王思齊 李海洋 李榮華 夏巖石 張振臣 袁清華 郭培國(guó)
摘 ?要:為檢測(cè)控制煙草青枯病抗性動(dòng)態(tài)變化的QTLs,以大葉密合×長(zhǎng)脖黃建立的158份F6代重組自交系(RIL)群體為研究對(duì)象,利用SSR和InDel標(biāo)記進(jìn)行基因分型,并運(yùn)用JoinMap 4構(gòu)建一個(gè)含有24個(gè)連鎖群、覆蓋2269.3 cM的遺傳圖譜;該圖譜含有546個(gè)SSR和80個(gè)InDel標(biāo)記,平均標(biāo)記密度達(dá)到了3.63 cM/標(biāo)記。結(jié)合2016和2017連續(xù)兩年不同調(diào)查期各株系的病情指數(shù),使用WinQTLcart 2.5軟件的復(fù)合區(qū)間作圖法(CIM)進(jìn)行QTL定位,在2016年的4個(gè)調(diào)查期中分別檢測(cè)到4、4、6和4個(gè)青枯病抗病QTLs,其表型變異解釋率在5.03%~13.07%之間;而在2017年的4個(gè)調(diào)查期分別定位到7、3、6和6個(gè)青枯病抗病QTLs,其表型變異解釋率在4.63%~18.18%之間。兩年共檢測(cè)到28個(gè)青枯病抗病QTLs,其中有7個(gè)QTLs在不同調(diào)查期中被重復(fù)定位,但沒(méi)有一個(gè)QTL可以在所有調(diào)查期中出現(xiàn);另外,不同調(diào)查期檢測(cè)到QTL的數(shù)目與表達(dá)效應(yīng)存在較大差異。這些結(jié)果表明煙草在發(fā)病的不同階段可能有不同的抗性基因發(fā)揮作用,且其表達(dá)具有一定的時(shí)序性。
關(guān)鍵詞:煙草;RIL群體;青枯病;動(dòng)態(tài)QTL
Abstract: In order to detect the QTLs controlling the dynamic change of tobacco bacterial wilt (TBW) resistance, 158 F6 recombinant inbred lines (RIL) derived from a cross between Dayemihe and Changbohuang were selected and genotyped with SSR and InDel markers, and a genetic map with 24 linkage groups was constructed by JoinMap 4 software. The map contained 546 SSR and 80 InDel markers and covered 2269.3 cM with a mean distance of 3.63 cM between adjacent markers. QTL mapping for TBW resistance was performed by WinQTLcart 2.5 software using the composite interval mapping (CIM) method based on TBW disease indexes at different survey time points in 2016 and 2017. 4, 4, 6 and 4 TBW resistance QTLs were detected at the four survey time points in 2016, respectively; the phenotypic variances of these QTLs ranged from 5.03% to 13.07%. At the four survey time points in 2017, 7, 3, 6 and 6 QTLs for TBW resistance were detected, respectively, and their phenotypic variances varied between 4.63% and 18.18%. A total of 28 QTLs were identified in two years, seven of them were detected repeatedly in different survey time points, but none could be found at all survey time points in both years. Moreover, the number and additive effect of TBW resistance QTLs had significant changes at four survey time points in both years. These results indicated that tobacco may utilize different TBW resistance genes at different stages during the pathogenesis process, and the expressions of these genes were time-dependent and sequential.
Keywords: tobacco; recombinant inbred lines population; bacterial wilt; dynamic QTL
煙草是一種重要的經(jīng)濟(jì)作物,在世界上多個(gè)國(guó)家均有種植。由茄科雷爾氏菌(Ralstonia solanacearum)引起的煙草青枯病是煙草最嚴(yán)重的病害之一,該病的流行不僅導(dǎo)致煙草大面積減產(chǎn),而且嚴(yán)重降低煙葉品質(zhì)[1-2]。目前,煙草青枯病在我國(guó)的南方煙區(qū)頻繁發(fā)生,且有向北方蔓延的趨勢(shì)[1]。
煙草青枯病抗性屬于受多基因控制的數(shù)量性狀[3],已有采用連鎖作圖的QTL定位方法解析青枯病抗病遺傳的報(bào)道。如QIAN等[4]分別在TI448A×Enshu與TI448A×Yanyan97所構(gòu)建的群體中進(jìn)行與煙草青枯病抗性相關(guān)QTL的定位,分別在3號(hào)和5號(hào)連鎖群上的不同區(qū)域定位到4個(gè)與煙草青枯病抗性相關(guān)的QTLs,解釋抗性表型變異的9.00%~19.70%。LAN等[5]在以Yanyan97×紅花大金元所構(gòu)建的群體中定位到多個(gè)QTLs與青枯病抗性相關(guān),其中位于17號(hào)連鎖群上的qBWR17a最穩(wěn)定,其貢獻(xiàn)率達(dá)到了30.39%。袁清華等[3]利用大葉密合×長(zhǎng)脖黃所構(gòu)建的F2群體作材料,分別在第7、8、9、15、22號(hào)連鎖群上定位到6個(gè)煙草青枯病抗性相關(guān)的QTLs,除位于22號(hào)連鎖群的QTL以外貢獻(xiàn)率均大于10%。另外,DRAKE STOWE等[6]探測(cè)到3個(gè)分別位于6、7、19號(hào)連鎖群上的QTLs與煙草青枯病抗性相關(guān)。盡管這些結(jié)果有助于認(rèn)識(shí)和了解煙草青枯病抗性的遺傳特性,但遺憾的是這些研究均只涉及到青枯病病害發(fā)展的一個(gè)特定時(shí)期,檢測(cè)到的QTL僅反映該特定時(shí)期抗病表型的累積效應(yīng),而難以反映病害多個(gè)發(fā)展時(shí)期之間的抗病表型,探測(cè)到的QTL信息不完全[7-8]。
2.3 ?不同發(fā)病時(shí)期煙草青枯病抗性QTL的定位分析
對(duì)接種后煙草不同調(diào)查期的青枯病抗病性QTL進(jìn)行了定位分析(表3)。在2016年T1.1~T1.4四個(gè)調(diào)查期中分別檢測(cè)到4、4、6和4個(gè)與煙草抗病性相關(guān)的QTLs,它們分布于煙草的第2、6、8、16、18、21、22和23連鎖群上,其表型變異解釋率在5.03%~13.07%之間。這12個(gè)QTLs中有8個(gè)僅在一個(gè)調(diào)查期檢測(cè)到,其余4個(gè)QTLs能在2~3個(gè)調(diào)查期中重復(fù)檢測(cè)到;其中qBWR2a在T1.1、T1.4兩個(gè)調(diào)查期被檢測(cè)到,表型解釋率分別為5.03%和8.51%;qBWR2d在T1.1、T1.2和T1.4被重復(fù)檢測(cè)到,表型解釋率介于6.10%~13.07%;qBWR23a在T1.1至T1.3三個(gè)時(shí)期被檢測(cè)到,表型解釋率介于9.65%~11.9%之間;qBWR23b在T1.1和T1.3兩個(gè)時(shí)期被檢測(cè)到,表型解釋率分別為6.8%和8.87%。這些QTLs中有7個(gè)來(lái)自于抗性親本大葉密合(加性效應(yīng)為負(fù)),5個(gè)來(lái)自于易感親本長(zhǎng)脖黃(加性效應(yīng)為正)。
在2017年的T2.1~T2.4四個(gè)調(diào)查期中分別檢測(cè)到7、3、6和6個(gè)與煙草抗病性相關(guān)的QTLs,分布于煙草的第1、2、6、15、17、21、22和24連鎖群上,其表型變異解釋率在4.63%~18.18%之間。這17個(gè)QTLs中有3個(gè)QTLs被重復(fù)檢測(cè)到,其中qBWR2b在2017年所有4個(gè)調(diào)查期中都被檢測(cè)到,表型解釋率介于6.56%~12.05%之間;qBWR15在T2.3和T2.4兩個(gè)調(diào)查期被檢測(cè)到,表型解釋率分別為6.54%和5.86%;qBWR24a在T2.3和T2.4兩個(gè)時(shí)期被檢測(cè)到,表型解釋率分別達(dá)到了5.18%和8.73%。這些QTLs中有10個(gè)來(lái)自于抗性親本大葉密合,7個(gè)來(lái)于易感親本長(zhǎng)脖黃。兩年8個(gè)調(diào)查期中共檢測(cè)到28個(gè)QTLs,其中qBWR2d在兩年不同的調(diào)查期中被重復(fù)檢測(cè)到,其余6個(gè)重復(fù)出現(xiàn)的QTLs只出現(xiàn)在同一年的不同調(diào)查期中。
3 ?討 ?論
標(biāo)記之間的距離越小遺傳圖譜越飽和,QTL定位的結(jié)果越精確可靠[24]。InDel分子標(biāo)記在基因組中分布和密度僅次于SNP分子標(biāo)記,同時(shí)又具有變異穩(wěn)定、多態(tài)性強(qiáng)、易檢測(cè)等優(yōu)點(diǎn)[25]。為了增加遺傳圖譜的飽和度,本研究在使用BINDLER等[19-20]等報(bào)道的SSR標(biāo)記之外,同時(shí)結(jié)合了我們開(kāi)發(fā)的InDel分子標(biāo)記,構(gòu)建了含有546個(gè)SSR標(biāo)記和80個(gè)InDel標(biāo)記的煙草遺傳圖譜,平均標(biāo)記密度達(dá)到了3.63 cM/標(biāo)記,密度高于近年來(lái)已發(fā)表的以二代分子標(biāo)記為基礎(chǔ)進(jìn)行的煙草青枯病抗性相關(guān)的研究[3-6],對(duì)比BINDLER等[20]發(fā)布的遺傳圖譜,絕大部分分子標(biāo)記的分布與排序是一致的,有助于進(jìn)一步的QTL定位分析。
通過(guò)兩年煙草接種青枯病菌后不同時(shí)期開(kāi)展的抗病動(dòng)態(tài)QTL分析,共檢測(cè)到28個(gè)QTLs,分布在基于BINDLER等[20]所構(gòu)建遺傳圖譜的LG1、LG2、LG6、LG8、LG15、LG16、LG17、LG18、LG21、LG22、LG23和LG24等10個(gè)連鎖群上,說(shuō)明煙草青枯病抗性有多個(gè)基因參與,且抗病基因具有一個(gè)復(fù)雜的表達(dá)過(guò)程。與近年來(lái)基于該圖譜連鎖群編號(hào)進(jìn)行的煙草青枯病抗性QTL研究的4篇報(bào)道相比,這些研究者亦在LG2[5]、LG6[5-6]、LG8[3]、LG15[3]、LG16[4]、LG17[5]、LG22[3]和LG24[5]上檢測(cè)到與煙草青枯病抗性相關(guān)的QTLs,但這些研究未能在LG1、LG18、LG21和LG23檢測(cè)到青枯病抗性QTL。而在早期開(kāi)展的青枯病抗病研究中,NISHI等[26]在LG5上發(fā)現(xiàn)存在抗病相關(guān)的QTLs,但其遺傳連鎖群編號(hào)與BINDLER等[20]所構(gòu)建遺傳圖譜的連鎖群編號(hào)難以對(duì)應(yīng),究其原因是該研究構(gòu)建遺傳圖譜所使用的標(biāo)記為個(gè)性化明顯的AFLP標(biāo)記。楊友才等[27]通過(guò)試驗(yàn)發(fā)現(xiàn)一個(gè)與煙草青枯病抗性連鎖的RAPD標(biāo)記,但該標(biāo)記缺少連鎖群信息。令人感興趣的是,本研究檢測(cè)到的位于LG24上的qBWR24c的側(cè)翼標(biāo)記PT61494與LAN等[5]在該連鎖群上檢測(cè)到的qBWR24b的側(cè)翼標(biāo)記相同。還有,本研究在LG2上發(fā)現(xiàn)的2個(gè)QTLs(qBWR2b和qBWR2d),在整個(gè)發(fā)病過(guò)程中多次檢測(cè)到,且在發(fā)病初期具有較大的貢獻(xiàn)率,推斷qBWR2b和qBWR2d在煙草抗病中可能扮演著較為重要的角色。此外,本研究使用了80個(gè)InDel標(biāo)記,其中有12個(gè)為7個(gè)QTLs的側(cè)翼標(biāo)記,說(shuō)明InDel標(biāo)記可以有效的檢測(cè)QTL[28]。
煙草青枯病抗性受多基因控制[3],其QTL的表達(dá)易受環(huán)境的影響[5,29-30]。本研究連續(xù)兩年開(kāi)展的青枯病動(dòng)態(tài)QTL定位發(fā)現(xiàn)在不同調(diào)查期檢測(cè)到的QTL的數(shù)目與效應(yīng)存在明顯的差異,大多數(shù)QTLs只在特定調(diào)查期中出現(xiàn),未發(fā)現(xiàn)在所有調(diào)查期中均能檢測(cè)到的QTL,只有個(gè)別QTL可以在多個(gè)調(diào)查期中重復(fù)出現(xiàn)但其效應(yīng)變化較大,此現(xiàn)象也在多個(gè)由多基因控制的動(dòng)態(tài)QTL研究中出現(xiàn)[31-33]。這一結(jié)果表明控制某一性狀的基因在不同環(huán)境下的表達(dá)具有一定的特異性和時(shí)序性,表現(xiàn)為在不同發(fā)育階段有不同的基因發(fā)揮作用[10,16,24]。值得一提的是,本研究在兩年的第一個(gè)調(diào)查期中都定位出多個(gè)貢獻(xiàn)率大于10%的QTLs,可能是由于發(fā)病初期不同株系的抗病性存在差異,與抗性相關(guān)的基因表達(dá)最為活躍,類(lèi)似的結(jié)果也出現(xiàn)在LI等[8]對(duì)馬鈴薯晚疫病抗性QTL動(dòng)態(tài)的分析研究中。與只能反映某一環(huán)境特定調(diào)查期的傳統(tǒng)QTL定位策略相比,本研究開(kāi)展的青枯病抗病動(dòng)態(tài)QTL分析可以較全面地了解參與煙草抗病過(guò)程中的基因,減少了傳統(tǒng)QTL定位策略中遺漏遺傳信息的情況,能夠更加有效地解析煙草青枯病抗性基因。
4 ?結(jié) ?論
本研究利用重組自交系通過(guò)連續(xù)兩年對(duì)煙草發(fā)病后的4個(gè)不同時(shí)期進(jìn)行抗性QTL的檢測(cè),結(jié)果共檢測(cè)到分布于多個(gè)連鎖群上的28個(gè)與青枯病抗性相關(guān)的QTLs。研究表明煙草在發(fā)病的不同階段有不同的抗性基因發(fā)揮作用,抗性基因的表達(dá)具有時(shí)序性,該結(jié)果可為進(jìn)一步解析煙草青枯病抗性機(jī)制提供參考。
參考文獻(xiàn)
[1]孔凡玉. 煙草青枯病的綜合防治[J]. 煙草科技,2003,50(4):12-16.
KONG F Y. Integrated control of tobacco bacterial wilt disease[J]. Tobacco Science & Technology, 2003, 50(4): 12-16.
[2]GILLHAM F, WARK D, HARRIGAN E. Disease resistant flue-cured tobacco breeding lines for north Queensland[J]. Australian Journal of Experimental Agriculture, 1977, 17(87): 659-663.
[3]袁清華,馬柱文,張振臣,等. 煙草品種大葉密合抗青枯病相關(guān)QTL的檢測(cè)[J]. 中國(guó)煙草學(xué)報(bào),2018,24(3):77-81.
YUAN Q H, MA Z W, ZHANG Z C, et al. Detection of QTL associated with tobacco bacterial wilt resistance in cultivar Dayemihe[J]. Acta Tabacaria Sinica, 2018, 24(3): 77-81.
[4]QIAN Y L, WANG X S, WANG D Z, et al. The detection of QTLs controlling bacterial wilt resistance in tobacco (N. tabacum L.)[J]. Euphytica, 2013, 192(2): 259-266.
[5]LAN T, ZHENG S P, YANG L, et al. Mapping of quantitative trait loci conferring resistance to bacterial wilt in tobacco (Nicotiana tabacum L.)[J]. Plant Breeding, 2015, 133(5): 672-677.
[6]DRAKE-STOWE K, BAKAHER N, GOEPFERT S, et al. Multiple disease resistance loci affect soil-borne disease resistance in tobacco (Nicotiana tabacum L.)[J]. Phytopathology, 2017, 107(9): 1055-1061.
[7]嚴(yán)建兵,湯華,黃益勤,等. 不同發(fā)育時(shí)期玉米株高QTL的動(dòng)態(tài)分析[J]. 科學(xué)通報(bào),2003,48(18):1959-1964.
YAN J B, TANG H, HUANG Y Q, et al. QTL mapping for the developing of the plant height traits in maize[J]. Chinese Science Bulletin, 2003, 48(18): 1959-1964.
[8]LI J C, LINDQVIST-KREUZE H, TIAN Z D, et al. Conditional QTL underlying resistance to late blight in a diploid potato population[J]. Theoretical and Applied Genetics, 2012, 124(7): 1339-1350.
[9]吳為人,李維明,盧浩然. 數(shù)量性狀基因座的動(dòng)態(tài)定位策略[J]. 生物數(shù)學(xué)學(xué)報(bào),1997,12(5):490-498.
WU W R, LI W M, LU H R. Strategy of dynamic mapping of quantitative trait loci[J]. Journal of Biomathematics, 1997, 12(5): 490-498.
[10]朱占玲,劉賓,田賓,等. 小麥籽粒蛋白質(zhì)含量的動(dòng)態(tài)QTL定位[J]. 中國(guó)農(nóng)業(yè)科學(xué),2011,44(15):3078-3085.
ZHU Z L, LIU B, TIAN B, et al. Dynamic QTL mapping of wheat protein content in developing grains[J]. Scientia Agricultura Sinica, 2011, 44(15): 3078-3085.
[11]趙芳明,劉桂富,朱海濤,等. 用單片段代換系對(duì)不同時(shí)期水稻分蘗數(shù)QTL的非條件和條件定位[J]. 中國(guó)農(nóng)業(yè)科學(xué),2008(2):322-330.
ZHAO F M, LIU G F, ZHU H T, et al. Unconditional and conditional QTL mapping by using single segment substitution lines for tiller number at various stages in rice (Oryza sativa L.)[J]. Scientia Agricultura Sinica, 2008(2): 322-330.
[12]HAN Y P, XIE D W, TENG W L, et al. Dynamic QTL analysis of linolenic acid content in different developmental stages of soybean seed[J]. Theoretical and Applied Genetics, 2011, 122(8): 1481-1488.
[13]BIAN Y L, GU X, SUN D L, et al. Mapping dynamic QTL of stalk sugar content at different growth stages in maize[J]. Euphytica, 2015, 205(1): 85-94.
[14]WANG Z H, WU X S, REN Q, et al. QTL mapping for developmental behavior of plant height in wheat (Triticum aestivum L.)[J]. Euphytica, 2010, 174(3): 447-458.
[15]LI H M, LIANG H, LI Z, et al. Dynamic QTL analysis of protein content and glutamine synthetase activity in recombinant inbred wheat lines[J]. Genetics and Molecular Research, 2015, 14(3): 8706-8715.
[16]劉賓,趙亮,張坤普,等. 小麥株高發(fā)育動(dòng)態(tài)QTL定位[J]. 中國(guó)農(nóng)業(yè)科學(xué),2010,43(22):4562-4570.
LIU B, ZHAO L, ZHANG K P, et al. Genetic dissection of plant height at different growth stages in common wheat[J]. Scientia Agricultura Sinica, 2010, 43(22): 4562-4570.
[17]張振臣,鄧海濱,劉瓊光,等. 廣東抗青枯病煙草資源篩選[J]. 廣東農(nóng)業(yè)科學(xué),2014,41(7):27-29.
ZHANG Z C, DENG H B, LIU Q G, et al. Screening of tobacco germplasm resistant to bacterial wilt in Guangdong[J]. Guangdong Agricultural Sciences, 2014, 41(7): 27-29.
[18]李榮華,夏巖石,劉順枝,等. 改進(jìn)的CTAB提取植物DNA方法[J]. 實(shí)驗(yàn)室研究與探索,2009,28(9):14-16.
LI R H, XIA Y S, LIU S Z, et al. CTAB-improved method of DNA extraction in plant[J]. Research and Exploration in Laboratory, 2009, 28(9): 14-16.
[19]BINDLER G, HOEVEN V, GUNDUZ I, et al. A microsatellite marker based linkage map of tobacco[J]. Theoretical and Applied Genetics, 2007, 114(2): 341-349.
[20]BINDLER G, PLIESKE J, BAKAHER N, et al. A high density genetic map of tobacco (Nicotiana tabacum L.) obtained from large scale microsatellite marker development[J]. Theoretical and Applied Genetics, 2011, 123(2): 219-230.
[21]TONG Z J, YANG Z M, CHEN X J, et al. Large-scale development of microsatellite markers in Nicotiana tabacum and construction of a genetic map of flue-cured tobacco[J]. Plant Breeding, 2012, 131(5): 674-680.
[22]李海洋,李榮華,夏巖石,等. 基于RAD-seq數(shù)據(jù)開(kāi)發(fā)煙草多態(tài)性SSR標(biāo)記[J]. 中國(guó)煙草科學(xué),2018,39(1):1-9.
LI H Y, LI R H, XIA R H, et al. Development of polymorphic SSR markers in tobacco based on RAD sequencing[J]. Chinese Tobacco Science, 2018, 39(1): 1-9.
[23]郭培國(guó),劉文杰,李海洋,等. 一種快速有效檢測(cè)SSR標(biāo)記的非變性聚丙烯酰胺凝膠的銀染方法[J]. 廣州大學(xué)學(xué)報(bào)(自然科學(xué)版),2016,15(4):8-12.
GUO P G, LIU W J, LI H Y, et al. A rapid and effective method of silver staining for detecting SSR markers in nondenaturing polyacrylamide gels[J]. Journal of Guangzhou University(Natural Science Edition), 2016,15(4): 8-12.
[24]李美霞,沈瑋囡,楊睿,等. 小麥籽粒干物質(zhì)積累的動(dòng)態(tài)QTL定位[J]. 西北植物學(xué)報(bào),2014,34(6):1105-1111.
LI M X, SHEN W N, YANG R, et al. Dynamic QTL analysis for kernel dry matter accumulation in wheat[J]. Acta Botanica Boreali-Occidentalia Sinica, 2014, 34(6): 1105-1111.
[25]楊潔,赫佳,王丹碧,等. InDel標(biāo)記的研究和應(yīng)用進(jìn)展[J]. 生物多樣性,2016,24(2):237-243.
YANG J, HAO J, WANG D B, et al. Progress in research and application of InDel markers[J]. Biodiversity Science, 2016, 24(2): 237-243.
[26]NISHI T, TAJIMA T, NOGUCHI S, et al. Identification of DNA markers of tobacco linked to bacterial wilt resistance[J]. Theoretical and Applied Genetics, 2003, 106(4): 765-770.
[27]楊友才,周清明,朱列書(shū). 煙草青枯病抗性基因的遺傳分析及RAPD標(biāo)記[J]. 中國(guó)煙草學(xué)報(bào),2006,12(2):38-42.
YANG Y C, ZHOU Q M, ZHU L S. Heredity and RAPD markers analysis of resistance gene to tobacco bacterial wil[J]. Acta Tabacaria Sinica, 2006, 12(2): 38-42.
[28]VASEM?GI A, GROSS R, PALM D, et al. Discovery and application of insertion-deletion (INDEL) polymorphisms for QTL mapping of early life-history traits in Atlantic salmon[J]. BMC Genomics, 2010, 11(1): 1-11.
[29]賴(lài)瑞強(qiáng),李榮華,夏巖石,等. 連鎖與連鎖不平衡聯(lián)合作圖解析煙草青枯病抗性遺傳變異[J]. 中國(guó)煙草科學(xué),2019,40(6):1-10.
LAI R Q, LI R H, XIA Y S,et al. Dissection of genetic variations for tobacco bacterial wilt resistance based on joint linkage and linkage disequilibrium mapping[J]. Chinese Tobacco Science, 2019, 40(6): 1-10.
[30]KATAWCZIK M, MILA A L. Plant age and strain of Ralstonia solanacearum affect the expression of resistance of tobacco cultivars to granville wilt[J]. Tobacco Science, 2012, 49: 8-13.
[31]ZHENG L N, ZHANG W W, CHEN X G, et al. Dynamic QTL analysis of rice protein content and protein index using recombinant inbred lines[J]. Journal of Plant Biology, 2011, 54(5): 321-328.
[32]CHENG J P, WANG L, DU W L, et al. Dynamic quantitative trait locus analysis of seed dormancy at three development stages in rice[J]. Molecular Breeding, 2014, 34(2): 501-510.
[33]SHANG L G, LIU F, WANG Y, et al. Dynamic QTL mapping for plant height in upland cotton (Gossypium hirsutum)[J]. Plant Breeding, 2015, 134(6): 703-712.