• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      呼氣阻力訓(xùn)練和CPAP呼吸模式對(duì)健康志愿者血流動(dòng)力學(xué)參數(shù)影響

      2020-07-04 02:56:58曲斌斌劉鳳娟陳霞許亞慧孫榮麗徐德祥
      青島大學(xué)學(xué)報(bào)(醫(yī)學(xué)版) 2020年4期
      關(guān)鍵詞:慢性阻塞性肺疾病血流動(dòng)力學(xué)

      曲斌斌 劉鳳娟 陳霞 許亞慧 孫榮麗 徐德祥

      [摘要]目的 探討呼氣阻力訓(xùn)練和經(jīng)面罩持續(xù)氣道正壓通氣(CPAP)兩種呼吸模式對(duì)健康志愿者血流動(dòng)力學(xué)參數(shù)的影響及其差別,以指導(dǎo)慢性阻塞性肺疾病(COPD)病人選擇合適的呼吸訓(xùn)練方法,減少肺康復(fù)訓(xùn)練對(duì)血流動(dòng)力學(xué)參數(shù)的不良影響。方法 選擇30名健康志愿者,每名志愿者先后接受相同數(shù)值(0、0.98、1.47 kPa)的定量阻力呼氣和CPAP干預(yù),使用無(wú)創(chuàng)血流動(dòng)力學(xué)監(jiān)測(cè)系統(tǒng)(NICaS CS)同步測(cè)量不同呼吸模式下的血流動(dòng)力學(xué)指標(biāo)。血流動(dòng)力學(xué)監(jiān)測(cè)的指標(biāo)包括心率、每搏輸出量(SV)、每搏輸出量指數(shù)(SI)、心排血量(CO)、心臟指數(shù)(CI)、心臟動(dòng)力指數(shù)(CPI)、全身外周阻抗(TPR)、全身外周阻抗指數(shù)(TPRI)。分別觀察相同呼吸模式下不同設(shè)置值以及相同設(shè)置值下兩種呼吸模式對(duì)血流動(dòng)力學(xué)參數(shù)的影響。結(jié)果 應(yīng)用呼氣阻力訓(xùn)練,當(dāng)設(shè)置值由0逐漸增加到1.47 kPa時(shí),心率增快,但差異無(wú)統(tǒng)計(jì)學(xué)意義(P>0.05);SV、SI、CO、CI和CPI下降,TPR及TPRI升高,差異均有統(tǒng)計(jì)學(xué)意義(t=-2.61~6.51,P<0.05)。應(yīng)用CPAP,當(dāng)設(shè)置值由0逐漸增加到1.47 kPa時(shí),心率減慢,差異有統(tǒng)計(jì)學(xué)意義(t=6.07,P<0.05);CO、CI、CPI下降,TPR及TPRI升高,差異均有統(tǒng)計(jì)學(xué)意義(t=-3.79~3.35,P<0.05);而SV和SI的變化無(wú)統(tǒng)計(jì)學(xué)意義(P>0.05)。設(shè)置值同為1.47 kPa時(shí),呼氣阻力訓(xùn)練心率增快,CPAP心率減慢,兩者差異有統(tǒng)計(jì)學(xué)意義(t=8.11,P<0.05);CPAP的SV和SI高于呼氣阻力訓(xùn)練,差異有統(tǒng)計(jì)學(xué)意義(t=-4.36、-4.08,P<0.05);兩種呼吸模式的CO、CI、CPI、TPR及TPRI比較差異均無(wú)統(tǒng)計(jì)學(xué)意義(P>0.05)。結(jié)論 氣道壓力變化影響健康志愿者的血流動(dòng)力學(xué)參數(shù)。1.47 kPa的CPAP與阻力呼氣模式相比,CPAP減慢心率,增加SV;阻力呼氣模式加快心率,降低SV。COPD病人在進(jìn)行肺康復(fù)治療時(shí),選擇CPAP模式代替呼氣阻力訓(xùn)練,有可能減少氣道正壓對(duì)血流動(dòng)力學(xué)參數(shù)的不良影響;連續(xù)血流動(dòng)力學(xué)監(jiān)測(cè)有助于優(yōu)化通氣模式與參數(shù)。

      [關(guān)鍵詞] 肺疾病,慢性阻塞性;呼吸療法;呼氣;連續(xù)氣道正壓通氣;血流動(dòng)力學(xué)

      [中圖分類(lèi)號(hào)] R563.9;R332.3[文獻(xiàn)標(biāo)志碼] A[文章編號(hào)] 2096-5532(2020)04-0422-05

      doi:10.11712/jms.2096-5532.2020.56.062

      [網(wǎng)絡(luò)出版] http://kns.cnki.net/kcms/detail/37.1517.R.20200407.0933.006.html;2020-04-07 14:59

      EFFECT OF EXHALATION RESISTANCE TRAINING VERSUS CONTINUOUS POSITIVE AIRWAY PRESSURE VENTILATION ON THE HEMODYNAMIC PARAMETERS OF HEALTHY VOLUNTEERS

      QU Binbin, LIU Fengjuan, CHEN Xia, XU Yahui, SUN Rongli, XU Dexiang

      (Department of Respiratory Medicine, Affiliated Central Hospital of Qingdao University, Qingdao 266042, China)

      [ABSTRACT]Objective To investigate the effect of exhalation resistance training versus continuous positive airway pressure (CPAP) ventilation on the hemodynamic parameters of healthy volunteers, and to guide the selection of appropriate breathing training method for patients with chronic obstructive pulmonary disease (COPD) and reduce the adverse effect of pulmonary rehabilitation training on hemodynamic parameters.Methods A total of 30 healthy volunteers were selected, and each volunteer received quantitative exhalation resistance training and CPAP ventilation at different pressures (0, 0.98, and 1.47 kPa). The non-invasive cardiac system-cardiac surveyor (NICaS CS) was used for simultaneous measurement of hemodynamic parameters in diffe-rent ventilation modes. Hemodynamic monitoring included the parameters of heart rate, stroke volume (SV), stroke index (SI), cardiac output (CO), cardiac index (CI), cardiac power index (CPI), total peripheral resistance (TPR), and total peripheral resistance index (TPRI), which were used to observe the effect of different settings of the same ventilation mode and the two ventilation modes with the same setting on hemodynamic parameters. Results When quantitative exhalation resistance training was applied, heart rate increased rapidly when the setting value gradually increased from 0 to 1.47 kPa (P>0.05), while there were significant reductions in SV, SI, CO, CI, and CPI and significant increases in TPR and TPRI (t=-2.61 to 6.51,P<0.05). When CPAP was applied, heart rate significantly decreased when the setting value gradually increased from 0 to 1.47 kPa (t=-6.07,P<0.05), and there were significant reductions in CO, CI, and CPI and significant increases in TPR and TPRI (t=-3.79 to 3.35,P<0.05), while there were no significant changes in SV and SI (P>0.05). When the setting value was 1.47 kPa, there was a significant increase heart rate in quantitative exhalation resistance training and a significant reduction in heart rate in CPAP ventilation, with a significant difference between them (t=8.11,P<0.05); SV and SI during CPAP ventilation were significantly higher than those during exhalation resistance training (t=-4.36,-4.08;P<0.05); there were no significant differences in CO, CI, CPI, TPR, and TPRI between the two ventilation modes (P>0.05).Conclusion The change in airway pressure affects the hemodynamic parameters of healthy volunteers. At the setting value of 1.47 kPa, CPAP can reduce heart rate and increase SV compared with exhalation resistance training, while exhalation resistance training can increase heart rate and reduce SV. During the pulmonary rehabilitation training for COPD patients, CPAP, instead of quantitative exhalation resistance training, may reduce the adverse effect of positive airway pressure on hemodynamic parameters. Continuous hemodynamic monitoring may help to optimize ventilation modes and parameters.

      [KEY WORDS] pulmonary disease, chronic obstructive; respiratory therapy; exhalation; continuous positive airway pressure; hemodynamics

      慢性阻塞性肺疾?。–OPD)是一種以持續(xù)氣流受限,尤其是小氣道阻力增加為特征的疾病,病情呈緩慢進(jìn)行性發(fā)展,嚴(yán)重影響病人的勞動(dòng)能力和生活質(zhì)量[1-2]。COPD病人由于肺氣腫、肺容量增加等因素導(dǎo)致膈肌下移、收縮效率減弱,往往要?jiǎng)訂T輔助呼吸肌參與呼吸過(guò)程,增加了耗氧量,容易誘發(fā)呼吸肌疲勞甚至呼吸衰竭[3-4]。因此,減輕氣道阻塞和呼吸肌疲勞是COPD病人肺康復(fù)治療中的重要環(huán)節(jié)。肺康復(fù)治療主要目標(biāo)為增強(qiáng)呼吸肌的力量和耐力,改善肺功能障礙。而定量阻力呼氣和持續(xù)氣道正壓通氣(CPAP)均能增加病人呼吸運(yùn)動(dòng)時(shí)的呼氣阻力,增強(qiáng)呼吸肌的力量,可用于COPD病人肺康復(fù)的治療[5],幫助病人緩解癥狀,提高運(yùn)動(dòng)耐力[6]。然而,定量阻力呼氣和CPAP產(chǎn)生呼氣阻力的方式卻存在明顯差異,這種差異極有可能影響到COPD病人的心排血量(CO)與組織灌注,進(jìn)而影響病人的器官功能與康復(fù)效果,因此有必要深入探討不同呼吸模式對(duì)血流動(dòng)力學(xué)參數(shù)的影響。因COPD病人影響血流動(dòng)力學(xué)參數(shù)的因素太多,很難在COPD病人中研究不同呼吸模式對(duì)血流動(dòng)力學(xué)參數(shù)影響的機(jī)制,因此可首先在健康志愿者中探索不同呼吸模式對(duì)血流動(dòng)力學(xué)參數(shù)的影響。本研究對(duì)健康志愿者先后予以定量阻力呼氣和CPAP的方式產(chǎn)生呼氣阻力,兩種通氣模式的干預(yù)順序隨機(jī)產(chǎn)生,設(shè)置的數(shù)值與暴露時(shí)間相同,應(yīng)用全身電阻抗的方法監(jiān)測(cè)病人血流動(dòng)力學(xué)參數(shù)的變化,并探討可能的機(jī)制,進(jìn)而為COPD病人制訂個(gè)體化的肺康復(fù)方案提供依據(jù)。

      1 對(duì)象與方法

      1.1 研究對(duì)象

      招募30名健康志愿者作為研究對(duì)象,男女各15名,年齡(26.27±4.48)歲,體質(zhì)量指數(shù)(BMI)為(22.76±3.28)kg/m2,血壓(15.27±1.64)/(9.41±1.25)kPa。納入標(biāo)準(zhǔn):年齡在20~39歲之間,試驗(yàn)前1周有穩(wěn)定的睡眠及穩(wěn)定規(guī)律的日常工作與活動(dòng),近3個(gè)月內(nèi)無(wú)輪班工作。排除標(biāo)準(zhǔn):BMI超過(guò)30 kg/m2,急性或(和)慢性心肺疾病,每天吸煙超過(guò)10支,慢性乙醇中毒,孕婦或哺乳期女性,有任何形式的睡眠呼吸障礙。試驗(yàn)程序按照《赫爾辛基宣言》(2000年)執(zhí)行。本研究獲得了當(dāng)?shù)厝祟?lèi)研究倫理委員會(huì)的批準(zhǔn),所有參與研究者均知情同意。

      1.2 試驗(yàn)方法

      每名志愿者均先后接受定量阻力呼氣和CPAP干預(yù),前者采用智能呼吸耐力訓(xùn)練儀(XEEK賽客醫(yī)療器械有限公司),后者采用Flexo系列雙水平呼吸治療儀(Bi-Level CPAP)。定量阻力呼氣的阻力和CPAP的壓力均為0、0.98、1.47 kPa,每個(gè)壓力參數(shù)的持續(xù)時(shí)間為5 min。使用無(wú)創(chuàng)血流動(dòng)力學(xué)監(jiān)測(cè)系統(tǒng)(NICaS CS,以色列NIMedical),采用電阻抗法同步測(cè)量不同呼吸模式下的血流動(dòng)力學(xué)指標(biāo)。血流動(dòng)力學(xué)監(jiān)測(cè)的指標(biāo)包括心率、每搏輸出量(SV)、每搏輸出量指數(shù)(SI)、CO、心臟指數(shù)(CI)、心臟動(dòng)力指數(shù)(CPI)、全身外周阻抗(TPR)以及全身外周阻抗指數(shù)(TPRI)等。分別觀察相同呼吸模式下不同設(shè)置值對(duì)血流動(dòng)力學(xué)參數(shù)的影響,以及相同設(shè)置值下兩種呼吸模式對(duì)血流動(dòng)力學(xué)參數(shù)的影響。

      1.3 統(tǒng)計(jì)學(xué)分析

      采用SPSS 24軟件進(jìn)行數(shù)據(jù)的統(tǒng)計(jì)分析。所得數(shù)據(jù)以[AKx-D]±s表示,組間比較采用配對(duì)t檢驗(yàn)。

      2 結(jié)果

      2.1 呼氣阻力訓(xùn)練對(duì)血流動(dòng)力學(xué)參數(shù)的影響

      應(yīng)用呼氣阻力訓(xùn)練,當(dāng)設(shè)置值由0逐漸增加到1.47 kPa時(shí),心率增快,但差異無(wú)統(tǒng)計(jì)學(xué)意義(P>0.05);SV、SI、CO、CI和CPI下降,TPR及TPRI升高,差異均有統(tǒng)計(jì)學(xué)意義(t=-2.61~6.51,P<0.05)。見(jiàn)表1。

      2.2 CPAP對(duì)血流動(dòng)力學(xué)參數(shù)的影響

      應(yīng)用CPAP,當(dāng)設(shè)置值由0逐漸增到1.47 kPa時(shí),心率減慢,差異有顯著意義(t=6.07,P<0.05);CO、CI、CPI下降,TPR及TPRI升高,差異均有顯著性(t=-3.79~3.35,P<0.05);而SV和SI的變化差異無(wú)顯著性(P>0.05)。見(jiàn)表2。

      2.3 兩種呼吸模式對(duì)血流動(dòng)力學(xué)參數(shù)影響的比較

      設(shè)置值同為1.47 kPa時(shí),呼氣阻力訓(xùn)練心率增快,CPAP心率減慢,兩者差異有統(tǒng)計(jì)學(xué)意義(t=8.11,P<0.05);CPAP的SV和SI高于呼氣阻力訓(xùn)練,差異具有統(tǒng)計(jì)學(xué)意義(t=-4.36、-4.08,P<0.05);兩種呼吸模式的CO、CI、CPI、TPR及TPRI比較差異均無(wú)統(tǒng)計(jì)學(xué)意義(P>0.05)。見(jiàn)表3。

      3 討論

      COPD的肺康復(fù)方案主要是以運(yùn)動(dòng)療法為主的綜合方案,呼吸訓(xùn)練在運(yùn)動(dòng)療法中占有舉足輕重的地位[7-8]。

      定量阻力呼氣和CPAP均在呼氣相產(chǎn)生氣道正壓,增加了呼氣時(shí)呼吸肌的阻力,從而起到鍛煉呼吸肌功能的作用[9-12]。理論上氣道正壓會(huì)傳導(dǎo)至胸腔影響肺循環(huán)阻力、心臟與大血管的跨壁壓以及肺泡功能殘氣量等[13-16],引起通氣血流重分布,進(jìn)而對(duì)血流動(dòng)力學(xué)參數(shù)與氣血交換產(chǎn)生影響,最終導(dǎo)致組織灌注的變化,這種變化再通過(guò)多種途徑影響病人多器官的功能以及預(yù)后[17]。然而同為氣道正壓,由定量阻力呼氣和CPAP導(dǎo)致的血流動(dòng)力學(xué)參數(shù)變化又不盡相同,這種差異極有可能影響COPD病人的組織灌注,最終影響COPD病人的器官功能與康復(fù)效果。

      本文研究結(jié)果顯示,應(yīng)用呼氣阻力訓(xùn)練,當(dāng)設(shè)置值由0逐漸增加到1.47 kPa時(shí),出現(xiàn)心率增快,SV、SI、CO、CI和CPI下降,TPR及TPRI升高。志愿者在定量阻力呼氣的背景下進(jìn)行呼吸運(yùn)動(dòng)時(shí),胸腔內(nèi)壓力與氣道內(nèi)壓力均出現(xiàn)連續(xù)的動(dòng)態(tài)變化,設(shè)置的呼氣阻力只是氣道口鼻端的最大阻力,而真實(shí)的氣道壓受人體胸腔內(nèi)壓、自主呼吸氣流與呼氣阻力設(shè)置值等多重影響。當(dāng)志愿者剛開(kāi)始發(fā)動(dòng)呼氣時(shí),胸腔內(nèi)壓與氣道內(nèi)壓力均小于呼氣阻力的設(shè)置值,氣道內(nèi)無(wú)氣流出現(xiàn);隨著呼氣運(yùn)動(dòng)的進(jìn)行,胸腔內(nèi)壓不斷升高并傳導(dǎo)至氣道使氣道內(nèi)壓升高,當(dāng)氣道內(nèi)壓大于阻力呼氣的設(shè)置值時(shí)產(chǎn)生氣流;隨著呼氣運(yùn)動(dòng)的繼續(xù)進(jìn)行,胸腔內(nèi)壓逐漸下降,導(dǎo)致氣道正壓小于阻力呼氣的設(shè)置值,氣道內(nèi)的氣流停止。因此在定量阻力呼氣模式下,氣道正壓伴隨胸腔內(nèi)壓的變化出現(xiàn)實(shí)時(shí)波動(dòng),且氣道正壓值小于定量阻力呼氣的設(shè)置值。阻力呼氣模式下氣道正壓的出現(xiàn)理論上可以引起肺泡內(nèi)壓力升高,但該壓力只存在于呼氣時(shí)相內(nèi),此時(shí)胸腔內(nèi)壓的升高抵消了肺泡內(nèi)壓升高對(duì)肺泡的擴(kuò)張作用,因此阻力呼氣模式對(duì)肺泡體積的影響較小。

      氣道正壓對(duì)血流動(dòng)力學(xué)參數(shù)影響可能的機(jī)制:①氣道正壓升高時(shí),總肺循環(huán)阻力升高,進(jìn)而導(dǎo)致左心房回流減少[18],SV、CO、CI下降;②氣道正壓升高時(shí),胸腔內(nèi)壓升高,心臟收縮期跨室壁壓增加[19],導(dǎo)致心臟后負(fù)荷下降,SV、CO、CI升高;③由阻力呼氣引起的氣道壓力動(dòng)態(tài)周期變化,可以引起交感神經(jīng)興奮性增加[20],一方面增加心肌收縮力[21],引起CO升高;另一方面通過(guò)收縮微循環(huán)動(dòng)脈端平滑肌,引起體循環(huán)阻力上升,導(dǎo)致TPR及TPRI升高。而最終的組織灌注變化取決于上述變化的綜合效果。本研究觀察到,對(duì)志愿者進(jìn)行定量阻力呼氣的最終效果是心率增快、SV和CO下降,說(shuō)明志愿者的心臟做功增加而組織灌注量反而下降,這種情形顯然不利于已經(jīng)存在心臟基礎(chǔ)病變的COPD病人。

      本研究結(jié)果還顯示,應(yīng)用CPAP,當(dāng)壓力由0逐漸增加到1.47 kPa時(shí),心率減慢,CO、CI、CPI下降,TPR及TPRI升高,而SV和SI無(wú)顯著變化。理論上講,CPAP時(shí)志愿者的氣道口鼻側(cè)壓強(qiáng)維持恒定的升高狀態(tài),志愿者在呼氣相需要更大的胸內(nèi)壓對(duì)抗氣道內(nèi)壓才能產(chǎn)生氣流,起到鍛煉呼吸肌的作用。單純從呼氣相氣道正壓的角度看,定量阻力呼氣應(yīng)該與CPAP具有相似的生理學(xué)效果,但是在試驗(yàn)中二者卻出現(xiàn)了不同的血流動(dòng)力學(xué)參數(shù)變化。當(dāng)設(shè)置值小于1.47 kPa時(shí),兩種呼吸模式均未出現(xiàn)對(duì)血流動(dòng)力學(xué)參數(shù)的明顯影響;當(dāng)設(shè)置值為1.47 kPa時(shí),阻力呼氣模式下心率增快并SV降低,而CPAP模式下心率下降同時(shí)CO增加。而二者真正的不同是,定量阻力呼氣模式下,病人胸腔內(nèi)壓始終處于動(dòng)態(tài)波動(dòng)之中;而CPAP模式下,無(wú)論人體的自主呼吸氣流與胸腔內(nèi)壓如何,機(jī)械通氣均能通過(guò)不斷調(diào)整送氣流量在呼氣相產(chǎn)生恒定的氣道正壓與恒定的呼氣阻力,且兩者具有相同的數(shù)值。同時(shí),定量阻力呼氣對(duì)各個(gè)呼吸時(shí)相的肺泡體積影響很小,對(duì)肺循環(huán)的影響僅存在于呼氣相,導(dǎo)致呼氣相左心房回流減少;而CPAP可以增加呼氣末的肺泡體積,增加功能殘氣量,進(jìn)而影響各個(gè)呼吸時(shí)相的肺循環(huán)阻力,吸氣相肺循環(huán)阻力降低,呼氣相肺循環(huán)阻力升高,綜合效應(yīng)對(duì)于左心回流量的影響較小??梢?jiàn)在CPAP模式下,志愿者心率下降的原因是肺牽張反射,SV升高是由肺循環(huán)阻力、左心房回流量、心肌收縮力及外周血管阻力等因素綜合決定的[22],但最終效果是CPAP模式起到了降低心臟做功與增加SV的作用,使心臟儲(chǔ)備功能增加。對(duì)于合并基礎(chǔ)心臟疾病的COPD病人來(lái)說(shuō),在進(jìn)行呼氣訓(xùn)練時(shí),CPAP模式有望減少對(duì)血流動(dòng)力學(xué)參數(shù)的不良影響。

      在肺康復(fù)臨床實(shí)踐中,醫(yī)師更多關(guān)注的是呼氣阻力訓(xùn)練對(duì)呼吸肌肌力的鍛煉,而容易忽視呼氣阻力的不同設(shè)置方法對(duì)組織灌注的影響。肌肉組織鍛煉的獲益與組織灌注量有密切關(guān)系,是運(yùn)動(dòng)處方參考的重要指標(biāo)[23]。合理的運(yùn)動(dòng)處方應(yīng)該使目標(biāo)肌群實(shí)現(xiàn)有氧訓(xùn)練,即處方運(yùn)動(dòng)量小于達(dá)到無(wú)氧閾值的運(yùn)動(dòng)量[24]。針對(duì)COPD病人,經(jīng)常遇到使用呼氣阻力訓(xùn)練與CPAP的情況,從兩者對(duì)CO和心臟做功影響的角度看,0.98~1.47 kPa的高CPAP有助于降低心率、增加CO,有利于在阻抗訓(xùn)練中增加呼吸肌群的灌注,提高無(wú)氧閾值,增強(qiáng)康復(fù)效果,而相同數(shù)值的定量阻力呼氣,增加心臟做功,減少組織灌注,有可能對(duì)器官功能產(chǎn)生不良影響。本文研究結(jié)果為COPD病人進(jìn)行肺康復(fù)方案的設(shè)計(jì)提供了血流動(dòng)力學(xué)依據(jù)。

      [參考文獻(xiàn)]

      [1]LOPEZ-CAMPOS J L, TAN W, SORIANO J B. Global burden of COPD[J].? Respirology, 2016,21(1):14-23.

      [2]中華醫(yī)學(xué)會(huì)呼吸病學(xué)分會(huì)慢性阻塞性肺疾病學(xué)組. 慢性阻塞性肺疾病診治指南 (2013年修訂版)[J].? 中華結(jié)核和呼吸雜志, 2014,6(2):67-80.

      [3]ABDULAI R M, JENSEN T J, NAIMISH R P, et al. Dete-

      rioration of limb muscle function during acute exacerbation of chronic obstructive pulmonary disease[J].? American Journal of Respiratory and Critical Care Medicine, 2018,197(4):433-449.

      [4]ANZUETO A, MIRAVITLLES M. Pathophysiology of dyspnea in COPD[J].? Postgrad Med, 2017,129(3):366-374.

      [5]VAGAGGINI B, COSTA F, ANTONELLI S, et al. Clinical predictors of the efficacy of a pulmonary rehabilitation programme in patients with COPD[J].? Respiratory Medicine, 2009,103(8):1224-1230.

      [6]PANERONI M, SIMONELLI C, VITACCA M, et al. Aerobic exercise training in very severe chronic obstructive pulmonary disease: a systematic review and Meta-analysis[J]. American Journal of Physical Medicine & Rehabilitation/Association of Academic Physiatrists, 2017,96(8):541-548.

      [7]HILL K, VOGIATZIS I, BURTIN C. The importance of components of pulmonary rehabilitation, other than exercise training, in COPD[J].? Eur Respir Rev, 2013,22(129):405-413.

      [8]JONES A W, TAYLOR A, GOWLER H, et al. Systematic review of interventions to improve patient uptake and comple-tion of pulmonary rehabilitation in COPD[J].? ERJ Open Res, 2017,3(1):00089-2016.

      [9]JAENISCH R B, HENTSCHKE V S, QUAGLIOTTO E, et al. Respiratory muscle training improves hemodynamics, autonomic function, baroreceptor sensitivity, and respiratory mechanics in rats with heart failure[J].? Journal of Applied Phy-siology, 2011,111(6):1664-1670.

      [10]RIES A L, BAULDOFF G S, CARLIN B W, et al. Pulmonary rehabilitation: joint ACCP/AACVP Revidence based clinical practice guidelines (2007)[J].? Chest, 2007,131(5 Suppl):4-42.

      [11]COQUART J B, LE ROUZIC O, RACIL G, et al. Real-life feasibility and effectiveness of home-based pulmonary rehabilitation in chronic obstructive pulmonary disease requiring medical equipment[J].? Int J Chron Obstruct Pulmon Dis, 2017,12:3549-3556.

      [12]NOGUEIRA-FERREIRA R, MOREIRA-GONALVES D, SANTOS M, et al. Mechanisms underlying the impact of exercise training in pulmonary arterial hypertension[J].? Respir Med, 2018,134:70-78.

      [13]FEIHL F, BROCCARD A F. Interactions between respiration and systemic hemodynamics. Part Ⅱ: practical implications in critical care[J].? Intensive Care Med, 2009,35(2):198-205.

      [14]KEYMEL S, SCHUELLER B, SANSONE R, et al. Oxygen dependence of endothelium-dependent vasodilation: importance in chronic obstructive pulmonary disease[J].? Archives of Medical Science, 2018,14(2):297-306.

      [15]SPRUIT M A, SINGH S J, GARVEY C, et al. An official American Thoracic Society/European Respiratory Society statement: key concepts and advances in pulmonary rehabilitation[J].? Am J Respir Crit Care Med, 2013,188(8):e13-e64.

      [16]NICI L, ZUWALLACK R, American Thoracic Society Subcommittee on Integrated Care of the COPD Patient. An Official American Thoracic Society Workshop Report: the integrated care of the COPD patient[J].? Proc Am Thorac Soc, 2012,9:9-18.

      [17]GREULICH T, KOCZULLA A R, NELL C A, et al. Effect of a three-week inpatient rehabilitation program on 544 conse-

      cutive patients with very severe COPD: a retrospective analysis[J].? Respiration, 2015,90(4):287-292.

      [18]CHEYNE W S, WILLIAMS A M, HARPER M I, et al. Heart-lung interaction in a model of COPD: importance of lung volume and direct ventricular interaction[J].? American Journal of Physiology. Heart and Circulatory Physiology, 2016,311(6):H1367-H1374.

      [19]BISCONTI A V, DEVOTO M, VENTURELLI M, et al. Respiratory muscle training positively affects vasomotor response in young healthy women[J].? PLoS One, 2018,13(9):e0203347.

      [20]ENGEL R M, WEARING J, GONSKI P, et al. The effect of combining manual therapy with exercise for mild chronic obstructive pulmonary disease: study protocol for a randomised controlled trial[J].? Trials, 2017,18(1):282.

      [21]HOUCHEN-WOLLOFF? L, SANDLAND C J, HARRISON S L, et al. Ventilatory requirements of quadriceps resistance training in people with COPD and healthy controls[J].? Int J Chron Obstruct Pulmon Dis, 2014,9:589-595.

      [22]ALTENBURG W A, DE GREEF M H, TEN HACKEN N H, et al. A better response in exercise capacity after pulmonary rehabilitation in more severe COPD patients[J].? Respiratory Medicine, 2012,106(5):694-700.

      [23]OSHEA S D, TAYLOR N F, PARATZ J D. Progressive resistance exercise improves muscle strength and may improve elements of performance of daily activities for people with COPD: a systematic review[J].? Chest, 2009,136(5):1269-1283.

      [24]CONSTANTIN D, MENON M K, HOUCHEN-WOLLOFF L, et al. Skeletal muscle molecular responses to resistance training and dietary supplementation in COPD[J].? Thorax, 2013,68(7):625-633.

      (本文編輯 馬偉平)

      [收稿日期]2019-08-05; [修訂日期]2020-02-29

      [基金項(xiàng)目]山東省科技發(fā)展計(jì)劃項(xiàng)目(2014WS0017)

      [第一作者]曲斌斌(1984-),男,碩士,主治醫(yī)師。

      [通信作者]徐德祥(1977-),男,碩士,副主任醫(yī)師。E-mail:dexiangxu2008@126.com。

      猜你喜歡
      慢性阻塞性肺疾病血流動(dòng)力學(xué)
      呼吸機(jī)輔助呼吸對(duì)慢性阻塞性肺疾病急性加重期并發(fā)呼吸衰竭治療效果分析
      慢性阻塞性肺疾病患者緩解期護(hù)理過(guò)程中實(shí)施護(hù)理干預(yù)對(duì)康復(fù)的影響
      苯磺酸左旋氨氯地平片聯(lián)合硫酸鎂對(duì)妊娠期高血壓疾病患者血壓、新生兒結(jié)局及分娩方式的影響
      經(jīng)顱彩超在新生兒缺氧缺血性腦病中的應(yīng)用價(jià)值
      右美托咪定對(duì)全麻經(jīng)皮腎鏡取石術(shù)患者血流動(dòng)力學(xué)及應(yīng)激反應(yīng)的影響
      椎管內(nèi)麻醉下婦科開(kāi)腹手術(shù)患者血流動(dòng)力學(xué)及血糖變化研究
      布地奈德聯(lián)合沙丁胺醇霧化吸入治療全麻術(shù)中
      肺部癌性空洞與其他空洞的CT診斷價(jià)值分析
      慢性阻塞性肺疾病的痰瘀辨治
      HBM在COPD急性發(fā)作期伴焦慮患者健康教育中的應(yīng)用效果
      慈溪市| 曲周县| 甘泉县| 凉城县| 印江| 武威市| 衡南县| 涞水县| 清远市| 张家口市| 武强县| 乌鲁木齐县| 肃北| 泰兴市| 乌什县| 绥阳县| 连江县| 周至县| 明溪县| 阿坝县| 娱乐| 五原县| 新营市| 六枝特区| 呼玛县| 原阳县| 濮阳市| 胶州市| 兴国县| 商丘市| 开远市| 永济市| 绥棱县| 浪卡子县| 新晃| 汉沽区| 台北县| 邵武市| 芮城县| 宾川县| 炎陵县|