張艷 王旭東 金愛(ài) 何艷 詹云惠 沈敬堃 董宇華 宛蕾
摘 要 目的:研究鈣激活中性蛋白酶(Calpain)抑制劑Calpeptin對(duì)雌二醇(E2)誘導(dǎo)人乳腺上皮細(xì)胞MCF-10A轉(zhuǎn)化及干性標(biāo)志物表達(dá)的影響,并探討其作用機(jī)制。方法:以人乳腺上皮細(xì)胞MCF-10A為研究對(duì)象,采用E2誘導(dǎo)制備轉(zhuǎn)化細(xì)胞模型。將細(xì)胞分為對(duì)照組[0.1%二甲基亞砜(DMSO)]、E2轉(zhuǎn)化組(50 nmol/L)、E2轉(zhuǎn)化+Calpeptin組(50 nmol/L E2+1 μmol/L Calpeptin),以相應(yīng)含藥培養(yǎng)基連續(xù)培養(yǎng)15代。然后采用MTT法檢測(cè)細(xì)胞的增殖率(24、48 h),采用平板克隆試驗(yàn)檢測(cè)細(xì)胞的克隆形成率,采用懸浮成球試驗(yàn)檢測(cè)細(xì)胞的成球數(shù);采用實(shí)時(shí)熒光定量-聚合酶鏈?zhǔn)椒磻?yīng)法檢測(cè)細(xì)胞中干性標(biāo)志物(CD44、Nanog、OCT4)和細(xì)胞外信號(hào)調(diào)節(jié)激酶(ERK)mRNA表達(dá)水平,并采用Western blotting法檢測(cè)細(xì)胞中CD44、Nanog、OCT4、ERK和磷酸化ERK(p-ERK)蛋白表達(dá)水平。另取E2轉(zhuǎn)化細(xì)胞分為對(duì)照組(0.1%DMSO)和U0126(ERK抑制劑)組(10 μmol/L),按上述方法測(cè)定細(xì)胞的克隆形成率、成球數(shù)以及細(xì)胞中CD44、Nanog、OCT4、p-ERK蛋白表達(dá)水平,以驗(yàn)證ERK表達(dá)抑制與轉(zhuǎn)化細(xì)胞生物學(xué)行為及干性標(biāo)志物表達(dá)之間的關(guān)系。結(jié)果:與對(duì)照組比較,E2轉(zhuǎn)化組細(xì)胞的增殖率(24、48 h)、克隆形成率均顯著升高(P<0.01),細(xì)胞成球數(shù)均顯著增加(P<0.01),細(xì)胞中CD44、Nanog、OCT4、p-ERK mRNA表達(dá)水平及CD44、Nanog、OCT4、p-ERK蛋白表達(dá)水平均顯著升高(P<0.01)。與E2轉(zhuǎn)化組比較,E2轉(zhuǎn)化+Calpeptin組細(xì)胞的增殖率(24、48 h)、克隆形成率均顯著降低(P<0.01),細(xì)胞成球數(shù)顯著減少(P<0.05),細(xì)胞中CD44、Nanog、OCT4、ERK mRNA表達(dá)水平及CD44、Nanog、OCT4、p-ERK蛋白表達(dá)水平均顯著降低(P<0.05或P<0.01)。加入ERK抑制劑U0126后,E2轉(zhuǎn)化細(xì)胞的克隆形成率、成球數(shù)以及細(xì)胞中p-ERK、CD44、Nanog、OCT4蛋白表達(dá)水平均顯著增加或升高(P<0.05或P<0.01)。結(jié)論:Calpeptin可抑制E2誘導(dǎo)的人乳腺上皮細(xì)胞MCF-10A轉(zhuǎn)化及干性標(biāo)志物表達(dá),其機(jī)制可能與抑制Calpain-ERK信號(hào)通路的激活有關(guān)。
關(guān)鍵詞 Calpeptin;雌二醇;人乳腺上皮細(xì)胞MCF-10A;細(xì)胞轉(zhuǎn)化;干性標(biāo)志物;細(xì)胞外信號(hào)調(diào)節(jié)激酶;機(jī)制
ABSTRACT? ?OBJECTIVE: To study the effects of Calpeptin inhibitor Calpeptin on the transformation and stemness markers expression induced by estradiol (E2), and to investigate its mechanism. METHODS: Taking human mammary epithelial cells MCF-10A as research object, transformed cells were induced by E2 treatment. Cells were divided into control group(0.1%DMSO), E2-transformed group (50 nmol/L), E2-transformed+Calpeptin group (50 nmol/L E2+1 μmol/L Calpeptin), then continuously treated with corresponding drug-containing culture medium for 15 generations. Then, MTT assay was used to determine the proliferation rate of cells (24,48 h); plate colony test was used to detect the Clone formation rate of cells; the number of sphere-forming cells was measured by suspension spheroidization test;mRNA expressions of stemness marker (CD44, Nanog, OCT4) and extracellular sigal-regulated kinase (ERK) were detected by RT-qPCR,and protein expressions of CD44, Nanog, OCT4 , ERK and p-ERK were detected by Western blotting assay. Another E2-transformed cells were divided into control group (0.1%DMSO) and U0126 (ERK inhibitor) group (10 μmol/L). Clone formation rate, the number of sphere-forming, protein expressions of CD44, Nanog, OCT4,ERK and p-ERK were determined with above methods, and to validate the relationship of ERK inhibition with transformed cell behavior and the expression of stemness markers. RESULTS:Compared with control group, proliferation rate and clone formation rate of E2 transformed group were increased significantly (P<0.01), and the number of sphere-forming was increased significantly (P<0.01); mRNA expression levels of CD44, Nanog, OCT4,ERK and protein expression levels of CD44, Nanog, OCT4 and p-ERK in cells were increased significantly (P<0.01). Compared with E2-transformed group, proliferation rate (24, 48 h) and clone formation rate of E2-transformed+Calpeptin group were decreased significantly (P<0.01), and the number of sphere-forming was decreased significantly (P<0.05); mRNA expression levels of CD44, Nanog, OCT4 , ERK and protein expression levels of CD44, Nanog, OCT4, p-ERK in cells were decreased significantly (P<0.05 or P<0.01). After treated with ERK inhibitor U0126, clone formation rate of E2-transformed cells, the number of sphere-forming, protein expression levels of CD44, Nanog, OCT4 and p-ERK were increased significantly (P<0.05 or P<0.01). CONCLUSIONS: Calpeptin can inhibit the transformation and the expression of stemness markers of human mammary epithelial cells MCF-10A, and the mechanism of it may be associated with inhibiting the activation of Calpain-ERK signaling pathway.
KEYWORDS? ?Calpeptin; Estradiol; Human mammary epithelial cells MCF-10A; Cell transformation; Stemness marker; Extracellular sigal-regulated kinase; Mechanism
雌二醇(E2)是誘導(dǎo)乳腺癌發(fā)生的主要風(fēng)險(xiǎn)因素[1],其可通過(guò)激活雌激素受體(ER)或代謝產(chǎn)生有毒代謝產(chǎn)物,從而誘導(dǎo)乳腺上皮細(xì)胞轉(zhuǎn)化以及癌變發(fā)生[2-3]。相關(guān)研究顯示,乳腺腫瘤干細(xì)胞(BCSCs)在乳腺癌的發(fā)生、維持、轉(zhuǎn)移、治療抵抗和復(fù)發(fā)中起著重要作用,而E2與BCSCs的產(chǎn)生密切相關(guān)[4]。人乳腺上皮細(xì)胞MCF-10A是一種非致瘤性乳腺上皮細(xì)胞,正常情況下其呈不規(guī)則多邊形貼壁生長(zhǎng),且增殖緩慢;但經(jīng)E2長(zhǎng)期誘導(dǎo)后,MCF-10A細(xì)胞將失去上皮細(xì)胞相關(guān)特性,胞體變大,呈長(zhǎng)梭形貼壁生長(zhǎng),增殖能力增強(qiáng),且具有一定的間質(zhì)特征[5]。近期有研究發(fā)現(xiàn),E2能誘導(dǎo)人乳腺上皮細(xì)胞MCF-10A的自我更新、多潛能分化等干性特征增強(qiáng),促進(jìn)該細(xì)胞向BCSCs轉(zhuǎn)化[6]。
鈣激活中性蛋白酶(Calcium-activated neutral protease,縮寫為“Calpain”)是一種Ca2+依賴型半胱氨酸蛋白酶,主要成員有Calpain-1和Calpain-2,可參與調(diào)控乳腺癌細(xì)胞的多種惡性生物學(xué)行為[7-8]。Calpeptin是一種具有細(xì)胞穿透性的Calpain抑制劑,據(jù)相關(guān)研究報(bào)道,Calpeptin可通過(guò)抑制ER陽(yáng)性乳腺癌細(xì)胞MCF-7中Calpain的活性,從而抑制細(xì)胞的遷移和侵襲[9]。本課題組前期研究發(fā)現(xiàn),在E2誘導(dǎo)人乳腺上皮細(xì)胞MCF-10A轉(zhuǎn)化的過(guò)程中,通常伴隨著Calpain活性的增強(qiáng)[10]。而Calpain活性增強(qiáng)在癌癥的發(fā)生發(fā)展中具有重要作用,其參與介導(dǎo)了上皮細(xì)胞轉(zhuǎn)化以及癌細(xì)胞的遷移、增殖[10-12]。但有關(guān)Calpain是否介導(dǎo)了E2誘導(dǎo)的乳腺上皮細(xì)胞MCF-10A干性特征增強(qiáng),尚未見(jiàn)文獻(xiàn)報(bào)道。另有研究顯示,細(xì)胞外信號(hào)調(diào)節(jié)激酶(ERK)信號(hào)通路的激活與細(xì)胞的惡性轉(zhuǎn)化密切相關(guān)[13]。但Calpeptin是否能通過(guò)ERK通路干預(yù)乳腺上皮細(xì)胞MCF-10A轉(zhuǎn)化以及干性特征增強(qiáng),也同樣尚未見(jiàn)文獻(xiàn)報(bào)道。鑒于此,本研究旨在通過(guò)探討Calpain抑制劑Calpeptin對(duì)E2誘導(dǎo)乳腺上皮細(xì)胞MCF-10A轉(zhuǎn)化及干性標(biāo)志物(CD44、OCT4、Nanog)表達(dá)的影響,并通過(guò)探究Calpain-ERK信號(hào)通路在其中的介導(dǎo)作用,為闡明Calpeptin抑制E2誘導(dǎo)乳腺癌發(fā)生的作用機(jī)制提供參考。
1 材料
1.1 儀器
ND2000型超微量紫外分光光度計(jì)、2001HY-6003型CO2細(xì)胞培養(yǎng)箱(美國(guó)Thermo Fisher Scientific公司);HH-W21-Cr600型電熱恒溫水溫箱、DW-86L486型立式超低溫冰箱(青島海爾特種電器有限公司);SW-CJ-2D型超凈工作臺(tái)(蘇州凈化設(shè)備有限公司);FA2204N型電子天平(上海菁海儀器有限公司);ZHWY-103D型恒溫培養(yǎng)振蕩器(上海智城分析儀器制造有限公司);DYY-7C型電泳儀(北京市六一儀器廠);Epoch型全波長(zhǎng)酶標(biāo)儀(美國(guó)Bio-Tek公司);CKX41型倒置顯微鏡(日本Olympus公司);TI-U-DS-RI2型倒置熒光顯微鏡(日本Nikon公司);Centrifuge 5810R型高速冷凍離心機(jī)(德國(guó)Eppendorf公司);TS-8型轉(zhuǎn)移脫色搖床、VORTEX-5型渦旋振蕩儀(海門市其林貝爾儀器制造有限公司);Step One PlusTM型實(shí)時(shí)熒光定量-聚合酶鏈?zhǔn)椒磻?yīng)(PCR)儀(美國(guó)Applied Biosystems公司)。
1.2 藥品與試劑
E2標(biāo)準(zhǔn)品(批號(hào):WXBC5362V,純度:>98%)、Calpeptin(批號(hào):C8999,純度:>98%)、氫化可的松標(biāo)準(zhǔn)品(批號(hào):PHR1014,純度:100%)、霍亂毒素(批號(hào):C8052,純度:95%)均購(gòu)自美國(guó)Sigma公司;U0126(ERK抑制劑,美國(guó)Med Chem Express公司,批號(hào):HY-12031,純度:>98%);馬血清、0.25%胰蛋白酶、B-27添加物(50×)(美國(guó)Gibco公司,批號(hào)分別為:1893656、2046777、2046964);表皮生長(zhǎng)因子( EGF,美國(guó)PeproTech公司,批號(hào):0515AFC05);成纖維細(xì)胞生長(zhǎng)因子(FGFB,中國(guó)近岸蛋白質(zhì)科技有限公司,批號(hào):0331504);重組人胰島素(上海翊圣生物科技有限公司,批號(hào):11820131,含量:95%~105%);磷酸鹽緩沖液(PBS)粉末、1%結(jié)晶紫染色液、5×蛋白質(zhì)上樣緩沖液、十二烷基硫酸鈉-聚丙烯酰胺凝膠電泳(SDS-PAGE)制備試劑盒、高效RIPA組織/快速裂解液、膜再生液(北京索萊寶科技有限公司,批號(hào)分別為:1022Q021、20180627、20190328、20191104、20190711、20190715);青鏈霉素、DMEM/F12培養(yǎng)基(美國(guó) Hyclone 公司,批號(hào)分別為:J150038、AE28870264);二喹啉甲酸(BCA)蛋白濃度試劑盒(美國(guó)Thermo Fisher Scientific公司,批號(hào):UD277257);MTT試劑盒(北京博奧拓科技有限公司,批號(hào):298-93-1);Trizol試劑(美國(guó)Ambion Life Technologies公司,批號(hào):149002);反轉(zhuǎn)錄試劑盒PrimeScriptTM RT reagent Kit、PCR反應(yīng)試劑SYBR? Premix Ex TaqTM Ⅱ(日本Takara公司,批號(hào)分別為:AK6301、AIG2363A);CD44小鼠單克隆抗體、ERK兔多克隆抗體(美國(guó)Cell Signaling Technolog公司,批號(hào)分別為:3570S、4695S);Nanog、OCT4兔單克隆抗體(美國(guó)Abcam公司,批號(hào)分別為:ab109250、ab109183);磷酸化ERK(p-ERK)小鼠多克隆抗體(美國(guó)Santa Cruz公司,批號(hào):SC-7383);α-微管蛋白(α-tubulin)兔多克隆抗體、甘油醛-3-磷酸脫氫酶(GAPDH)鼠單克隆抗體、辣根過(guò)氧化物酶標(biāo)記的山羊抗兔免疫球蛋白G(IgG)二抗、辣根過(guò)氧化物酶標(biāo)記的山羊抗鼠 IgG二抗(美國(guó) Bioworld 公司,批號(hào)分別為:BS1699、MB001、BS13278、BS12478);甲醇、二甲基亞砜(DMSO)、乙醇等均為分析純,水為雙蒸水。CD44、Nanog、OCT4、ERK和GAPDH引物均由生工生物工程(上海)股份有限公司合成。
1.3 細(xì)胞
人乳腺上皮細(xì)胞MCF-10A由陸軍軍醫(yī)大學(xué)生物化學(xué)教研室饋贈(zèng)。
2 方法
2.1 細(xì)胞培養(yǎng)
將人乳腺上皮細(xì)胞MCF-10A培養(yǎng)于DMEM/F12全培養(yǎng)基中(含有10%馬血清、10 ng/mL霍亂毒素、50? ? ng/mL氫化可的松、10 μg/mL胰島素、20 ng/mL EGF以及1%青鏈霉素,下同),在37 ℃、5%CO2的培養(yǎng)箱(后文條件相同)中進(jìn)行培養(yǎng),每48 h更換1次培養(yǎng)液。
2.2 細(xì)胞轉(zhuǎn)化試驗(yàn)
將乳腺上皮細(xì)胞MCF-10A隨機(jī)分為對(duì)照組、E2轉(zhuǎn)化組(DMSO終體積分?jǐn)?shù)為0.1%,下同)和E2轉(zhuǎn)化+Calpeptin組(DMSO終體積分?jǐn)?shù)為0.1%,下同)。3組細(xì)胞分別以0.1%DMSO、E2(50 nmol/L)、E2(50 nmol/L)+Calpeptin(1 μmol/L)連續(xù)處理15代,每次傳代時(shí)均加入相應(yīng)藥物處理,然后按照“2.1”項(xiàng)下條件進(jìn)行培養(yǎng),觀察細(xì)胞形態(tài)變化并拍照。細(xì)胞轉(zhuǎn)化標(biāo)志:細(xì)胞形態(tài)發(fā)生變化(細(xì)胞胞體變大,胞內(nèi)出現(xiàn)黑色顆粒,排列紊亂,呈長(zhǎng)梭形貼壁生長(zhǎng),具有一定的間質(zhì)細(xì)胞樣特性),生長(zhǎng)加速,克隆形成能力增強(qiáng)[5]。
2.3 MTT試驗(yàn)檢測(cè)細(xì)胞的增殖能力
取“2.2”項(xiàng)下3組對(duì)數(shù)生長(zhǎng)期細(xì)胞,分別用0.25%胰蛋白酶消化后,以1 000 r/min離心5 min,用DMEM/F12全培養(yǎng)基重懸并調(diào)整各組細(xì)胞密度至4×104個(gè)/mL,然后接種于96孔板中,每孔200 μL,每組設(shè)置5個(gè)復(fù)孔。另外設(shè)置不加細(xì)胞只加培養(yǎng)基的調(diào)零孔。將培養(yǎng)板置于培養(yǎng)箱中培養(yǎng)至細(xì)胞貼壁,吸棄培養(yǎng)液,每孔中加入200 μL不含血清的DMEM/F12培養(yǎng)基,繼續(xù)培養(yǎng)24、48 h后,每孔中均避光加入5%MTT試液20 μL,混勻,培養(yǎng)3 h后,終止培養(yǎng);棄去培養(yǎng)基,加入150 μL DMSO溶液,低速振蕩10 min。使用酶標(biāo)儀于490 nm波長(zhǎng)下測(cè)定各孔吸光度(OD),計(jì)算細(xì)胞增殖率。細(xì)胞增殖率(%)=(給藥組OD值-調(diào)零孔OD值)/(對(duì)照組OD值-調(diào)零孔OD值)×100%。試驗(yàn)重復(fù)3次。
2.4 平板克隆試驗(yàn)檢測(cè)細(xì)胞的克隆形成能力
取“2.2”項(xiàng)下3組對(duì)數(shù)生長(zhǎng)期細(xì)胞,分別按400個(gè)/孔接種于6孔板中,每組設(shè)置3個(gè)復(fù)孔。每孔中加入4 mL DMEM/F12全培養(yǎng)基,于培養(yǎng)箱中培養(yǎng)14 d;棄去培養(yǎng)液,以PBS洗滌3次,加入4%多聚甲醛溶液固定30 min;以0.1%結(jié)晶紫染色30 min后,洗去染色液,常溫晾干。用相機(jī)拍照并觀察其克隆集落形成情況,使用Image J 1.8.0軟件對(duì)克隆集落進(jìn)行計(jì)數(shù),并計(jì)算其克隆形成率??寺⌒纬陕剩?)=(克隆集落形成數(shù)/接種細(xì)胞總數(shù))×100%。試驗(yàn)重復(fù)3次。
2.5 懸浮成球試驗(yàn)檢測(cè)細(xì)胞的自我更新能力
取“2.2”項(xiàng)下3組處于對(duì)數(shù)生長(zhǎng)期細(xì)胞,分別按? ? ? ?5 000個(gè)/孔接種于24孔超低黏附板中,每組設(shè)置3個(gè)復(fù)孔。每孔中加入2 mL懸浮成球試驗(yàn)培養(yǎng)基(含5 μg/mL胰島素、2%B-27添加物、20 ng/mL EGF、20 ng/mL FGFB、1 μg/mL氫化可的松和1%青鏈霉素的DMEM/F12培養(yǎng)基),在培養(yǎng)箱中培養(yǎng)10 d后,于顯微鏡下拍照并對(duì)每組的成球情況進(jìn)行計(jì)數(shù)。試驗(yàn)重復(fù)3次。
2.6 實(shí)時(shí)熒光定量-PCR試驗(yàn)檢測(cè)細(xì)胞中CD44、Nanog、OCT4、ERK mRNA的表達(dá)情況
取“2.2”項(xiàng)下3組對(duì)數(shù)生長(zhǎng)期細(xì)胞,分別按2×105個(gè)/孔接種于6孔板中,每組設(shè)置2個(gè)復(fù)孔。待細(xì)胞貼壁后,以DMEM/F12培養(yǎng)基(不含血清)于培養(yǎng)箱中培養(yǎng)48 h。按照Trizol說(shuō)明書(shū)方法操作,分離提取細(xì)胞中的總RNA,用超微量分光光度計(jì)測(cè)定各組RNA濃度。使用PrimeScriptTM RT reagent Kit試劑盒并按說(shuō)明書(shū)方法操作,將1 μg總RNA逆轉(zhuǎn)錄為cDNA,并以cDNA為模板進(jìn)行PCR擴(kuò)增。反應(yīng)體系:cDNA模板2 μL,上、下游引物各0.8 μL,SYBR? Premix Ex TaqTM Ⅱ 10.4 μL、無(wú)酶水6 μL,總體系為20 μL。反應(yīng)條件:95 ℃預(yù)變性30 s;95 ℃變性3 s,60 ℃退火30 s,72 ℃延伸30 s,共40個(gè)循環(huán)。以GAPDH為內(nèi)參,采用2-ΔΔct法計(jì)算CD44、Nanog、OCT4和ERK mRNA的表達(dá)水平(其中ct表示每個(gè)反應(yīng)管內(nèi)的熒光信號(hào)達(dá)到設(shè)定閾值時(shí)所經(jīng)歷的循環(huán)次數(shù))。試驗(yàn)重復(fù)3次。引物序列及擴(kuò)增產(chǎn)物長(zhǎng)度見(jiàn)表1。
2.7 Western bloting試驗(yàn)檢測(cè)細(xì)胞中CD44、Nanog、OCT4、ERK和p-ERK蛋白的表達(dá)情況
取“2.2”項(xiàng)下3組對(duì)數(shù)生長(zhǎng)期細(xì)胞,分別按“2.6”項(xiàng)下方法進(jìn)行細(xì)胞接種、培養(yǎng),然后以RIPA蛋白裂解液提取總蛋白,再以BCA法進(jìn)行蛋白定量后進(jìn)行制樣。蛋白樣品在80 V電壓下電泳30 min后,調(diào)節(jié)電壓至120 V繼續(xù)電泳1 h;然后以電流300 mA轉(zhuǎn)膜[聚偏氟乙烯(PVDF)膜]1.5 h,以5%脫脂奶粉室溫封閉1 h;分別加入稀釋比例均為1 ∶ 1 000的CD44、Nanog、OCT4、ERK、p-ERK一抗和稀釋比例為1 ∶ 10 000的GAPDH一抗,4 ℃下孵育過(guò)夜;以1×TBST溶液洗膜3次,每次10 min;加入相應(yīng)二抗(稀釋比例均為1 ∶ 10 000),室溫下孵育1 h;以1×TBST溶液洗膜3次,每次10 min,再用ECL發(fā)光試劑盒顯色。以凝膠成像系統(tǒng)成像,并用Image J 1.8.0軟件分析,以目的蛋白條帶灰度值與內(nèi)參GAPDH蛋白條帶灰度值的比值表示目的蛋白的表達(dá)水平。試驗(yàn)重復(fù)3次。
2.8 U0126抑制ERK蛋白表達(dá)后對(duì)E2轉(zhuǎn)化細(xì)胞克隆形成能力、自我更新能力以及干性標(biāo)志物表達(dá)的影響
取對(duì)數(shù)生長(zhǎng)期的E2轉(zhuǎn)化細(xì)胞,隨機(jī)分為對(duì)照組(含0.1%DMSO)和U0126(ERK抑制劑)組(10 μmol/L)。分別按“2.4”項(xiàng)下方法檢測(cè)細(xì)胞的克隆形成能力,按“2.5”項(xiàng)下方法檢測(cè)細(xì)胞自我更新能力,按“2.7”項(xiàng)下方法檢測(cè)細(xì)胞中CD44、Nanog、OCT4和p-ERK蛋白的表達(dá)情況(以α-tubulin為內(nèi)參,稀釋比例為1 ∶ 10 000)。試驗(yàn)均重復(fù)3次。
2.9 統(tǒng)計(jì)學(xué)方法
采用SPSS 11.5軟件對(duì)數(shù)據(jù)進(jìn)行統(tǒng)計(jì)處理和分析。數(shù)據(jù)以x±s表示。多組間比較采用單因素方差分析,兩獨(dú)立樣本組間比較采用t檢驗(yàn)。P<0.05表示差異具有統(tǒng)計(jì)學(xué)意義。
3 結(jié)果
3.1 Calpeptin對(duì)E2轉(zhuǎn)化細(xì)胞形態(tài)學(xué)特征的影響
細(xì)胞形態(tài)學(xué)觀察發(fā)現(xiàn),與對(duì)照組比較,E2轉(zhuǎn)化組細(xì)胞形態(tài)發(fā)生了明顯變化,細(xì)胞呈長(zhǎng)梭形貼壁生長(zhǎng),細(xì)胞體積變大,具有一定的間質(zhì)細(xì)胞樣特征;E2轉(zhuǎn)化+Calpeptin組細(xì)胞形態(tài)與對(duì)照組接近。各組細(xì)胞形態(tài)學(xué)特征顯微圖見(jiàn)圖1。
3.2 Calpeptin對(duì)E2轉(zhuǎn)化細(xì)胞增殖能力的影響
培養(yǎng)24、48 h后,與對(duì)照組比較,E2轉(zhuǎn)化組細(xì)胞的增殖率均顯著升高(P<0.01);與E2轉(zhuǎn)化組比較,E2轉(zhuǎn)化+Calpeptin組細(xì)胞的增殖率均顯著降低(P<0.01)。各組細(xì)胞增殖率測(cè)定結(jié)果見(jiàn)表2。
3.3 Calpeptin對(duì)E2轉(zhuǎn)化細(xì)胞克隆形成能力的影響
與對(duì)照組比較,E2轉(zhuǎn)化組細(xì)胞的克隆形成率顯著升高(P<0.01);與E2轉(zhuǎn)化組比較,E2轉(zhuǎn)化+Calpeptin組細(xì)胞的克隆形成率顯著降低(P<0.01)。各組細(xì)胞克隆形成情況平板圖見(jiàn)圖2,克隆形成率測(cè)定結(jié)果見(jiàn)表3。
3.4 Calpeptin對(duì)E2轉(zhuǎn)化細(xì)胞自我更新能力的影響
與對(duì)照組比較,E2轉(zhuǎn)化組細(xì)胞的成球數(shù)顯著增加(P<0.01);與E2轉(zhuǎn)化組比較,E2轉(zhuǎn)化+Calpeptin組細(xì)胞的成球數(shù)顯著減少(P<0.05)。各組細(xì)胞成球情況顯微圖見(jiàn)圖3,成球數(shù)測(cè)定結(jié)果表4。
3.5 Calpeptin對(duì)E2轉(zhuǎn)化細(xì)胞中CD44、Nanog、OCT4、ERK mRNA表達(dá)的影響
與對(duì)照組比較,E2轉(zhuǎn)化組細(xì)胞中CD44、Nanog、OCT4、ERK mRNA的表達(dá)水平均顯著升高(P<0.01);與E2轉(zhuǎn)化組比較,E2轉(zhuǎn)化+Calpeptin組細(xì)胞中CD44、Nanog、OCT4、ERK mRNA的表達(dá)水平均顯著降低(P<0.05或P<0.01)。各組細(xì)胞中4種標(biāo)志物mRNA表達(dá)水平測(cè)定結(jié)果見(jiàn)表5。
3.6 Calpeptin對(duì)E2轉(zhuǎn)化細(xì)胞中CD44、Nanog、OCT4、ERK和p-ERK蛋白表達(dá)的影響
與對(duì)照組比較,E2轉(zhuǎn)化組細(xì)胞中CD44、Nanog、OCT4和p-ERK蛋白的表達(dá)水平均顯著升高(P<0.01);與E2轉(zhuǎn)化組比較,E2轉(zhuǎn)化+Calpeptin組細(xì)胞中CD44、Nanog、OCT4、p-ERK蛋白的表達(dá)水平均顯著降低(P<0.05或P<0.01);3組細(xì)胞中ERK蛋白表達(dá)水平間比較,差異均無(wú)統(tǒng)計(jì)學(xué)意義(P>0.05)。各組細(xì)胞中CD44、Nanog、OCT4、ERK、p-ERK蛋白表達(dá)電泳圖見(jiàn)圖4,蛋白表達(dá)水平測(cè)定結(jié)果見(jiàn)表6。
3.7 ERK表達(dá)被抑制后對(duì)E2轉(zhuǎn)化細(xì)胞的克隆形成能力、自我更新能力以及干性相關(guān)蛋白表達(dá)的影響
與對(duì)照組比較,U0126組中p-ERK蛋白表達(dá)水平顯著降低(P<0.05),表明ERK蛋白表達(dá)被抑制;細(xì)胞的克隆形成率顯著降低(P<0.01),成球數(shù)顯著減少(P<0.05),干性相關(guān)蛋白(CD44、Nanog、OCT4)的表達(dá)水平也顯著降低(P<0.05)。這提示抑制ERK表達(dá)后,E2轉(zhuǎn)化細(xì)胞的克隆形成能力、自我更新能力以及干性相關(guān)蛋白的表達(dá)均減弱。ERK抑制劑U0126作用下各組細(xì)胞中ERK、p-ERK蛋白和干性相關(guān)蛋白表達(dá)測(cè)定結(jié)果見(jiàn)圖5、表7,細(xì)胞克隆形成和細(xì)胞成球情況測(cè)定結(jié)果見(jiàn)圖6、表8。
4 討論
乳腺上皮細(xì)胞發(fā)生轉(zhuǎn)化是乳腺癌發(fā)生的必要過(guò)程。腫瘤干細(xì)胞是細(xì)胞內(nèi)具有自我更新、多潛能分化和腫瘤特殊生物學(xué)行為的一類細(xì)胞亞群,與癌癥的發(fā)生發(fā)展密切相關(guān)[14]。近期有研究顯示,E2可以促進(jìn)乳腺上皮細(xì)胞MCF-10A獲得干細(xì)胞特性[6]。CD44、Nanog和OCT4均是公認(rèn)的癌癥干細(xì)胞標(biāo)志物。據(jù)報(bào)道,CD44可通過(guò)與細(xì)胞外基質(zhì)成分、生長(zhǎng)因子和細(xì)胞因子相互作用來(lái)促進(jìn)腫瘤的發(fā)生[15]。而Nanog和OCT4在多種癌癥干細(xì)胞中都呈異常高表達(dá)狀態(tài),其高表達(dá)后能夠促進(jìn)細(xì)胞的重新編程,從而調(diào)控腫瘤細(xì)胞增殖、自我更新和多能性分化等干細(xì)胞特征[16-17]。本研究采用E2連續(xù)培養(yǎng)乳腺上皮細(xì)胞MCF-10A 15代,發(fā)現(xiàn)E2處理后細(xì)胞出現(xiàn)了一定的間質(zhì)細(xì)胞樣特征,細(xì)胞活力、克隆形成能力以及自我更新能力均顯著增強(qiáng),這表明細(xì)胞在E2作用下發(fā)生了轉(zhuǎn)化。同時(shí),E2轉(zhuǎn)化細(xì)胞中干性標(biāo)志物CD44、Nanog、OCT4 mRNA及其蛋白的表達(dá)均顯著上調(diào),這提示E2不僅可誘導(dǎo)細(xì)胞轉(zhuǎn)化,還可增強(qiáng)轉(zhuǎn)化細(xì)胞的干性特征。
Calpain的生物學(xué)活性與腫瘤的發(fā)生有關(guān),其可通過(guò)修飾性剪切多種腫瘤抑制蛋白,促進(jìn)上皮細(xì)胞的轉(zhuǎn)化[18-19]。Calpain抑制劑Calpeptin是一種具有細(xì)胞滲透性的特異性抑制劑。據(jù)相關(guān)文獻(xiàn)報(bào)道,Calpeptin在1~10 μmol/L濃度范圍內(nèi)能顯著抑制E2誘導(dǎo)的人乳腺癌細(xì)胞MCF-7的增殖[20]。本課題組前期研究也發(fā)現(xiàn),10? ? ? ? μmol/L Calpeptin能顯著抑制E2誘導(dǎo)的MCF-10A轉(zhuǎn)化細(xì)胞的增殖[21]。故在本次研究的預(yù)試驗(yàn)中,筆者先是以1、5、10 μmol/L Calpeptin聯(lián)合E2連續(xù)處理細(xì)胞MCF-10A 15代。結(jié)果發(fā)現(xiàn),在5、10 μmol/L Calpeptin的作用下細(xì)胞逐漸凋亡,只有在1 μmol/L濃度下細(xì)胞能夠正常生長(zhǎng),同時(shí)能顯著抑制E2誘導(dǎo)的細(xì)胞轉(zhuǎn)化。所以,在本次探討Calpeptin對(duì)E2誘導(dǎo)人乳腺上皮細(xì)胞MCF-10A轉(zhuǎn)化和干性特征的影響機(jī)制研究中,筆者選擇1 μmol/L為干預(yù)濃度。結(jié)果發(fā)現(xiàn),該濃度下Calpeptin 可抑制E2誘導(dǎo)乳腺上皮細(xì)胞MCF-10A的轉(zhuǎn)化和干性特征的增強(qiáng),這提示Calpain可能參與介導(dǎo)了E2誘導(dǎo)的細(xì)胞轉(zhuǎn)化和干性特征增強(qiáng)。
當(dāng)ERK信號(hào)通路被激活時(shí),非活性ERK被磷酸化為活化形式的p-ERK,并由細(xì)胞質(zhì)轉(zhuǎn)移至細(xì)胞核內(nèi),轉(zhuǎn)錄激活核內(nèi)的轉(zhuǎn)錄因子,進(jìn)而促進(jìn)細(xì)胞增殖、分化以及癌癥發(fā)生[22]。有研究顯示,ERK信號(hào)通路的激活與乳腺癌[23-24]、肺癌[25-26]、甲狀腺癌[27]等癌癥細(xì)胞的增殖、遷移以及干細(xì)胞特性增強(qiáng)相關(guān)。本研究結(jié)果顯示,E2轉(zhuǎn)化組細(xì)胞可高表達(dá)ERK mRNA和p-ERK蛋白,但E2轉(zhuǎn)化+Calpeptin組細(xì)胞ERK mRNA和p-ERK蛋白的表達(dá)明顯下調(diào),這提示Calpeptin抑制E2誘導(dǎo)的細(xì)胞轉(zhuǎn)化以及干性標(biāo)志物表達(dá)的作用可能與抑制ERK信號(hào)通路的激活有關(guān)。為了驗(yàn)證以上結(jié)論,筆者進(jìn)一步以ERK特異性抑制劑U0126處理E2轉(zhuǎn)化細(xì)胞。結(jié)果發(fā)現(xiàn),經(jīng)U0126處理后,細(xì)胞的增殖能力和自我更新能力均顯著減弱,干性相關(guān)蛋白的表達(dá)也顯著下調(diào),這進(jìn)一步說(shuō)明ERK信號(hào)通路可能參與介導(dǎo)了E2誘導(dǎo)乳腺上皮細(xì)胞MCF-10A轉(zhuǎn)化及其干性增強(qiáng)。有文獻(xiàn)報(bào)道,E2可通過(guò)激活Calpain-ERK信號(hào)通路促進(jìn)ER陽(yáng)性乳腺癌細(xì)胞的增殖[28]。但本研究發(fā)現(xiàn),Calpain抑制劑Calpeptin在抑制E2誘導(dǎo)細(xì)胞轉(zhuǎn)化的同時(shí),能顯著下調(diào)E2誘導(dǎo)的p-ERK蛋白的表達(dá)。由此推測(cè),細(xì)胞內(nèi)可能存在Calpain-ERK的正反饋環(huán)路,后者在E2作用下被激活,促進(jìn)Calpain活性增強(qiáng),從而參與誘導(dǎo)細(xì)胞轉(zhuǎn)化及其干性增強(qiáng);而當(dāng)Calpain活性被抑制時(shí),可能反饋性調(diào)節(jié)ERK的磷酸化作用,抑制了ERK的磷酸化,從而抑制細(xì)胞轉(zhuǎn)化以及干性增強(qiáng)。
綜上所述,Calpeptin能抑制E2誘導(dǎo)的人乳腺上皮細(xì)胞MCF-10A轉(zhuǎn)化及干性標(biāo)志物的表達(dá),其機(jī)制可能與抑制Calpain-ERK信號(hào)通路的激活有關(guān),但其具體作用靶點(diǎn)和機(jī)制有待后續(xù)研究進(jìn)一步確證。
參考文獻(xiàn)
[ 1 ] WEN C,WU L,F(xiàn)U L,et al. Unifying mechanism in the initiation of breast cancer by metabolism of estrogen:review[J]. Mol Med Rep,2017,16(2):1001-1006.
[ 2 ] CHEN JQ,RUSSO PA,COOKE C,et al. ERβ shifts from mitochondria to nucleus during estrogen-induced neoplastic transformation of human breast epithelial cells and is involved in estrogen-induced synthesis of mitochondrial respiratory chain proteins[J]. Biochim Biophys Acta,2007,1773(12):1732-1746.
[ 3 ] SAMAVAT H,KURZAR MS. Estrogen metabolism and breast cancer[J]. Cancer Lett,2015,356(200):231-243.
[ 4 ] VOUTSADAKIS IA. HER2 in stemness and epithelial- mesenchymal plasticity of breast cancer[J]. Clin Transl Oncol,2019,21(5):539-555.
[ 5 ] 楊莉,李陽(yáng),朱筑霞,等. FAK在雌激素誘導(dǎo)MCF-10A乳腺上皮細(xì)胞轉(zhuǎn)化中的表達(dá)及其意義[J].重慶醫(yī)學(xué),2013,42(20):2376-2377.
[ 6 ] DAS JK,F(xiàn)ELTY Q,POPPITI R,et al. Nuclear respiratory factor 1 acting as an oncoprotein drives estrogen-induced breast carcinogenesis[J]. Cells,2018,7(12):234-256.
[ 7 ] HOSKIN V,SZETO A,GHAFFARI A,et al. Ezrin regulates focal adhesion and invadopodia dynamics by altering calpain activity to promote breast cancer cell invasion[J]. Mol Biol Cell,2015,26(19):3464-3479.
[ 8 ] STORR SJ,THOMPSON N,PU X,et al. Calpain in breast cancer:role in disease progression and treatment respone[J]. Pathobiology,2015,82(3/4):133-141.
[ 9 ] LI CL,YANG D,CAO X,et al. Fibronectin induces epithelial-mesenchymal transition in human breast cancer MCF-7 cells via activation of calpain[J]. Oncol Lett,2017,13(5):3889-3895.
[10] 楊莉,朱筑霞,劉曉紅,等.鈣蛋白酶在乳腺上皮轉(zhuǎn)化細(xì)胞對(duì)雌激素刺激反應(yīng)中的作用[J].基礎(chǔ)醫(yī)學(xué)與臨床,2013,33(7):819-823.
[11] CARRAGHER NO,F(xiàn)ONSECA BD,F(xiàn)RAME MC. Calpain activity is generally elevated during transformation but has oncogene-specific biological function[J]. Neoplasia,2004,6(1):53-73.
[12] XU F,GU J,LU C,et al. Calpain-2 enhances non-small cell lung cancer progression and chemoresistance to paclitaxel via EGFR-pAKT pathway[J]. Int J Biol Sci,2019,15(1):127-137.
[13] MENG J,ZHOU X,YANG J,et al. Exposure to low dose ZnO nanoparticles induces hyperproliferation and malignant transformation through activating the CXCR2/NF- KappaB/STAT3/ERK and AKT pathways in colonic mucosal cells[J]. Environ Pollut,2020,263(PtB):114578- 114589.
[14] ASADZADEH Z,MANSOORI B,MOHAMMADI A,? ?et al. microRNAs in cancer stem cells:biology,pathways,and therapeutic opportunities[J]. J Cell Physiol,2019,234(7):10002-10017.
[15] MORATH I,HARTMAN TN,ORIAN-ROUSSEAU V. CD44:more than a mere stem cell marker[J]. Int J Biochem Cell Biol,2016,81(Pt A):166-173.
[16] ZHANG W,SUI Y,NI J,et al. Insights into the Nanog gene:a propeller for stemness in primitive stem cells [J]. Int J Biol Sci,2016,12(11):1372-1381.
[17] TSAI PH,CHIEN Y,WANG ML,et al. Ash21 interacts with Oct4-stemness circuity to promote super-enhancer- driver pluripotency network[J]. Nucleic Acids Res,2019,47(19):10115-10133.
[18] KIMURA Y,SAYA H,NAKAO M. Calpain-dependent proteolysis of NF2 protein:involvement in schwannomas and meningiomas[J]. Neuropathology,2000,20(3):153- 160.
[19] SALIMI R,BANDARU S,DEVARAKONDA S,et al.Blocking the cleavage of filamin A by Calpain inhibitor decreases tumor cell growth[J]. Anticancer Res,2018,38(4):2079-2085.
[20] 王旭東,丁姍姍,陳騰祥,等.鈣激活中性蛋白酶抑制劑對(duì)E2誘導(dǎo)的乳腺癌細(xì)胞增殖效應(yīng)的影響及其意義[J].貴州醫(yī)藥,2009,33(4):302-304.
[21] 郭陽(yáng),金愛(ài),楊莉,等.鈣蛋白酶2介導(dǎo)雌激素調(diào)控乳腺腫瘤細(xì)胞GREB1基因表達(dá)[J].貴州醫(yī)科大學(xué)學(xué)報(bào),2018,43(6):630-635.
[22] RODRIGUEZ-AGUAYO C,BAYRAKTAR E,IVAN C,et al. PTGER3 induces ovary tumorigenesis and confers resistance to cisplatin therapy through up-regulation Ras- MAPK/Erk-ETS1-ELK1/CFTR1 axis[J]. EBioMedicine,2019. DOI:10.1016/j.ebiom.2018.11.045.
[23] TANG T,ZHU Q,LI X,et al. Protease NexinⅠis a feedback regulator of EGF/PKC/MAPK/EGFR1 signaling in breast cancer cells metastasis and stemness[J]. Cell Death Dis,2019,10(9):649-665.
[24] 田繼華,常思佳,郭海秀,等. ERK抑制劑U0126通過(guò)下調(diào)cyclin D1與survivin蛋白表達(dá)抑制乳腺癌細(xì)胞增殖[J].中國(guó)藥理學(xué)通報(bào),2019,35(8):1061-1066.
[25] YANG YC,CHIOU PC,CHEN PC,et al. Melatonin reduced lung cancer stemness through inhibiting of PLC,ERK,P38,beta-catenin and Twist pathway[J]. Environ Toxicol,2019,34(2):203-209.
[26] 勞志云,吳東平,王志勇,等. Cathepsin B通過(guò)ERK信號(hào)通路促進(jìn)肺癌細(xì)胞A549增殖和遷移[J].臨床腫瘤學(xué)雜志,2019,24(5):391-395.
[27] CHOI C,THI TT,VAN NGUT,et al. Promotion of tumor progression and cancer stemness by MUC15 in thyroid cancer via the GPCR/ERK and intergrin-FAK signaling pathways[J]. Oncogenesis,2018,7(11):85-97.
[28] WANG GS,HUANG YG,LI H,et al. ERK/CANP rapid signaling mediates 17 beta-estradiol-induced proliferation of human breast cancer cell line MCF-7 cells[J]. Int J Clin Exp Med,2014,7(1):156-162.
(收稿日期:2020-03-02 修回日期:2020-05-13)
(編輯:林 靜)