)腎功能,減輕腎臟損害和減少炎癥反應(yīng)[31]。結(jié)果表明,干預(yù)NOX4異常表達(dá)或?qū)⒊蔀榉乐文I臟損傷的新靶點(diǎn)或策略。另研究證實(shí),MI后腎臟NOX2和NOX4表達(dá)顯著增加,傳統(tǒng)中草藥復(fù)方心肌爾康顯著降低MI大鼠腎臟循環(huán)和腎臟MDA水平,提高SOD和T-AOC活性,減少腎臟NOX4表達(dá),提升腎臟形態(tài)結(jié)構(gòu)和功能[29];卡格列凈和恩格列凈可顯著降低糖尿病大鼠MI后腎臟NOX2和NOX4表達(dá),降低腎損傷標(biāo)志物中性粒細(xì)胞明膠酶相關(guān)的脂蛋白和KIM-1表達(dá),保護(hù)腎功能[32-33]。除藥物外,有氧運(yùn)動(dòng)具有顯著抗氧化應(yīng)激能力[34]。有氧運(yùn)動(dòng)可顯著抑制高鹽膳食大鼠股動(dòng)脈和延髓腹側(cè)延髓中NADPH氧化酶亞基NOX4和NOX2的表達(dá)[35-36],顯著減少冠心病患者主動(dòng)脈NOX2和NOX4基因和蛋白表達(dá)[37]。另研究證實(shí),有氧運(yùn)動(dòng)顯著降低卵巢切除大鼠腎臟脂質(zhì)過(guò)氧化,上調(diào)腎臟CAT和SOD表達(dá),改善腎臟氧化應(yīng)激[38];顯著減少M(fèi)I大鼠腎臟MDA水平,提升腎功能[7];顯著降低腎臟I/R大鼠腎臟MDA水平,升高GSH和CAT水平,減弱腎臟組織氧化應(yīng)激[39]。本研究結(jié)果顯示,MI大鼠腎臟NOX2和NOX4蛋白表達(dá)顯著增加,間歇運(yùn)動(dòng)可顯著減少M(fèi)I大鼠腎臟NOX2和NOX4蛋白表達(dá),降低MDA含量和LDH活性,增加抗氧化劑SOD1和SOD2蛋白表達(dá),提升T-AOC和GSH-PX活性,降低血清和尿液NAG水平。結(jié)果表明,心肌缺血誘發(fā)腎臟氧化應(yīng)激,間歇運(yùn)動(dòng)可有效抑制MI后腎臟氧化應(yīng)激,改善腎功能。
研究證實(shí),miRs參與腎臟氧化應(yīng)激的調(diào)節(jié)。缺氧/復(fù)氧(hypoxia/reoxygenation,H/R)誘導(dǎo)HK-2細(xì)胞中miR-423-5p表達(dá)增加,miR-423-5p過(guò)表達(dá)可顯著增加活性氧水平,上調(diào)MDA和GST活性,下調(diào)SOD活性,促進(jìn)細(xì)胞氧化應(yīng)激;miR-423-5p 基因沉默可顯著抑制H/R HK-2細(xì)胞氧化應(yīng)激反應(yīng)[40]。最新體內(nèi)外研究發(fā)現(xiàn), miR-27a-3p在腎臟I/R小鼠和H/R NRK-52E和HK-2細(xì)胞模型中表達(dá)上調(diào),其過(guò)表達(dá)顯著降低腎臟I/R小鼠腎臟SOD水平,增加血尿素氮、血肌酐和MDA水平,加劇I/R引起的腎臟損害,而抑制其表達(dá)可顯著減輕腎臟I/R引起的氧化損傷[12]。另研究證實(shí),miR-34a-5p上調(diào)表達(dá)在I/R大鼠心肌和I/R小鼠腸道中,加速活性氧積累,加劇心肌和腸氧化應(yīng)激;抑制miR-34a-5p表達(dá)可抑制活性氧積累,減輕I/R導(dǎo)致的心肌和腸道損傷[41-42]。本研究結(jié)果顯示,MI大鼠腎臟miR-34a表達(dá)顯著增多,間歇運(yùn)動(dòng)顯著減少M(fèi)I大鼠腎臟miR-34a表達(dá),且腎臟miR-34a表達(dá)與MDA和LDH蛋白表達(dá)呈顯著正相關(guān),與SOD1、SOD2、T-AOC和GSH-Px表達(dá)呈顯著負(fù)相關(guān)。說(shuō)明,間歇運(yùn)動(dòng)調(diào)節(jié)MI腎臟miR-34a表達(dá),抑制腎臟氧化應(yīng)激。業(yè)已證明,SIRT1在多種應(yīng)激條件下的氧化損傷改善中起關(guān)鍵作用[43-44]。研究發(fā)現(xiàn),糖尿病腎?。╠iabetic nephropathy,DN)大鼠腎功能不全,SIRT1和SOD活性降低,腎組織MDA升高。SIRT1上調(diào)表達(dá)可逆轉(zhuǎn)DN的生化、凋亡、氧化劑和病理學(xué)參數(shù),上調(diào)SIRT1對(duì)DN具有保護(hù)作用,使腎臟細(xì)胞免受DN引起的進(jìn)一步損害[45]。另研究證實(shí),單側(cè)輸尿管梗阻(unilateral ureteral obstruction,UUO)小鼠腎臟氧化應(yīng)激升高,SIRT1表達(dá)降低,而SIRT1激活可降低MDA水平,增加SOD、GPx和GSH水平,減弱腎臟氧化應(yīng)激水平,表明SIRT1可能是纖維化腎病治療的有效靶點(diǎn)[46]。本研究結(jié)果顯示,MI大鼠腎臟SIRT1表達(dá)顯著降低;間歇運(yùn)動(dòng)顯著增加MI大鼠腎臟SIRT1表達(dá),且腎臟SIRT1蛋白表達(dá)與MDA和LDH表達(dá)呈顯著負(fù)相關(guān),與SOD1、SOD2、T-AOC和GSH-Px表達(dá)呈顯著正相關(guān)。提示,間歇運(yùn)動(dòng)調(diào)控MI大鼠腎臟SIRT1表達(dá),調(diào)節(jié)腎臟氧化應(yīng)激。研究證實(shí),miR-34a靶向SIRT1參與氧化應(yīng)激生理進(jìn)程[47]。過(guò)氧化氫時(shí)間劑量依賴性上調(diào)支氣管上皮細(xì)胞microRNA-34a表達(dá),下調(diào)SIRT1基因和蛋白表達(dá),且miR-34a過(guò)表達(dá)顯著降低SIRT1的 mRNA和蛋白表達(dá),miR-34a抑制劑增加了SIRT1 mRNA水平[48]。研究發(fā)現(xiàn),順鉑誘導(dǎo)AKI大鼠和小鼠腎臟中miR-34a表達(dá)增加,SIRT1表達(dá)降低,MDA水平升高,SOD和GSH-PX表達(dá)降低;細(xì)胞實(shí)驗(yàn)進(jìn)一步研究證實(shí),miR-34a過(guò)表達(dá)顯著降低順鉑誘導(dǎo)NRK-52E和HK-2細(xì)胞中SIRT1蛋白表達(dá),增加氧化應(yīng)激,提示miR-34a/SIRT1信號(hào)傳導(dǎo)是控制腎臟氧化應(yīng)激的重要途徑[19]。本研究結(jié)果顯示,MI大鼠腎臟miR-34a表達(dá)顯著增多,SIRT1表達(dá)顯著降低,MDA和LDH水平升高,SOD1、SOD2和GSH-PX表達(dá)降低。間歇運(yùn)動(dòng)顯著減少M(fèi)I大鼠腎臟miR-34a表達(dá),增加SIRT1表達(dá),降低MDA和LDH水平,升高SOD1、SOD2和GSH-PX水平,且腎臟miR-34a表達(dá)與SIRT蛋白表達(dá)呈顯著負(fù)相關(guān)。說(shuō)明,間歇運(yùn)動(dòng)可能通過(guò)miR-34a/SIRT1信號(hào)通路調(diào)控MI腎臟氧化應(yīng)激。
Trx-1是在幾乎所有真核細(xì)胞中表達(dá)豐富的125 kD胞質(zhì)蛋白,在氧化還原信號(hào)中起重要作用。報(bào)道證實(shí),循環(huán)Trx-1與全身氧化應(yīng)激密切相關(guān)[49],是可靠的氧化應(yīng)激標(biāo)志物。臨床研究發(fā)現(xiàn),慢性心衰患者血清Trx-1表達(dá)顯著增加,腎小管損傷標(biāo)志物NAG表達(dá)增加,且血漿Trx-1與腎損傷標(biāo)志物NAG之間存在顯著相關(guān)性,提示血漿Trx-1水平與腎小管損傷和心臟預(yù)后相關(guān),可能是鑒別高合并性心力衰竭和腎小管損傷風(fēng)險(xiǎn)的有用標(biāo)志物[50]。本研究發(fā)現(xiàn),MI大鼠血清Trx-1水平顯著升高,血清及尿液NAG水平增多,且兩者存在顯著相關(guān)性,與上述研究結(jié)果相一致。本研究進(jìn)一步發(fā)現(xiàn),MI大鼠腎臟Trx-1 mRNA表達(dá)同步增加,提示血清Trx-1可能是MI誘導(dǎo)腎臟損傷的生物標(biāo)記物。實(shí)驗(yàn)研究表明,Trx-1抑制心臟和腎臟組織的氧化應(yīng)激[51-52]。過(guò)表達(dá)Trx-1可顯著減少M(fèi)I小鼠心臟纖維化和氧化應(yīng)激,減弱心肌細(xì)胞的凋亡,增加血管形成,改善心功能[51];Trx-1上調(diào)表達(dá)可顯著減少糖尿病小鼠腎臟氧化應(yīng)激指標(biāo)8-羥基-2′-脫氧鳥苷(8-OHdG)和丙烯醛加合物的表達(dá),減緩腎小管損傷,表明Trx-1過(guò)表達(dá)會(huì)減輕腎臟氧化應(yīng)激[52]。本研究結(jié)果顯示,間歇運(yùn)動(dòng)可顯著升高M(jìn)I大鼠血清Trx-1水平,增加腎臟Trx-1 mRNA表達(dá),降低腎臟氧化應(yīng)激指標(biāo)MDA和LDH的表達(dá),提示,間歇運(yùn)動(dòng)上調(diào)Trx-1表達(dá)抑制MI腎臟氧化應(yīng)激。另研究證實(shí),心臟特異性過(guò)表達(dá)SIRT1可顯著上調(diào)I/R小鼠心肌Trx-1和SOD2表達(dá),下調(diào)8-OHdG表達(dá),調(diào)控I/R后的氧化應(yīng)激水平[53]。動(dòng)物和細(xì)胞實(shí)驗(yàn)證實(shí),SIRT1上調(diào)表達(dá)可顯著增加UUO小鼠腎臟和衣霉素誘導(dǎo)HK-2細(xì)胞中Trx的表達(dá)[54],新型黃嘌呤氧化酶抑制劑非布索坦上調(diào)SIRT1-Trx表達(dá),抑制UUO小鼠腎臟和衣霉素誘導(dǎo)腎小管細(xì)胞的內(nèi)質(zhì)網(wǎng)應(yīng)激[55]。Chen等研究發(fā)現(xiàn),Trx1可顯著降低ox-LDL誘導(dǎo)的人臍靜脈內(nèi)皮細(xì)胞NADPH氧化酶活性,抑制NOX4和NOX2的表達(dá),靶向降低NOX4-NOX2復(fù)合物水平,抑制細(xì)胞氧化應(yīng)激[56]。表明,SIRT1-Trx介導(dǎo)的NOX4信號(hào)傳導(dǎo)是調(diào)節(jié)氧化應(yīng)激的重要途徑。本研究結(jié)果顯示,間歇運(yùn)動(dòng)大鼠SIRT1表達(dá)增多,腎臟 Trx-1 mRNA表達(dá)增加,腎臟NOX2和NOX4表達(dá)降低,且SIRT1表達(dá)與NOX2和NOX4表達(dá)呈顯著負(fù)相關(guān)。提示,間歇運(yùn)動(dòng)可能激活心梗大鼠腎臟SIRT1-Trx-1介導(dǎo)的NOX4信號(hào)傳導(dǎo)通路。推測(cè),間歇運(yùn)動(dòng)抑制MI大鼠腎臟氧化應(yīng)激,保護(hù)腎臟功能,其機(jī)制與miR-34a-SIRT1-Trx-1介導(dǎo)的NOX4信號(hào)傳導(dǎo)通路激活密切相關(guān)。
4 結(jié)論
間歇運(yùn)動(dòng)可顯著抑制心梗大鼠腎臟miR-34a表達(dá),增加SIRT1和Trx-1,降低NOX2、NOX4、MDA和LDH的表達(dá),增加SOD1、SOD2、T-AOC和GSH-Px的表達(dá),抑制腎臟氧化應(yīng)激。推測(cè),MI 腎臟功能改善和腎臟miR-34a表達(dá)降低及下游SIRT1-Trx-1介導(dǎo)的NOX4信號(hào)通路激活關(guān)系密切。表明,間歇運(yùn)動(dòng)可能通過(guò)激活腎臟miR-34a/SIRT1/Trx-1信號(hào)通路,抑制腎臟氧化應(yīng)激,改善MI 大鼠腎臟功能。
參考文獻(xiàn):
[1]Van Dokkum R P, Eijkelkamp W B, Kluppel AC, et al. Myocardial infarction enhances progressive renal damage in an experimental model for cardio-renal interaction [J]. J Am Soc Nephrol, 2004, 15(12)
:3103-3110.
[2]Anzai A, Anzai T, Naito K, et al. Prognostic significance of acute kidney injury after reperfused ST-elevation myocardial infarction:synergistic acceleration of renal dysfunction and left ventricular remodeling [J]. J Card Fail, 2010, 16(5):381-389.
[3]Granger DN, Kvietys PR. Reperfusion injury and reactive oxygen species:The evolution of a concept [J]. Redox Biol, 2015(6):524-551.
[4]Gill PS, Wilcox CS. NADPH oxidases in the kidney [J]. Antioxid Redox Signal, 2006, 8(9/10):1597-1607.
[5]Sedeek M, Nasrallah R, Touyz R M, et al. NADPH oxidases, reactive oxygen species, and the kidney:friend and foe [J]. J Am Soc Nephrol, 2013, 24(10):1512-1518.
[6]Cho S, Yu SL, Kang J, et al. NADPH oxidase 4 mediates TGF-beta1/Smad signaling pathway induced acute kidney injury in hypoxia [J]. PLoS One, 2019, 14(7):e0219483.
[7]Ranjbar K, Nazem F, Sabrinezhad R, et al. Aerobic training and L-arginine supplement attenuates myocardial infarction-induced kidney and liver injury in rats via reduced oxidative stress [J]. Indian Heart J, 2018, 70(4):538-543.
[8]Ogawa Y, Takahashi J, Sakuyama A, et al. Exercise training delays renal disorders with decreasing oxidative stress and increasing production of 20-hydroxyeicosatetraenoic acid in Dahl salt-sensitive rats [J]. J Hypertens, 2020, 38(7):1336-1346.
[9]Tucker P S, Briskey D R, Scanlan A T, et al. High intensity interval training favourably affects antioxidant and inflammation mRNA expression in early-stage chronic kidney disease [J]. Free Radic Biol Med, 2015(89):466-472.
[10]Tucker PS, Scanlan AT, Dalbo VJ. High Intensity Interval Training Favourably Affects Angiotensinogen mRNA Expression and Markers of Cardiorenal Health in a Rat Model of Early-Stage Chronic Kidney Disease [J]. Biomed Res Int, 2015(2015):156584.
[11]Martello G, Rosato A, Ferrari F, et al. A MicroRNA targeting dicer for metastasis control [J]. Cell, 2010, 141(7):1195-1207.
[12]Zhao XR, Zhang Z, Gao M, et al. MicroRNA-27a-3p aggravates renal ischemia/reperfusion injury by promoting oxidative stress via targeting growth factor receptor-bound protein 2 [J]. Pharmacol Res, 2020(155):104718.
[13]Guclu A, Kocak C, Kocak F E, et al. Micro RNA-320 as a novel potential biomarker in renal ischemia reperfusion [J]. Ren Fail, 2016, 38(9):1468-1475.
[14]Zhang H, Zhao Z, Pang X, et al. MiR-34a/sirtuin-1/foxo3a is involved in genistein protecting against ox-LDL-induced oxidative damage in HUVECs [J]. Toxicol Lett, 2017(277):115-122.
[15]Zhao N, Wang G, Long S, et al. MicroRNA-34a deficiency leads to impaired wound closure by augmented inflammation in mice [J]. Ann Transl Med, 2020, 8(7):447.
[16]Barangi S, Mehri S, Moosavi Z, et al. Melatonin inhibits Benzo(a)pyrene-Induced apoptosis through activation of the Mir-34a/Sirt1/autophagy pathway in mouse liver [J]. Ecotoxicol Environ Saf, 2020(196):110556.
[17]Yamakuchi M, Ferlito M, Lowenstein C J. miR-34a repression of SIRT1 regulates apoptosis [J]. Proc Natl Acad Sci USA, 2008, 105(36):13421-13426.
[18]Kitada M, Kume S, Koya D. Role of sirtuins in kidney disease [J]. Curr Opin Nephrol Hypertens, 2014, 23(1):75-79.
[19]Zhang Y, Tao X, Yin L, et al. Protective effects of dioscin against cisplatin-induced nephrotoxicity via the microRNA-34a/sirtuin 1 signalling pathway [J]. Br J Pharmacol, 2017, 174(15):2512-2527.
[20]Bilginoglu A. Cardiovascular protective effect of pioglitazone on oxidative stress in rats with metabolic syndrome [J]. J Chin Med Assoc, 2019,82(6):452-456.
[21]Nishida K, Watanabe H, Ogaki S, et al. Renoprotective effect of long acting thioredoxin by modulating oxidative stress and macrophage migration inhibitory factor against rhabdomyolysis-associated acute kidney injury [J]. Sci Rep, 2015(5):14471.
[22]Kim H, Baek CH, Lee RB, et al. Anti-Fibrotic Effect of Losartan, an Angiotensin II Receptor Blocker, Is Mediated through Inhibition of ER Stress via Up-Regulation of SIRT1, Followed by Induction of HO-1 and Thioredoxin [J]. Int J Mol Sci, 2017, 18(2):305.
[23]Oghbaei H, Ahmadi Asl N, Sheikhzadeh F. Can regular moderate exercise lead to changes in miRNA-146a and its adapter proteins in the kidney of streptozotocin-induced diabetic male rats?[J]. Endocr Regul, 2017, 51(3):145-152.
[24]Silva F C D, Iop R D R, Andrade A, et al. Effects of Physical Exercise on the Expression of MicroRNAs:A Systematic Review [J]. J Strength Cond Res, 2020, 34(1):270-280.
[25]Wisloff U, Loennechen J P, Currie S, et al. Aerobic exercise reduces cardiomyocyte hypertrophy and increases contractility, Ca2+ sensitivity and SERCA-2 in rat after myocardial infarction [J]. Cardiovasc Res, 2002, 54(1):162-174.
[26]Morooka S, Hayashi T, Takayanagi K, et al. Effects of secondary organ failure on compensation of acute heart failure in patients with myocardial infarct and dilated cardiomyopathy [J]. Jpn Circ J, 1992, 56(5):518-523.
[27]Mashima Y, Konta T, Ichikawa K, et al. Rapid decline in renal function after acute myocardial infarction [J]. Clin Nephrol, 2013, 79(1):15-20.
[28]Sirijariyawat K, Ontawong A, Palee S, et al. Impaired renal organic anion transport 1 (SLC22A6) and its regulation following acute myocardial infarction and reperfusion injury in rats [J]. Biochim Biophys Acta Mol Basis Dis, 2019, 1865(9):2342-2355.
[29]Lian F Z, Cheng P, Ruan C S, et al. Xin-Ji-Er-Kang ameliorates kidney injury following myocardial infarction by inhibiting oxidative stress via Nrf2/HO-1 pathway in rats [J]. Biomed Pharmacother, 2019(117):109124.
[30]Li Z, Sheng Y, Liu C, et al. Nox4 has a crucial role in uric acidinduced oxidative stress and apoptosis in renal tubular cells [J]. Mol Med Rep, 2016, 13(5):4343-4348.
[31]Meng X M, Ren G L, Gao L, et al. NADPH oxidase 4 promotes cisplatin-induced acute kidney injury via ROS-mediated programmed cell death and inflammation [J]. Lab Invest, 2018, 98(1):63-78.
[32]Kimura Y, Kuno A, Tanno M, et al. Canagliflozin, a sodium-glucose cotransporter 2 inhibitor, normalizes renal susceptibility to type 1 cardiorenal syndrome through reduction of renal oxidative stress in diabetic rats [J]. J Diabetes Investig, 2019, 10(4):933-946.
[33]Kuno A, Kimura Y, Mizuno M, et al. Empagliflozin attenuates acute kidney injury after myocardial infarction in diabetic rats [J]. Sci Rep, 2020, 10(1):7238.
[34]Pingitore A, Lima GP, Mastorci F, et al. Exercise and oxidative stress:potential effects of antioxidant dietary strategies in sports [J]. Nutrition, 2015, 31(7/8):916-922.
[35]Guers J J, Kasecky-Lardner L, Farquhar W B, et al. Voluntary wheel running prevents salt- induced endothelial dysfunction:role of oxidative stress [J]. J Appl Physiol, 2019, 126(2):502-510.
[36]Li H B, Huo C J, Su Q, et al. Exercise Training Attenuates Proinflammatory Cytokines, Oxidative Stress and Modulates Neurotransmitters in the Rostral Ventrolateral Medulla of Salt-Induced Hypertensive Rats [J]. Cell Physiol Biochem, 2018, 48(3):1369-1381.
[37]Adams V, Linke A, Krankel N, et al. Impact of regular physical activity on the NAD(P)H oxidase and angiotensin receptor system in patients with coronary artery disease [J]. Circulation, 2005, 111(5):555-562.
[38]da Silva Dias D, Moraes-Silva I C, Bernardes N, et al. Exercise training initiated at old stage of lifespan attenuates aging-and ovariectomy-induced cardiac and renal oxidative stress:Role of baroreflex [J]. Exp Gerontol, 2019(124):110635.
[39]Elsaid F H, Khalil A A, Ibrahim E M, et al. Effects of exercise and stevia on renal ischemia/ reperfusion injury in rats [J]. Acta Sci Pol Technol Aliment, 2019, 18(3):317-332.
[40]Yuan X P, Liu L S, Chen C B, et al. MicroRNA-423-5p facilitates hypoxia/reoxygenation-induced apoptosis in renal proximal tubular epithelial cells by targeting GSTM1 via endoplasmic reticulum stress [J]. Oncotarget, 2017, 8(47):82064-82077.
[41]Wang Z, Wang T, Yuan J, et al. Inhibition of miR-34a-5p protected myocardial ischemia reperfusion injury-induced apoptosis and reactive oxygen species accumulation through regulation of Notch Receptor 1 signaling [J]. Rev Cardiovasc Med, 2019, 20(3):187-197.
[42]Wang G, Yao J, Li Z, et al. miR-34a-5p Inhibition Alleviates Intestinal Ischemia/Reperfusion-Induced Reactive Oxygen Species Accumulation and Apoptosis via Activation of SIRT1 Signaling [J]. Antioxid Redox Signal, 2016, 24(17):961-973.
[43]Salminen A, Kaarniranta K, Kauppinen A. Crosstalk between Oxidative Stress and SIRT1:Impact on the Aging Process [J]. Int J Mol Sci, 2013, 14(2):3834-3859.
[44]Zhang W, Huang Q, Zeng Z, et al. Sirt1 Inhibits Oxidative Stress in Vascular Endothelial Cells [J]. Oxid Med Cell Longev, 2017(2017):7543973.
[45]Ahmed H H, Taha F M, Omar H S, et al. Hydrogen sulfide modulates SIRT1 and suppresses oxidative stress in diabetic nephropathy [J]. Mol Cell Biochem, 2019, 457(1/2):1-9.
[46]Ren Y, Du C, Shi Y, et al. The Sirt1 activator, SRT1720, attenuates renal fibrosis by inhibiting CTGF and oxidative stress [J]. Int J Mol Med, 2017, 39(5):1317-1324.
[47]Xiong H, Chen S, Lai L, et al. Modulation of miR-34a/SIRT1 signaling protects cochlear hair cells against oxidative stress and delays age-related hearing loss through coordinated regulation of mitophagy and mitochondrial biogenesis [J]. Neurobiol Aging, 2019(79):30-42.
[48]Baker JR, Vuppusetty C, Colley T, et al. Oxidative stress dependent microRNA-34a activation via PI3Kalpha reduces the expression of sirtuin-1 and sirtuin-6 in epithelial cells [J]. Sci Rep, 2016(6):35871.
[49]Jekell A, Hossain A, Alehagen U, et al. Elevated circulating levels of thioredoxin and stress in chronic heart failure [J]. Eur J Heart Fail, 2004, 6(7):883-890.
[50]Otaki Y, Watanabe T, Takahashi H, et al. Association of plasma thioredoxin-1 with renal tubular damage and cardiac prognosis in patients with chronic heart failure [J]. J Cardiol, 2014, 64(5):353-359.
[51]Adluri RS, Thirunavukkarasu M, Zhan L, et al. Thioredoxin 1 enhances neovascularization and reduces ventricular remodeling during chronic myocardial infarction:a study using thioredoxin 1 transgenic mice [J]. J Mol Cell Cardiol, 2011, 50(1):239-247.
[52]Hamada Y, Miyata S, Nii-Kono T, et al. Overexpression of thioredoxin1 in transgenic mice suppresses development of diabetic nephropathy [J]. Nephrol Dial Transplant, 2007, 22(6):1547-1557.
[53]Hsu CP, Zhai P, Yamamoto T, et al. Silent information regulator 1 protects the heart from ischemia/ reperfusion [J]. Circulation, 2010, 122(21):2170-2182.
[54]Chang J W, Kim H, Baek C H, et al. Up-Regulation of SIRT1 Reduces Endoplasmic Reticulum Stress and Renal Fibrosis [J]. Nephron, 2016, 133(2):116-128.
[55]Kim H, Baek C H, Chang J W, et al. Febuxostat, a novel inhibitor of xanthine oxidase, reduces ER stress through upregulation of SIRT1-AMPK-HO-1/thioredoxin expression [J]. Clin Exp Nephrol, 2020, 24(3):205-215.
[56]Chen B, Meng L, Shen T, et al. Thioredoxin attenuates oxidized low-density lipoprotein induced oxidative stress in human umbilical vein endothelial cells by reducing NADPH oxidase activity [J]. Biochem Biophys Res Commun, 2017, 490(4):1326-1333.