• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      基于數(shù)字圖像的試樣表面應(yīng)力估算及應(yīng)用

      2020-06-16 02:41:55張磊李樹(shù)剛申凱潘紅宇張?zhí)燔?/span>

      張磊 李樹(shù)剛 申凱 潘紅宇 張?zhí)燔?/p>

      摘?要:為獲得試樣破壞過(guò)程中的表面應(yīng)力分布特征,提出了基于數(shù)字圖像的試樣表面應(yīng)力估算方法。開(kāi)展了含孔試樣破壞的應(yīng)力場(chǎng)演化觀測(cè)試驗(yàn),利用數(shù)字圖像相關(guān)技術(shù)獲得試樣破壞過(guò)程中的圖像序列,采用VIC-3D軟件計(jì)算試樣的表面變形場(chǎng)及應(yīng)變場(chǎng)。結(jié)合所得應(yīng)變場(chǎng)數(shù)據(jù)及應(yīng)力估算方法,計(jì)算得到試樣表面應(yīng)力。采用虛擬場(chǎng)理論建立了表面應(yīng)力與軸向應(yīng)力的關(guān)系,且據(jù)此評(píng)估了3種彈性模量及5種泊松比的估算效果,優(yōu)選了最佳應(yīng)力估算參數(shù)組合。最后將應(yīng)力估算方法應(yīng)用于試樣破壞過(guò)程中的應(yīng)力場(chǎng)演化分析,對(duì)比驗(yàn)證了應(yīng)力估算準(zhǔn)確性。結(jié)果表明:彈性模量?jī)H影響應(yīng)力估算的峰值大小,不改變應(yīng)力的分布,由數(shù)字圖像計(jì)算得到的平均泊松比μ3在估算時(shí)穩(wěn)定性較好;采用平均彈性模量Eav以及平均泊松比μ3估算加載中期的應(yīng)力較為準(zhǔn)確;估算所得表面應(yīng)力能夠完整的反應(yīng)試樣破壞過(guò)程,表面應(yīng)力集中與裂紋萌生存在對(duì)應(yīng)關(guān)系。數(shù)字圖像相關(guān)方法的應(yīng)力估算能夠量化表面應(yīng)力,研究可為實(shí)驗(yàn)力學(xué)中的表面應(yīng)力分析提供參考。

      關(guān)鍵詞:應(yīng)力估算;數(shù)字圖像相關(guān);表面應(yīng)力;參數(shù)優(yōu)選;應(yīng)力演化

      中圖分類(lèi)號(hào):O 348.1

      文獻(xiàn)標(biāo)志碼:A

      文章編號(hào):1672-9315(2020)02-0229-09

      DOI:10.13800/j.cnki.xakjdxxb.2020.0206開(kāi)放科學(xué)(資源服務(wù))標(biāo)識(shí)碼(OSID):

      Estimation and applicationof sample surface

      stressbased on digital image

      ZHANG Lei1,LI Shu-gang2,SHEN Kai3,PAN Hong-yu2,ZHANG Tian-jun2,4

      (1.College of EnergyEngineering,Xian University of Science and Technology,Xian 710054,China;

      2.College of Safety Science and Engineering,Xian University of Science and Technology,Xian 710054,China;

      3.China Coal Technology and Engineering Group Chongqing Research Institute,Chongqing 400037,China;

      4.College ofSciences,Xian University of Science and Technology,Xian 710054,China)

      Abstract:In order to explore the surface stress distribution characteristics during the failure process of the specimen,a stress estimation method based on digital image correlationwas proposed.An experiment of observing the stress field evolution of the hole-containing samples was carried out.The image sequence in the destruction process of the sample was obtained by digital image correlation technology.The surface deformation field and strain field of the sample were calculated by VIC-3D.Based on the obtained strain field data and the stress estimation method,the surface stress of the sample was calculated.The relationship between the surface stress and the axial stress was established by using the virtual field theory,and the estimation effects of 3 kinds of elastic modulus and 5 kinds of Poissons ratio were evaluated,and the optimal stress estimation parameter combination was optimized.The stress estimation method was applied to the stress field evolution analysis during the sample failure process,thus verifying the accuracy of the stress estimation.The results show that the elastic modulus only affects the peak value of the stress estimation,without changing the stress distribution.The average Poissons ratio obtained by DIC has better stability in the estimation.It is more accurate to estimate the stress in the middle of loading by the average elastic modulus Eav and the average Poissons ratio μ3.The obtained surface stress by estimating can completely reveal the destroy degree of the sample,and the surface stress concentration corresponds to the crack initiation.The stress estimation of the digital image correlation method can quantify the surface stress,and the research can provide a reference for the surface stress analysis in experimental mechanics.

      Key words:stress estimation;digital image correlation;surface stress;parameter optimization;stress evolution

      0?引?言

      數(shù)字圖像相關(guān)方法(Digital image correlation,簡(jiǎn)稱(chēng)DIC)是一種基于數(shù)字圖像的非接觸式測(cè)量方法,能夠獲取試樣表面的變形信息。DIC通過(guò)計(jì)算對(duì)比圖像變形前后的移動(dòng)情況,從而獲得試樣表面位移矢量[1]。

      最早使用DIC研究試樣變形的報(bào)道出現(xiàn)于1982年[2],文中提出了通過(guò)子網(wǎng)格匹配圖像的方法,用于確定試樣位移,奠定了DIC計(jì)算位移的理論基礎(chǔ)。接著,Sutton據(jù)此完善了數(shù)值計(jì)算的流程,并編制了著名的2D-DIC軟件,形成了快速計(jì)算位移的方法[3]。但是,并不是所有的位移都可以用整像素來(lái)表達(dá)。子網(wǎng)格匹配算法僅能識(shí)別出整像素的位移,從而導(dǎo)致測(cè)量結(jié)果存在誤差。為解決試件移動(dòng)非整像素的問(wèn)題,潘兵在位移計(jì)算中引入曲面擬合,提出了亞像素位移測(cè)量方法[4-5]。至此,DIC形成了完備的測(cè)量技術(shù),出現(xiàn)了成熟的計(jì)算分析軟件。例如,美國(guó)Correlated Solutions公司的商用計(jì)算軟件VIC-3D[6],美國(guó)桑迪亞國(guó)家技術(shù)和工程中心的開(kāi)源軟件DICe[7],美國(guó)喬治亞理工的開(kāi)源分析軟件Ncorr[8],西安交通大學(xué)自研的應(yīng)變分析系統(tǒng)XJTUDIC[9],羅馬大學(xué)的開(kāi)源軟件py2DIC[10]以及法國(guó)巴黎高等師范學(xué)院的圖像分析軟件CORRELIQ4[11]。

      隨著DIC軟件的成熟,研究人員借助這些軟件開(kāi)展了大量研究。Pierron總結(jié)了這些研究,認(rèn)為研究的主要因素包括幾何結(jié)構(gòu)、外荷載、外支撐、本構(gòu)方程、本構(gòu)參數(shù)、位移、應(yīng)變及應(yīng)力[12]。根據(jù)這些因素已知或未知的狀態(tài),可將研究分為變形觀測(cè)、特征參數(shù)求取以及應(yīng)力與荷載重構(gòu)3個(gè)方面。在變形觀測(cè)方面,馬少鵬利用DIC研究了巖石破壞過(guò)程中裂紋擴(kuò)展的應(yīng)變局部化問(wèn)題[13]?;趹?yīng)變局部化分析,包林海進(jìn)一步討論了應(yīng)變局部化中的變異系數(shù)演化規(guī)律[14]。張?zhí)燔妱t提取DIC的原始數(shù)據(jù),研究鉆孔孔壁的移動(dòng)規(guī)律[15-17]。潘紅宇

      分析DIC的原始數(shù)據(jù),深入研究裂尖應(yīng)變率特征[18-19]。在參數(shù)測(cè)定方面,

      Grédiac,Avril等

      基于虛擬場(chǎng)原理,給出了基于DIC技術(shù)計(jì)算材料彈性模量及泊松比的方法[20-21]。代樹(shù)紅給出了利用DIC技術(shù)測(cè)定了Ⅰ-Ⅱ型裂紋應(yīng)力強(qiáng)度因子的方法[22-23]。在應(yīng)力與荷載重構(gòu)方面,AVRIL在本構(gòu)參數(shù)的研究中,利用虛擬場(chǎng)理論估算試樣應(yīng)力,并用荷載重構(gòu)的方法來(lái)驗(yàn)證估算的有效性[24]。

      Krfmann基于Love-Kirchhoff假定,選取了不同重構(gòu)窗函數(shù),估算了噴嘴附近薄板壓力,初步實(shí)現(xiàn)了異形材料的荷載重構(gòu)[25]。

      不難發(fā)現(xiàn),使用DIC的研究人員不僅希望得到試樣變形與應(yīng)變,而且還期望得到試樣表面的應(yīng)力分布及未知荷載等參數(shù)。但是,DIC測(cè)量的直接信息較為匱乏,有待進(jìn)一步處理運(yùn)算。應(yīng)力作為反映試樣受力狀態(tài)的重要物理量,不僅可以表征試樣的破壞狀態(tài),而且還是荷載重構(gòu)必不可少的關(guān)鍵物理量。為此文中針對(duì)基于DIC的應(yīng)力估算方法開(kāi)展研究,運(yùn)用理論分析與試驗(yàn)觀測(cè)的方法,優(yōu)選應(yīng)力估算參數(shù),提出基于數(shù)字圖像的試樣表面應(yīng)力估算方法,并將該方法應(yīng)用于含孔試樣破壞的應(yīng)力場(chǎng)演化研究。

      1DIC及應(yīng)力估算模型

      1.1?相關(guān)性計(jì)算

      在DIC計(jì)算中,運(yùn)算的核心是匹配變形前后的圖像。首先,選取變形前后的2幅圖像進(jìn)行匹配。在遍歷圖中所有區(qū)域的過(guò)程中,計(jì)算兩圖的相關(guān)性系數(shù)C.當(dāng)相關(guān)性系數(shù)C取得最小值時(shí)兩圖的相似程度最大。典型的相關(guān)性系數(shù)計(jì)算方法如式(1)所示

      式中?x為灰度值;f(x)為參考圖像的像素灰度分布;g(x)為變形后圖像的像素灰度分布;R為分析區(qū)域。

      接著,通過(guò)比對(duì)變形前后圖像的位置,獲取點(diǎn)對(duì)點(diǎn)的位移,如圖1所示。

      1.2?應(yīng)變計(jì)算

      獲得了位移場(chǎng)后,通過(guò)擬和及差分運(yùn)算計(jì)算應(yīng)變場(chǎng)。首先,在待測(cè)點(diǎn)選取一個(gè)較小的連續(xù)區(qū)域,獲得這個(gè)區(qū)域的位移數(shù)據(jù)。接著,采用最小二乘法得到擬和平面,并建立以該測(cè)點(diǎn)為中心的局部坐標(biāo)系。試樣表面每一個(gè)測(cè)點(diǎn)的所有位移分量被轉(zhuǎn)換到局部坐標(biāo)系下,對(duì)不同位移分量差分形成ε11,ε22以及ε12等應(yīng)變分量。典型的差分公式如式(2)

      式中?ε11,ε22及ε33分別為三向主應(yīng)變矩陣;ε12,ε23及ε31分別為三向切應(yīng)變矩陣;d1 d2 d3分別為三向位移,X1 X2 X3為三向坐標(biāo)。

      1.3?應(yīng)力估算的本構(gòu)方程

      得到試樣的應(yīng)變后,可根據(jù)試樣的本構(gòu)方程來(lái)估算試樣的應(yīng)力。采用彈性本構(gòu)時(shí),應(yīng)力可由應(yīng)變、彈性模量E及泊松比μ計(jì)算得到,方程如下

      式中?σ為應(yīng)力張量;ε為應(yīng)變張量;Q為彈性本構(gòu)參數(shù);E為彈性模量;μ為泊松比。

      試驗(yàn)中,彈性模量E可由應(yīng)力應(yīng)變曲線(xiàn)測(cè)算獲得;泊松比μ可由應(yīng)變計(jì)算得到,應(yīng)力估算的主要流程如圖2所示。

      2?估算參數(shù)選取及評(píng)價(jià)方法

      2.1?試樣制備及試驗(yàn)方法

      試樣為石膏立方塊體,設(shè)計(jì)孔徑為10 mm,為避免孔周應(yīng)力集中對(duì)試驗(yàn)的影響,孔壁距離試樣端面為3倍孔徑,試樣邊長(zhǎng)為70 mm.配制試樣漿液時(shí),石膏及水以質(zhì)量比7

      ∶3混合,將水倒入石膏粉末中并快速攪拌,防止石膏凝固。經(jīng)過(guò)2 min充分?jǐn)嚢韬?,將所得漿液澆注于70 mm×70 mm×70 mm方形試樣盒中。隨后于試樣盒中置入直徑為10 mm,高為100 mm圓柱體,以此預(yù)制孔洞,所制試樣情況見(jiàn)表1.

      加載中期,采用μ1,μ2,μ3及μ5估算得到應(yīng)力均能較好的反應(yīng)出應(yīng)力隨應(yīng)變?cè)龃蠖鲩L(zhǎng)的趨勢(shì)。而采用μ4計(jì)算得到的應(yīng)力,離散程度過(guò)高,無(wú)法用于表征該階段內(nèi)的應(yīng)力應(yīng)變規(guī)律。

      加載末期,采用μ2及μ5估算得到的應(yīng)力能夠反應(yīng)出試樣破壞后應(yīng)力降低的情況。而采用μ1,μ3及μ4估算得到的應(yīng)力依舊呈現(xiàn)出急劇上升的趨勢(shì)。這是由于試樣破壞后,僅局部區(qū)域呈現(xiàn)出壓縮狀態(tài),而破壞區(qū)域應(yīng)力釋放,將導(dǎo)致橫向應(yīng)變減小。從整個(gè)試樣的變形狀態(tài)來(lái)看,體積應(yīng)變?cè)谄茐暮笱杆俳档蚚29]。軸向應(yīng)變不變的情況下,橫向應(yīng)變將顯著降低,泊松比將顯著減小,故μ2及μ5這種小泊松比更貼近實(shí)際情況,用其估算得到的應(yīng)力趨勢(shì)與試驗(yàn)機(jī)所測(cè)趨勢(shì)表現(xiàn)一致。但由于彈性階段內(nèi)的橫向應(yīng)變過(guò)小,彈性體積應(yīng)變小于實(shí)際發(fā)生值,估算應(yīng)力的峰值顯著低于所測(cè)值。

      泊松比反應(yīng)了試樣的整體變形情況,從體積應(yīng)變的角度影響試樣的應(yīng)力估計(jì)。在加載初期和加載末期,小泊松比更能反映實(shí)際趨勢(shì);而在加載中期,大泊松比更靠近試樣實(shí)際變形,從而應(yīng)力估算更為準(zhǔn)確一些。

      3.3?應(yīng)力估算的誤差

      利用所述方法估算此次3個(gè)試樣的應(yīng)力,統(tǒng)計(jì)估算應(yīng)力應(yīng)變曲線(xiàn)與試驗(yàn)機(jī)實(shí)測(cè)曲線(xiàn)的均方根誤差,見(jiàn)表4.

      表中均方根誤差越小意味著應(yīng)力估算結(jié)果越貼近試驗(yàn)機(jī)實(shí)測(cè)值。統(tǒng)計(jì)表明,

      Eav-μ3為最優(yōu)應(yīng)力估算組合,在所有試樣的應(yīng)力估算中誤差最小。

      4?含孔試樣的表面應(yīng)力估算

      采用Eav-μ3應(yīng)力估算參數(shù)組合,進(jìn)行試樣表面應(yīng)力反演,開(kāi)展含孔試樣破壞過(guò)程中表面應(yīng)力場(chǎng)演化研究,得到含孔試樣在不同破壞階段的應(yīng)力分布云圖,如圖7所示。

      圖7為B3試樣在初始階段、彈性階段以及裂紋萌生階段應(yīng)力估算分布。與試樣的破壞階段相對(duì)應(yīng),應(yīng)力也呈現(xiàn)出3個(gè)階段,這與文獻(xiàn)[17]中應(yīng)

      力分布規(guī)律呈現(xiàn)出由混亂到有序的表述是相符的。

      圖7(c)中孔底的裂紋呈現(xiàn)出σxx應(yīng)力顯著集中,該區(qū)域發(fā)生了水平方向的拉伸破壞。這種破壞形式與文獻(xiàn)[16,30]中孔底產(chǎn)生拉伸破壞的結(jié)論一致。而試樣由上端面向下延伸出的裂紋也呈現(xiàn)出σxx應(yīng)力集中,說(shuō)明這個(gè)區(qū)域存在拉伸破壞,這與文獻(xiàn)[30]第2拉伸裂紋出現(xiàn)的描述對(duì)應(yīng)。圖7(c)中孔側(cè)裂紋呈現(xiàn)出σyy應(yīng)力顯著下降,這是由于在該處產(chǎn)生了壓縮錯(cuò)動(dòng),形成了小范圍的屈服。來(lái)自于試樣頂端的荷載在孔側(cè)不能完全傳遞到至試樣底端,造成了此處σyy應(yīng)力低于試樣其他區(qū)域。這樣的破壞形式同樣在文獻(xiàn)[30]中有明確的描述。

      可以發(fā)現(xiàn),估算的表面應(yīng)力能夠反應(yīng)試樣破壞過(guò)程中的應(yīng)力集中,且與裂隙擴(kuò)展演化存在對(duì)應(yīng)關(guān)系,能夠?yàn)楸砻鎽?yīng)力分析提供參考。

      5?結(jié)?論

      1)在采用彈性本構(gòu)時(shí),彈性模量對(duì)應(yīng)力估算有顯著的影響。彈性模量影響應(yīng)力估算的峰值大小,不改變應(yīng)力的分布。試樣表面應(yīng)力的峰值大小隨彈性模量增大而增大;應(yīng)力應(yīng)變曲線(xiàn)隨彈性模量增大而升高。

      2)泊松比在不同階段對(duì)應(yīng)力估算的影響表現(xiàn)不同。在加載初期和加載末期,經(jīng)典泊松比μ5及混合平均泊松比μ2更能反映實(shí)際趨勢(shì);而在加載中期,DIC平均泊松比μ3更靠近試樣實(shí)際變形,估算應(yīng)力更接近實(shí)測(cè)值。

      3)采用平均彈性模量Eav以及由DIC平均泊松比μ3可以較為準(zhǔn)確地估算加載中期試樣的表面應(yīng)力。

      參考文獻(xiàn)(References):

      [1] 潘?兵,吳大方,夏?勇.數(shù)字圖像相關(guān)方法中散斑圖的質(zhì)量評(píng)價(jià)研究[J].實(shí)驗(yàn)力學(xué),2010,25(2):120-129.

      PAN Bing,WU Da-fang,XIA Yong.Study of speckle pattern quality assessment used in digital image correlation[J].Journal of Experimental Mechanics,2010,25(2):120-129.

      [2]Peters W H,Ranson W F.Digital imaging techniques in experiment stress analysis[J].Optical Engineering,1982,21(3):427-431.

      [3]

      Sutton M,Wolters W J,Peters W,et al.Determination of displacements using an improved digital correlation method[J].Image and Vision Computing,1983,1(3):133-139.

      [4]

      潘?兵,續(xù)伯欽,陳?丁,等.數(shù)字圖像相關(guān)中亞像素位移測(cè)量的曲面擬合法[J].計(jì)量學(xué)報(bào),2005,26(2):128-134.

      PAN Bing,XU BO-qin,CHEN Ding,et al.Sub-pixel registration using quadratic surface fitting in digital image correlation[J].Acta Metrologica Sinica,2005,26(2):128-134.

      [5]潘?兵,謝惠民,續(xù)伯欽,等.數(shù)字圖像相關(guān)中的亞像素位移定位算法進(jìn)展[J].力學(xué)進(jìn)展,2005,35(3):345-352.

      PAN Bing,XIE Hui-min,XU Bo-qin,et al.Development of sub-pixel displacements registration algorithms in digital image correlation[J].Advances in Mechanics,2005,35(3):345-352.

      [6]Van Mieghem B,Ivens J,Van Bael A.Consistency of strain fields and thickness distributions in thermoforming experiments through stereo DIC[J].Experimental Techniques,2016,40(5):1409-1420.

      [7]Turner D Z.Digital Image Correlation engine(DICe)reference manual[EB/OL].http://dicengine.github.io/dice/,2018-09-26/2019-09-17

      [8]

      Blaber J,Adair B,Antoniou A.Ncorr:open-source 2D digital image correlation matlab software[J].Experimental Mechanics,2015,55(6):1105-1122.

      [9]

      梁?晉,郭?翔,胡?浩,等.機(jī)械與材料力學(xué)性能的三維全場(chǎng)變形與應(yīng)變快速檢測(cè)研究[J].中國(guó)工程科學(xué),2013,15(1):51-56.

      LIANG Jin,GUO Xiang,HU Hao,et al.Study on rapid 3D full-field deformation&strain measurement and inspection for mechanical engineering and material mechanical properities[J].Strategic Study of CAE,2013,15(1):51-56.

      [10]

      Ravanelli R,Nascetti A,Di Rita M,et al.A new digital image correlation software for displacements field measurement in structural applications[M].XLII-4/W2,2017.

      [11]

      Cachan E N S.CORRELIQ4:A software for “finite-element” displacement field measurements by digital image correlation[R].Cachan Cedex,F(xiàn)rance:LMT-Cachan,2019.

      [12]

      Pierron F,Grediac M.The virtual fields method[M].New York:Springer,2012.

      [13]

      馬少鵬,金觀昌,潘一山.白光DSCM方法用于巖石變形觀測(cè)的研究[J].實(shí)驗(yàn)力學(xué),2002,17(1):10-16.

      MA Shao-peng,JIN Guan-chang,PAN Yi-shan.Study on the white light DSCM method for deformation measurement of rock materials[J].Journal of Experimental Mechanics,2002,17(1):10-16.

      [14]包林海,馬少鵬,王建新.含轉(zhuǎn)折非連通斷層巖石破壞過(guò)程的試驗(yàn)研究[J].土木工程與管理學(xué)報(bào),2011,28(4):58-60.

      BAO Lin-hai,MA Shao-peng,WANG Jian-xin.Experimental study on the failure process of a rock with tortuously non-connected fault[J].Journal of Civil Engineering and Management,2011,28(4):58-60.

      [15]

      張?zhí)燔姡瑥?磊,李樹(shù)剛,等.瓦斯抽采鉆孔孔周裂紋擴(kuò)展規(guī)律[J].遼寧工程技術(shù)大學(xué)學(xué)報(bào),2018,37(3):499-507.

      ZHANG Tian-jun,ZHANG Lei,LI Shu-gang,et al.Crack propagation around gas drilling borehole[J].Journal of Liaoning Technical University(Natural Science),2018,37(3):499-507.

      [16]張?zhí)燔?,?磊,李樹(shù)剛,等.含孔試樣漸進(jìn)性破壞的表面變形特征[J].煤炭學(xué)報(bào),2017,42(10):2623-2630.

      ZHANG Tian-jun,ZHANG Lei,LI Shu-gang,et al.Characteristics of the surface deformation of specimens with a hole during the progressive failure[J].Journal of China Coal Society,2017,42(10):2623-2630.

      [17]

      Zhang T,Zhang L,Li S,et al.Stress inversion of coal with a gas drilling borehole and the law of crack propagation[J].Energies,2017,10(11):1743.

      [18]潘紅宇,董曉剛,張?zhí)燔姡?單軸壓縮下松軟煤樣破裂損傷演化特性研究[J].西安科技大學(xué)學(xué)報(bào),2018,38(2):202-209.

      PAN Hong-yu,DONG Xiao-gang,ZHANG Tian-jun,et al.Evolution characteristics of soft coal sample fracture damage under uniaxial compression[J].Journal of Xian University of Science and Technology,2018,38(2):202-209.

      [19]潘紅宇,葛?迪,張?zhí)燔?,?應(yīng)變率對(duì)巖石裂隙擴(kuò)展規(guī)律的影響[J].煤炭學(xué)報(bào),2018,43(3):675-683.

      PAN Hong-yu,GE Di,ZHANG Tian-jun,et al.Influence of strain rate on the rock fracture propagation law[J].Journal of China Coal Society,2018,43(3):675-683.

      [20]Gr Diac M,Pierron F,Avril S,et al.The virtual fields method for extracting constitutive parameters from full-field measurements:a review[J].Strain,2006,42:233-253.

      [21]Avril S,Pierron F.General framework for the identification of constitutive parameters from full-field measurements in linear elasticity[J].International Journal of Solids and Structures,2007,44:4978-5002.

      [22]代樹(shù)紅,馬勝利,潘一山.數(shù)字圖像相關(guān)法測(cè)定巖石Ⅰ-Ⅱ復(fù)合型裂紋應(yīng)力強(qiáng)度因子[J].巖土工程學(xué)報(bào),2013,35(7):1362-1368.

      DAI Shu-hong,MA Sheng-li,PAN Yi-shan.Evaluation of mixed-mode I-II stress intensity factors of rock utilizing digital image correlation method[J].Chinese Journal of Geotechnical Engineering,2013,35(7):1362-1368.

      [23]代樹(shù)紅,馬勝利,潘一山,等.數(shù)字散斑相關(guān)方法測(cè)定巖石Ⅰ型應(yīng)力強(qiáng)度因子[J].巖石力學(xué)與工程學(xué)報(bào),2012,31(12):2501-2507.

      DAI Shu-hong,

      MA Sheng-li,PAN Yi-shan,et al.Determination of mode I stress intensity factors by digital speckle correlation method[J].Chinese Journal of Rock Mechanics and Engineering,2012,31(12):2501-2507.

      [24]Avril S,Pierron F,Sutton M A,et al.Identification of elasto-visco-plastic parameters and characterization of L ders behavior using digital image correlation and the virtual fields method[J].

      Mechanics of Materials,2008,

      40(9):729-742.

      [25]

      Kaufmann R,Ganapathisubramani B,Pierron F.Full-field surface pressure reconstruction using the virtual fields method[J].Experimental Mechanics,2019,59(8):1203-1221.

      [26]

      Fairhurst C E,Hudson J A.Draft ISRM suggested method for the complete stress-strain curve for intact rock in uniaxial compression[J].International Journal of Rock Mechanics and Mining Sciences & AMP,Geomechanics Abstracts,1999,36(3):279-289.

      [27]

      王學(xué)濱,杜亞志,潘一山,等.基于DIC粗-細(xì)搜索方法的單向壓縮砂樣的側(cè)向變形觀測(cè)研究[J].工程力學(xué),2013,30(4):184-190.

      WANG Xue-bin,DU Ya-zhi,PAN Yi-shan,et al.Lateral deformation measurements for sand specimens under uniaxial compression based on digital image correlation with coarse-fine search method[J].Engineering Mechanics,2013,30(4):184-190.

      [28]

      涂忠仁,楊?強(qiáng).巖體負(fù)泊松比試驗(yàn)研究[J].巖土力學(xué),2008,29(10):2833-2836.

      TU Zhong-ren,YANG Qiang.Test research on negative Poissons ratio of rock mass[J].Rock and Soil Mechanics,2008,29(10):2833-2836.

      [29]張曉平,王思敬,劉泉聲.一種測(cè)量巖石壓縮裂紋擴(kuò)展過(guò)程聲波波速的連續(xù)測(cè)量方法[J].工程地質(zhì)學(xué)報(bào),2018,26(1):91-96.

      ZHANG Xiao-ping,WANG Si-jing,LIU Quan-sheng.A continuing measure method for acoustic wave velocity measurement during cracking processes of rock[J].Journal of Engineering Geology,2018,26(1):91-96.

      [30]Lajtai E Z,Lajtai V N.The collapse of cavities[J].International Journal of Rock Mechanics & Mining Sciences & Geomechanics Abstracts,1975,12(4):81-86.

      乌什县| 大宁县| 大化| 临泉县| 博白县| 云阳县| 舞阳县| 山东| 土默特左旗| 娱乐| 鄂托克旗| 武宣县| 阿鲁科尔沁旗| 江永县| 威信县| 丰城市| 古丈县| 叙永县| 拜城县| 大洼县| 连山| 察隅县| 英吉沙县| 宿州市| 惠州市| 行唐县| 绍兴市| 四会市| 图们市| 缙云县| 侯马市| 梁河县| 遵义市| 禹州市| 汕头市| 军事| 册亨县| 康马县| 宜宾市| 东乡族自治县| 芜湖县|