• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      抗生素在土壤中的環(huán)境風(fēng)險(xiǎn)及錳氧化物修復(fù)技術(shù)的研究進(jìn)展

      2020-07-23 16:37:35劉迪李赟盧信范如芹劉麗珠高巖童非張振華
      關(guān)鍵詞:修復(fù)抗生素

      劉迪 李赟 盧信 范如芹 劉麗珠 高巖 童非 張振華

      摘要:土壤中以四環(huán)素類為代表的抗生素的污染較為嚴(yán)重,會(huì)對(duì)土壤環(huán)境產(chǎn)生諸多生態(tài)風(fēng)險(xiǎn),并威脅著人類的健康。本文主要介紹了土壤中抗生素的污染現(xiàn)狀、抗生素污染對(duì)土壤生物和人類健康的危害以及土壤環(huán)境中抗生素的主要降解方式,著重綜述了錳氧化物修復(fù)技術(shù)對(duì)抗生素污染土壤修復(fù)的作用、機(jī)理和影響因素等方面的研究進(jìn)展, 并對(duì)今后抗生素污染土壤的錳氧化物修復(fù)研究進(jìn)行了展望。

      關(guān)鍵詞:錳氧化物;抗生素;修復(fù)

      中圖分類號(hào):X53文獻(xiàn)標(biāo)識(shí)碼:A文章編號(hào):1000-4440(2020)03-0785-10

      Research progress on environmental risks and remediation of antibiotic contaminated soil by manganese oxide technology

      LIU Di1,2,LI Yun2,LU Xin2,F(xiàn)AN Ru-qin2,LIU Li-zhu2,GAO Yan2,TONG Fei2,ZHANG Zhen-hua2

      (1.College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China;2.Institute of Agricultural Resources and Environmental Sciences, Jiangsu Academy of Agricultural Sciences/Scientific Observing and Experimental Station of Arable Land Conservation, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China)

      Abstract: The pollution of antibiotics represented by tetracyclines in soil is serious, which will bring many ecological risks to soil environment and threaten human health. In this paper, the present situation of antibiotic pollution in soil, the harm of antibiotic pollution to soil organisms and human health, and the main degradation methods of antibiotics in soil environment were introduced. The effects, mechanisms and influencing factors of the remediation of antibiotic-contaminated soil by manganese oxide technology were reviewed, and the future research directions on the remediation of antibiotic-contaminated soil by manganese oxide were prospected.

      Key words:manganese oxide;antibiotics;remediation

      抗生素已被廣泛有效地用于人類和動(dòng)物的醫(yī)藥制品中,它作為生長促進(jìn)劑在農(nóng)業(yè)、畜禽養(yǎng)殖、水產(chǎn)養(yǎng)殖、養(yǎng)蜂中起到一定的作用[1]。中國作為一個(gè)人口大國,大量生產(chǎn)和使用抗生素,抗生素的持續(xù)投入威脅到生態(tài)環(huán)境和人類健康[2]。大約85%的抗生素通過畜禽糞便進(jìn)入環(huán)境[3],再經(jīng)過一定的方式進(jìn)入土壤。此外,抗生素還可通過污水灌溉、垃圾堆肥的滲濾液、有機(jī)肥施用等途徑直接進(jìn)入土壤[4-5]??股剡M(jìn)入土壤后會(huì)使土壤結(jié)構(gòu)發(fā)生改變,影響土壤中的微生物群落,破壞土壤中微生態(tài)平衡,引發(fā)農(nóng)業(yè)生產(chǎn)效率降低,農(nóng)產(chǎn)品安全等問題[6]。目前,大量國內(nèi)外文獻(xiàn)介紹了抗生素在土壤中的遷移轉(zhuǎn)化行為[7-9]、抗生素在土壤中的殘留特征和風(fēng)險(xiǎn)評(píng)估[10-12]以及分析檢測(cè)土壤中抗生素的相關(guān)技術(shù)[13],但是關(guān)于土壤中抗生素的氧化降解的研究尚比較少。本文主要針對(duì)抗生素對(duì)土壤的污染現(xiàn)狀及其在土壤中產(chǎn)生的環(huán)境風(fēng)險(xiǎn),介紹了抗生素在土壤中的主要降解方式,著重綜述錳氧化物去除土壤中抗生素的主要機(jī)理和影響因素方面的研究進(jìn)展,為土壤中抗生素的污染修復(fù)以及機(jī)理研究等提供參考。

      1土壤中抗生素污染現(xiàn)狀

      目前,隨著工農(nóng)業(yè)生產(chǎn)的快速發(fā)展,土壤中抗生素逐漸增加。土壤抗生素的主要來源是畜禽糞肥的施用,施用時(shí)間長、施用量大,均可使土壤中抗生素的殘留量增多??股卦谌蚍秶鷥?nèi)被廣泛使用,且用量極大,世界抗生素年使用總量可高達(dá)2.0×105 t。美國抗生素使用總量約為1.62×104 t,澳大利亞一年用于飼料添加劑、防病、獸藥的抗生素占其抗生素年使用總量的56%、36% 和 8%[14-15]。中國因人口眾多而大量生產(chǎn)和使用抗生素,抗生素使用量近年持續(xù)增加,從2009 年到2013年中國抗生素的使用量從 1.47×105 t增加至1.62×105 t,超過了美英等國的總和[16]。人和動(dòng)物體內(nèi)的抗生素隨尿液和糞便排出體外,大量抗生素進(jìn)入土壤,且在土壤中滯留時(shí)間較長,影響土壤中動(dòng)物、植物和微生物的正常生長,進(jìn)而對(duì)土壤生態(tài)系統(tǒng)產(chǎn)生不利影響。

      自1981年從施用雞糞的土壤中檢測(cè)出氯四環(huán)素后,磺胺類抗生素、大環(huán)內(nèi)酯類抗生素等多種抗生素從土壤中被檢出[17],質(zhì)量比最高可達(dá)9.99 mg/kg[5]。調(diào)查發(fā)現(xiàn),中國農(nóng)業(yè)土壤中土霉素、金霉素和四環(huán)素的質(zhì)量分?jǐn)?shù)分別為 0~8 400 μg/kg、0~5 520 μg/kg 和 0~2 450 μg/kg[18];李彥文等[19]在種植蔬菜的土壤中檢出抗生素。鮑陳燕等[20]研究了杭州、嘉興和紹興等地的蔬菜地土壤,在4種不同施肥方式的土壤中檢出的抗生素含量不同,施用畜禽糞肥的蔬菜地中抗生素檢出率及含量最高,施用商品有機(jī)肥和施用沼渣的蔬菜地抗生素檢出率及含量處于中間水平,單施化肥的蔬菜地抗生素檢出率及含量最低。邰義萍[21]發(fā)現(xiàn),土壤中能普遍檢出喹諾酮和四環(huán)素類抗生素。

      由于畜禽養(yǎng)殖業(yè)的發(fā)展以及人類防病治病的需要,抗生素的使用量持續(xù)增加,這就使得土壤中抗生素的污染較為嚴(yán)重。抗生素在土壤中的半衰期較長,進(jìn)入土壤后一部分通過生物或非生物的方式被降解,另一部分通過徑流或滲流轉(zhuǎn)移到水環(huán)境中[22],還可被植物吸收通過食物鏈進(jìn)入生態(tài)系統(tǒng),產(chǎn)生諸多生態(tài)風(fēng)險(xiǎn)。

      2土壤中抗生素污染的危害

      2.1土壤中抗生素污染對(duì)土壤生物的危害

      土壤中的抗生素殘留不僅會(huì)產(chǎn)生生態(tài)毒性效應(yīng)從而抑制動(dòng)植物和微生物的生長發(fā)育[23-24],還會(huì)改變微生物的抗性,并且抗生素能引起土壤環(huán)境中細(xì)菌的耐藥性。以往的研究集中在抗生素對(duì)水生生物的毒性效應(yīng),對(duì)土壤中生物的毒性研究比較少。

      2.1.1對(duì)植物的危害土壤中的抗生素能被植物吸收和積累,并與植物體內(nèi)的某些組分相互作用,對(duì)植物體的新陳代謝功能產(chǎn)生影響,從而影響植物的生長發(fā)育。研究發(fā)現(xiàn)土壤中抗生素的濃度過高時(shí),植株原生質(zhì)的抗菌性會(huì)降低,植株葉片數(shù)量減少,吸收金屬元素的能力降低[25],使植物發(fā)育遲緩[26]。抗生素在植物的不同部位積累量不同,因此對(duì)植株不同部位的抑制作用存在差異。Migliore等[27]以黃瓜、萵苣、菜豆和蘿卜為研究對(duì)象,發(fā)現(xiàn)恩氟沙星抑制4種蔬菜的生長,其質(zhì)量濃度高于100 μg/L時(shí),主根、胚軸及子葉的長度明顯降低,葉片的數(shù)量也顯著減少。抗生素可以通過改變根系活力和過氧化氫酶活性以及對(duì)元素的積累作用影響植株生長。鮑陳燕等[28]研究結(jié)果表明,土霉素的質(zhì)量濃度為 500 μg/L、750 μg/L時(shí),恩諾沙星的質(zhì)量濃度為 500μg/L、1 000 μg/L時(shí),均對(duì)根系活力和過氧化氫酶活性產(chǎn)生顯著影響;土霉素和恩諾沙星質(zhì)量濃度在 750~1 000 μg/L時(shí),引起水芹地上部分氮 、磷、鉀的積累。

      2.1.2土壤中抗生素污染對(duì)土壤動(dòng)物的危害土壤中抗生素的質(zhì)量濃度過高時(shí),會(huì)對(duì)土壤動(dòng)物產(chǎn)生基因毒性,影響土壤動(dòng)物的生長,使土壤動(dòng)物種群數(shù)量減少,進(jìn)而對(duì)土壤動(dòng)物群落結(jié)構(gòu)產(chǎn)生影響[29]。Dong等[30]研究了2種抗生素對(duì)赤子愛蚯蚓的基因毒性,結(jié)果表明,四環(huán)素和金霉素的質(zhì)量比為0.3~300.0 mg/kg時(shí),基因毒性顯示出劑量效應(yīng)關(guān)系,短時(shí)間中金霉素產(chǎn)生的基因毒性大于四環(huán)素。Zizek等[31]研究發(fā)現(xiàn),拉沙里菌素質(zhì)量比為163 mg/kg時(shí),可以對(duì)安德愛勝蚓產(chǎn)生生態(tài)毒性。土壤中殘留的抗生素進(jìn)入土壤動(dòng)物的血液循環(huán)后,會(huì)改變土壤動(dòng)物體內(nèi)微生物組的組成和結(jié)構(gòu),降低腸道細(xì)菌的多樣性從而導(dǎo)致消化功能紊亂,使得消化道產(chǎn)生疾病,甚至通過食物鏈對(duì)人類健康構(gòu)成一定影響。Zhu等[32]研究了諾氟沙星和土霉素對(duì)土壤彈尾蟲腸道微生物組的影響,以及腸道中抗生素抗性基因發(fā)生率和彈尾蟲生長的相應(yīng)變化,發(fā)現(xiàn)暴露于10 mg/kg的抗生素14 d后顯著抑制了彈尾蟲的生長,16S rRNA基因豐度大約減少了10倍。

      2.1.3土壤中抗生素污染對(duì)土壤微生物的危害抗生素進(jìn)入土壤后,可使土壤環(huán)境中的微生物生長變慢,并導(dǎo)致一部分微生物死亡,還能破壞土壤微生物群落結(jié)構(gòu),進(jìn)而影響微生物對(duì)土壤中其他有害物質(zhì)的降解。

      抗生素可使土壤微生物的生物量減少,降低土壤微生物的群落多樣性,產(chǎn)生各種毒性效應(yīng)[33]。抗生素可通過影響土壤中酶的活性,從而抑制細(xì)菌生長,且同一抗生素對(duì)不同菌種的抑制作用不同。有研究結(jié)果表明,恩諾沙星對(duì)土壤微生物的抑制作用順序按從強(qiáng)到弱排列為:細(xì)菌>放線菌>真菌 [34]。Yang等[35]做了土霉素對(duì)小麥根部土壤微生物群落影響的試驗(yàn),得出在10 mg/kg的土霉素條件下,細(xì)菌和放線菌的菌落數(shù)分別下降了22.2%和31.7%,且土壤中細(xì)菌菌落數(shù)隨土霉素含量的增加而減少,堿性磷酸酶的活性在土霉素質(zhì)量比大于30 mg/kg時(shí)降低。此外,抗生素對(duì)土壤微生物的影響也與土壤呼吸作用有關(guān)。楊基峰等[36]測(cè)定了3種抗生素對(duì)土壤呼吸和硝化作用的影響 ,發(fā)現(xiàn)磺胺嘧啶、氧四環(huán)素和諾氟沙星均可抑制土壤呼吸作用。Fang 等[37]的研究結(jié)果也表明,金霉素等抗生素可以使土壤的呼吸能力降低。

      2.2土壤中抗生素污染對(duì)細(xì)菌抗藥性的影響

      抗生素污染會(huì)改變土壤中細(xì)菌的抗藥性。抗生素進(jìn)入土壤的一條重要途徑是通過畜禽糞便進(jìn)入土壤,獸用抗生素的使用使得畜禽糞便中出現(xiàn)抗性細(xì)菌,并隨糞便進(jìn)入土壤,使土壤中出現(xiàn)大量抗性菌[38]。土壤微生物群落抗藥性的增加,對(duì)整個(gè)土壤環(huán)境存在潛在威脅。當(dāng)獸藥抗生素和其他有機(jī)物同時(shí)進(jìn)入土壤,會(huì)使微生物群落增加抗藥性。Fang等[39]用含不同濃度環(huán)丙沙星的糞肥以60 d的間隔對(duì)土壤連續(xù)處理3次,測(cè)定了微生物功能多樣性的變化和細(xì)菌群落耐受性。結(jié)果表明,經(jīng)處理后的土壤微生物多樣性降低,細(xì)菌群落對(duì)環(huán)丙沙星的抗性增加,且環(huán)丙沙星濃度越大,抗性增加越顯著。Holger等[40]向土壤中添加豬糞以研究磺胺嘧啶對(duì)微生物菌落產(chǎn)生的作用,結(jié)果表明,處理組與對(duì)照組的抗生素抗性細(xì)菌存在顯著差異。

      2.3土壤中抗生素污染對(duì)人類健康的影響

      抗生素進(jìn)入土壤后不能被有效地降解而留在土壤中,傳遞到作物并進(jìn)入人體,對(duì)人類的健康產(chǎn)生不利影響[41]。殘留在土壤中的抗生素含量很低,但其隨食物鏈進(jìn)入人體后進(jìn)行長時(shí)間的積累,會(huì)使人體內(nèi)的細(xì)菌對(duì)抗生素產(chǎn)生抗性,導(dǎo)致一系列疾病[42]??股貙?duì)人體產(chǎn)生的危害在短時(shí)間內(nèi)可能不會(huì)體現(xiàn),但相同抗生素殘留物多次進(jìn)入人體并經(jīng)長期積累后,會(huì)使人體產(chǎn)生一系列不良反應(yīng),并有引起器官病變乃至癌變的潛在風(fēng)險(xiǎn),對(duì)人體健康影響較大。現(xiàn)在,越來越多的人們關(guān)注土壤環(huán)境抗生素污染問題和由抗生素引發(fā)的人類健康問題。隨著養(yǎng)殖業(yè)的不斷發(fā)展,通過飼料進(jìn)入畜禽的抗生素含量逐漸增加,糞肥的持續(xù)施用,導(dǎo)致土壤中抗生素含量持續(xù)增加,作物蔬菜水果中積累的抗生素含量也相應(yīng)增加。人類攝食大量含抗生素的農(nóng)產(chǎn)品,會(huì)影響人類健康。有些抗生素在植物體內(nèi)長期積累傳遞到人體后會(huì)對(duì)人體健康產(chǎn)生危害,有些在植物體內(nèi)積累量少的抗生素由于毒性強(qiáng)也會(huì)引發(fā)安全問題;此外,一部分抗生素還會(huì)與其他的物質(zhì)結(jié)合而生成毒性更大的物質(zhì),威脅人類健康[43]。

      [18]曾巧云,丁丹,檀笑. 中國農(nóng)業(yè)土壤中四環(huán)素類抗生素污染現(xiàn)狀及來源研究進(jìn)展[J]. 生態(tài)環(huán)境學(xué)報(bào),2018,27(9):1774-1782.

      [19]李彥文,莫測(cè)輝,趙娜,等. 高效液相色譜法測(cè)定水和土壤中磺胺類抗生素[J]. 分析化學(xué),2008(7):954-958.

      [20]鮑陳燕,顧國平,徐秋桐,等. 施肥方式對(duì)蔬菜地土壤中8種抗生素殘留的影響[J]. 農(nóng)業(yè)資源與環(huán)境學(xué)報(bào),2014,31(4):313-318.

      [21]邰義萍. 珠三角地區(qū)蔬菜基地土壤中典型抗生素的污染特征研究[D]. 廣州:暨南大學(xué),2010.

      [22]ANDRIAMALALA A, VIEUBLé-GONOD L, DUMENY V, et al. Fate of sulfamethoxazole, its main metabolite N-ac-sulfamethoxazole and ciprofloxacin in agricultural soils amended or not by organic waste products[J]. Chemosphere,2018,191:607-615.

      [23]聶湘平,王翔,陳菊芳,等. 三氯異氰尿酸與鹽酸環(huán)丙沙星對(duì)蛋白核小球藻的毒性效應(yīng)[J]. 環(huán)境科學(xué)學(xué)報(bào),2007,27(10):1694-1701.

      [24]王慧珠,羅義,徐文青,等. 四環(huán)素和金霉素對(duì)水生生物的生態(tài)毒性效應(yīng)[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2008,27(4):1536-1539.

      [25]BATCHELDER A R. Chlortetracycline and oxytetracycline effects on plant growth and development in soil systems1[J]. Journal of Environmental Quality,1982,11(4):675.

      [26]BRADEL B G, PREIL W, JESKE H. Remission of the free-branching pattern of Euphorbia pulcherrima bytetracycline treatment[J]. Journal of Phytopathology,2010,148(11/12):587-590.

      [27]MIGLIORE L, COZZOLINO S, FIORI M. Phytotoxicity to and uptake of enrofloxacin in crop plants[J]. Chemosphere,2003,52(7):1233-1244.

      [28]鮑陳燕,顧國平,章明奎. 獸用抗生素脅迫對(duì)水芹生長及其抗生素積累的影響[J]. 土壤通報(bào),2016,47(1):164-172.

      [29]沙迪,翟清明,張雪萍,等. 甲氨基阿維菌素苯甲酸鹽對(duì)黑土區(qū)農(nóng)田土壤動(dòng)物群落的影響[J]. 地理研究,2015,34(5):872-882.

      [30]DONG L, GAO J, XIE X, et al. DNA damage and biochemical toxicity of antibiotics in soil on the earthworm Eisenia fetida[J]. Chemosphere,2012,89(1):44-51.

      [31]ZIZEK S, ZIDAR P. Toxicity of the ionophore antibiotic lasalocid to soil-dwelling invertebrates: avoidance tests in comparison to classic sublethal tests[J]. Chemosphere,2013,92(5):570-575.

      [32]ZHU D, AN X L, CHEN Q L, et al. Antibiotics disturb the microbiome and increase the incidence of resistance genes in the gut of a common soil collembolan[J]. Environmental Science & Technology,2018,52(5):3081-3090.

      [33]KONG W D, ZHU Y G, Fu B J, et al. The veterinary antibiotic oxytetracycline and Cu influence functional diversity of the soil microbial community[J]. Environmental Pollution,2006,143(1):129-137.

      [34]漆輝,馬莎,張乙涵,等. 抗生素殘留在土壤環(huán)境中的行為及其生態(tài)毒性研究進(jìn)展[J]. 安徽農(nóng)業(yè)科學(xué),2011,39(18):10906-10908,10951.

      [35]YANG Q, ZHANG J, ZHU K, et al. Influence of oxytetracycline on the structure and activity of microbial community in wheat rhizosphere soil[J]. Journal of Environmental Sciences,2009,21(7):954-959.

      [36]楊基峰,應(yīng)光國,賴華杰,等. 三種抗生素對(duì)土壤呼吸和硝化作用的影響[J]. 生態(tài)環(huán)境學(xué)報(bào),2014,23(6):1050-1056.

      [37]FANG H, HAN Y, YIN Y, et al. Variations in dissipation rate, microbial function and antibiotic resistance due to repeated introductions of manure containing sulfadiazine and chlortetracycline to soil[J]. Chemosphere,2014,96(2):51-56.

      [38]SVEN J, HOLGER H, JAN S, et al. Fate and effects of veterinary antibiotics in soil[J]. Trends in Microbiology,2014,22(9):536-545.

      [39]FANG H, HAN L X, ZHANG H P, et al. Repeated treatments of ciprofloxacin and kresoxim-methyl alter their dissipation rates, biological function and increase antibiotic resistance in manured soil[J]. Science of the Total Environment,2018,96(2):51-56.

      [40]HOLGER H, KORNELIA S. Manure and sulfadiazine synergistically increased bacterial antibiotic resistance in soil over at least two months[J]. Environmental Microbiology,2010,9(3):657-666.

      [41]KUMAR K, GUPTA S C, BAIDOO S K, et al. Antibiotic uptake by plants from soil fertilized with animal manure[J]. Journal of Environmental Quality,2005,34(6):2082-2085.

      [42]張志強(qiáng),李春花,黃紹文,等. 農(nóng)田系統(tǒng)四環(huán)素類抗生素污染研究現(xiàn)狀[J]. 辣椒雜志,2013,11(2):1-9,12.

      [43]顧冬花. 動(dòng)物性食品中抗生素的殘留、危害及防控措施[J]. 山東畜牧獸醫(yī),2015,36(9):78-79.

      [44]黃盼盼,周啟星,董璐璽. 抗生素對(duì)土壤環(huán)境的污染與植物修復(fù)的研究與展望[J]. 科技信息,2010(11):795-796.

      [45]安鳳春,莫漢宏,鄭明輝,等. DDT及其主要降解產(chǎn)物污染土壤的植物修復(fù)[J]. 環(huán)境化學(xué),2003(1):19-25.

      [46]POLESEL F, ANDERSEN H R, TRAPP S, et al. Removal of antibiotics in biological wastewater treatment systems - a critical assessment using the activated sludge modelling framework for xenobiotics (ASM-X)[J]. Environmental Science & Technology,2016,50(19):10316.

      [47]曹佳. 蚯蚓和菌根真菌促進(jìn)土霉素降解及其修復(fù)污染土壤的協(xié)同機(jī)制[D]. 北京:中國農(nóng)業(yè)大學(xué),2018.

      [48]陳小潔,李鳳玉,郝雅賓. 兩種水生植物對(duì)抗生素污染水體的修復(fù)作用[J]. 亞熱帶植物科學(xué),2012,41(4):1-7.

      [49]金彩霞,劉軍軍,陳秋穎,等. 獸藥磺胺間甲氧嘧啶對(duì)土壤呼吸及酶活性的影響[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2010,29(2):314-318.

      [50]裴孟,梁玉婷,易良銀,等. 黑麥草對(duì)土壤中殘留抗生素的降解及其對(duì)微生物活性的影響[J]. 環(huán)境工程學(xué)報(bào),2017,11(5):3179-3186.

      [51]PEI M, LIANG Y, YI L, et al. Degradation of residual antibiotics in soils by ryegrass and its effect on microbial activity[J]. Chinese Journal of Environmental Engineering,2017,11(5):3179-3186.

      [52]張圣新,羅盼盼,鮑恩東,等. 4種葉菜對(duì)強(qiáng)力霉素的吸收與富集特征[J]. 江蘇農(nóng)業(yè)學(xué)報(bào),2018,34(5):1066-1071.

      [53]原文麗. 生物炭對(duì)鉛和磺胺二甲嘧啶的吸附及其復(fù)合污染土壤的修復(fù)[D]. 武漢:華中農(nóng)業(yè)大學(xué),2016.

      [54]INDHERJITH S, KARTHIKEYAN S, MONICA J H R, et al. Graphene oxide & reduced graphene oxide polysulfone nanocomposite pellets: an alternative adsorbent of antibiotic pollutant-ciprofloxacin[J]. Separation Science and Technology, 2019,54(5):667-674.

      [55]YEOM J R, YOON S U,KIM C G. Quantification of residual antibiotics in cow manure being spread over agricultural land and assessment of their behavioral effects on antibiotic resistant bacteria[J]. Chemosphere,2017,182:771-780.

      [56]FATHY M, MOGHNY T A, AWADALLAH A E, et al. Study the adsorption of sulfates by high cross-linked polystyrene divinylbenzene anion-exchange resin[J]. Applied Water Science,2017,7(1):309-313.

      [57]CONDE-CID M, FERNANDEZ-CALVINO D, NOVOA-MUNOZ J C, et al. Biotic and abiotic dissipation of tetracyclines using simulated sunlight and in the dark[J]. Science of the Total Environment,2018,635:1520-1529.

      [58]KHATIBI E S, HAGHIGHI M, MAHBOOB S. Efficient surface design of reduced graphene oxide, carbon nanotube and carbon active with cupper nanocrystals for enhanced simulated-solar-light photocatalytic degradation of acid orange in water[J]. Applied Surface Science,2019,465:937-949.

      [59]SHABANI M, HAGHIGHI M, KAHFOROUSHAN D, et al. Mesoporous-mixed-phase of hierarchical bismuth oxychlorides nanophotocatalyst with enhanced photocatalytic application in treatment of antibiotic effluents[J]. Journal of Cleaner Production,2019,207:444-457.

      [60]ZARRABI M, HAGHIGHI M, ALIZADEH R. Sonoprecipitation dispersion of ZnO nanoparticles over graphene oxide used in photocatalytic degradation of methylene blue in aqueous solution: Influence of irradiation time and power[J]. Ultrasonics Sonochemistry,2018,48:370-382.

      [61]LIN Y C, HSIAO K W,LIN A Y C. Photolytic degradation of ciprofloxacin in solid and aqueous environments: kinetics, phototransformation pathways, and byproducts[J]. Environmental Science and Pollution Research,2018,25(3):2303-2312.

      [62]FARD S G, HAGHIGHI M, SHABANI M. Facile one-pot ultrasound-assisted solvothermal fabrication of ball-flowerlike nanostructured (BiOBr)(x)(Bi7O9I3)(1-x) solid-solution for high active photodegradation of antibiotic levofloxacin under sun-light[J]. Applied Catalysis B-Environmental,2019,248:320-331.

      [63]NGUYEN V T, HUNG C M, NGUYEN T B, et al. Efficient heterogeneous activation of persulfate by iron-modified biochar for removal of antibiotic from aqueous solution: a case study of tetracycline removal[J]. Catalysts,2019,9(1):49.

      [64]ZHONG W,WANG J. Degradation of sulfamethazine antibiotics using Fe3O4-Mn3O4 nanocomposite as a Fenton-like catalyst[J]. Journal of Chemical Technology & Biotechnology,2016,92(4):874-883.

      [65]張璐. 二氧化錳對(duì)四環(huán)素類抗生素的降解行為研究[D]. 杭州:浙江工業(yè)大學(xué),2012.

      [66]CHEN G, ZHAO L,DONG Y H. Oxidative degradation kinetics and products of chlortetracycline by manganese dioxide[J]. Journal of Hazardous Materials,2011,193(20):128-138.

      [67]LI Y, WEI D,DU Y. Oxidative transformation of levofloxacin by δ-MnO2 : products, pathways and toxicity assessment[J]. Chemosphere,2015,119(1):282-288.

      [68]YANG J F, YANG L M, YING G G, et al. Reaction of antibiotic sulfadiazine with manganese dioxide in aqueous phase: kinetics, pathways and toxicity assessment[J]. Journal of Environmental Science & Health Part A Toxic/hazardous Substances & Environmental Engineering,2016,52(2):135-143.

      [69]JUAN G, CURTIS H, CUN L, et al. Transformation of sulfamethazine by manganese oxide in aqueous solution[J]. Environmental Science & Technology,2012,46(5):2642-2651.

      [70]TH R K,PEDERSEN J A. Kinetics of oxytetracycline reaction with a hydrous manganese oxide[J]. Environmental Science & Technology,2006,40(23):7216-7221.

      [71]BEAUSSE J. Selected drugs in solid matrices: a review of environmental determination, occurrence and properties of principal substances[J]. Trac Trends in Analytical Chemistry,2004,23(10):753-761.

      [72]ZHAO Y P, TAN Y Y, GUO Y, et al. Interactions of tetracycline with Cd (II), Cu (II) and Pb (II) and their cosorption behavior in soils[J]. Environmental Pollution,2013,180:206-213.

      [73]陳俊輝. 抗生素類污染物在土壤含水氧化物中吸附行為的研究[D]. 陜西:西北師范大學(xué),2010.

      [74]李媛,魏東斌,杜宇國. 錳氧化物對(duì)有機(jī)污染物的轉(zhuǎn)化機(jī)制研究進(jìn)展[J]. 環(huán)境化學(xué),2013,32(7):1288-1299.

      [75]WANG H, ZHANG D, MOU S, et al. Simultaneous removal of tetracycline hydrochloride and As(III) using poorly-crystalline manganese dioxide[J]. Chemosphere,2015,136:102-110.

      [76]楊晶晶. 納米水合二氧化錳氧化水中典型有機(jī)污染物的效能研究[D]. 哈爾濱:哈爾濱工業(yè)大學(xué),2013.

      [77]ZHUANG J G, WANG S Y, TAN Y, et al. Degradation of sulfadimethoxine by permanganate in aquatic environment: Influence factors, intermediate products and theoretical study[J]. Science of the Total Environment,2019,671:705-713.

      [78]DONG G H, HUANG L H, WU X Y, et al. Effect and mechanism analysis of MnO2 on permeable reactive barrier (PRB) system for the removal of tetracycline[J]. Chemosphere,2018,193:702-710.

      [79]SONG Z, MA Y L,LI C E. The residual tetracycline in pharmaceutical wastewater was effectively removed by using MnO2/graphene nanocomposite[J]. Science of the Total Environment,2019,651:580-590.

      [80]YAN Z L, LIU Y G, TAN X F, et al. Immobilization of aqueous and sediment-sorbed ciprofloxacin by stabilized Fe-Mn binary oxide nanoparticles: Influencing factors and reaction mechanisms[J]. Chemical Engineering Journal,2017,314:612-621.

      [81]JALALI H M. Kinetic study of antibiotic ciprofloxacin ozonation by MWCNT/MnO2 using Monte Carlo simulation[J]. Materials Science & Engineering C-Materials for Biological Applications,2016,59:924-929.

      [82]ZHAO Z, ZHAO J,YANG C. Efficient removal of ciprofloxacin by peroxymonosulfate/Mn3O4-MnO2 catalytic oxidation system[J]. Chemical Engineering Journal,2017,327:481-489.

      [83]DONG Z, ZHANG Q, CHEN B Y, et al. Oxidation of bisphenol A by persulfate via Fe3O4-α-MnO2 nanoflower-like catalyst: Mechanism and efficiency[J]. Chemical Engineering Journal,2019,357:337-347.

      [84]SUN Y, LI Y, MI X Y, et al. Evaluation of ciprofloxacin destruction between ordered mesoporous and bulk NiMn2O4/CF cathode: efficient mineralization in a heterogeneous electro-Fenton-like process[J]. Environmental Science-Nano,2019,6(2):661-671.

      [85]伊麗麗,焦文濤,陳衛(wèi)平. 不同抗生素在剖面土壤中的吸附特征[J]. 環(huán)境化學(xué),2013,32(12):2357-2363.

      [86]HSU M H, KUO T H, CHEN Y E, et al. Substructure reactivity affecting the manganese dioxide oxidation of cephalosporin[J]. Environmental Science & Technology,2018,52(16):9188-9195.

      [87]YUAN L, YAN M, HUANG Z, et al. Influences of pH and metal ions on the interactions of oxytetracycline onto nano-hydroxyapatite and their co-adsorption behavior in aqueous solution[J]. Journal of Colloid And Interface Science,2019,541:101-113.

      [88]JAAFARI J, GHOZIKALI M G, AZALI A, et al. Adsorption of p-Cresol on Al2O3 coated multi-walled carbon nanotubes: response surface methodology and isotherm study[J]. Journal of Industrial and Engineering Chemistry,2018,57:396-404.

      [89]MAHAMALLIK P, SAHA S,PAL A. Tetracycline degradation in aquatic environment by highly porous MnO2 nanosheet assembly[J]. Chemical Engineering Journal,2015,276(5):155-165.

      [90]TAZWAR G, JAIN A,DEVRA V. Oxidative degradation of levofloxacin by water-soluble manganese dioxide in aqueous acidic medium: a kinetic study[J]. Chemical Papers,2017,71(9):1-10.

      [91]SONG Y, JIANG J, MA J, et al. Enhanced transformation of sulfonamide antibiotics by manganese(IV) oxide in the presence of model humic constituents[J]. Water Research,2019,153:200-207.

      [92]HUICHUN Z, WAN-RU C,CHING-HUA H. Kinetic modeling of oxidation of antibacterial agents by manganese oxide[J]. Environmental Science & Technology,2008,42(15):5548-5554.

      [93]KLAUSEN J, AND S B H, SCHWARZENBACH R P. Oxidation of substituted anilines by aqueous MnO2: effect of co-solutes on initial and quasi-steady-state kinetics[J]. Environm Sci Technol,1997,31(9):2642-2649.

      [94]XU L, XU C, ZHAO M, et al. Oxidative removal of aqueous steroid estrogens by manganese oxides[J]. Water Research,2008,42(20):5038-5044.

      [95]HSU M H, KUO T H, LAI W W P, et al. Effect of environmental factors on the oxidative transformation of cephalosporin antibiotics by manganese dioxides[J]. Environmental Science-Processes & Impacts,2019,21(4):692-700.

      [96]SONG Z, MA Y L,LI C E. The residual tetracycline in pharmaceutical wastewater was effectively removed by using MnO2/graphene nanocomposite[J]. Science of the Total Environment,2019,651:580-591.

      [97]SHIM J, KUMAR M, GOSWAMI R, et al. Removal of p-cresol and tylosin from water using a novel composite of alginate, recycled MnO2 and activated carbon[J]. Journal of Hazardous Materials,2019,364:419-428.

      [98]SONG Z, MA Y L, LI C E. Enhanced adsorption of tetracycline antibiotics from pharmaceutical wastewater on expanded graphite composites modified by metal oxide[J]. Desalination and Water Treatment,2019,153:367-379.

      [99]TONG F, GU X, GU C, et al. Stimulation of tetrabromobisphenol A binding to soil humic substances by birnessite and the chemical structure of the bound residues[J]. Environmental Science & Technology,2016,50(12):6257-6266.

      (責(zé)任編輯:陳海霞)

      猜你喜歡
      修復(fù)抗生素
      抗生素聯(lián)合,搭配使用有講究
      中老年保健(2022年5期)2022-08-24 02:35:28
      抗生素的故事
      病原體與抗生素的發(fā)現(xiàn)
      青銅文物保護(hù)修復(fù)技術(shù)的中外比較
      WebSocket安全漏洞及其修復(fù)
      現(xiàn)代道橋工程出現(xiàn)混凝土裂縫的原因探析及修復(fù)對(duì)策分析
      科技視界(2016年18期)2016-11-03 23:42:42
      自體骨游離移植修復(fù)下頜骨缺損的臨床研究
      營口市典型區(qū)土壤現(xiàn)狀調(diào)查與污染土壤的修復(fù)
      淺談水泥混凝土路面病害及快速修復(fù)技術(shù)
      科技視界(2016年20期)2016-09-29 13:12:16
      貓抓病一例及抗生素治療
      新干县| 莎车县| 宜城市| 洛川县| 伊吾县| 尼木县| 汉川市| 抚顺市| 洪洞县| 锦屏县| 乌恰县| 新余市| 和田县| 双城市| 原阳县| 濮阳市| 嘉定区| 青田县| 前郭尔| 崇州市| 江西省| 河间市| 玉龙| 威信县| 潞城市| 金山区| 皋兰县| 凌源市| 景德镇市| 霍林郭勒市| 普陀区| 潞城市| 海口市| 襄樊市| 莱州市| 江北区| 台南县| 景东| 枣强县| 中西区| 株洲市|