• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      基于PCR技術的植物病原菌分子定量檢測技術研究進展

      2020-08-25 10:03:25曹學仁周益林
      植物保護 2020年4期

      曹學仁 周益林

      摘要 植物病原菌的菌源量是病害發(fā)生和流行的重要因子之一,對其精準的定量測定或檢測可大大提高植物病害預測的準確性,本文對實時熒光定量PCR (qPCR)與數字PCR在植物病原菌定量檢測、以及基于RNA水平的real-time PCR和基于核酸染料(EMA/PMA)與qPCR相結合的技術在植物病原菌活體定量檢測中的應用進行了綜述,并展望其在植物病害流行和預測中的應用前景。

      關鍵詞 植物病原菌; 定量檢測; 實時定量PCR; 數字PCR; 活體檢測

      中圖分類號: S 432

      文獻標識碼: A

      DOI: 10.16688/j.zwbh.2019463

      Research progress in quantitative detection of plant pathogens using PCR technique

      CAO Xueren1, ZHOU Yilin2*

      (1. Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Institute of

      Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; 2. State

      Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection,

      Chinese Academy of Agricultural Sciences, Beijing 100193, China)

      Abstract

      The inoculum of plant pathogens is an important factor related with disease epidemics. Precise quantification of inoculum greatly help the prediction of diseases. This review summarized the applications of real-time quantitative PCR (qPCR) and digital PCR in the quantification of plant pathogens. The use of real-time reverse-transcriptase PCR and the combination of viability dyes and qPCR in viability detection of plant pathogens were also reviewed. The future perspectives of molecular quantitative detection of the pathogens in plant disease epidemics were discussed.

      Key words

      plant pathogen; quantitative detection; real-time quantitative PCR; digital PCR; viability detection

      在植物病害流行過程中,病原菌的菌源量是一種重要的驅動因子,是病害預測的一個重要參數,如土壤中蕓薹根腫菌Plasmodiophora brassicae的含量與病害發(fā)生程度顯著相關,小麥條銹菌Puccinia striiformis f.sp. tritici和白粉菌Blumeria graminis f.sp. tritici的越冬菌量和第二年早春的病情也存在顯著的相關性等[1-3],因此準確獲得病原菌的菌源量對于一些病害的預測和治理有十分重要的作用。

      傳統(tǒng)病原菌菌源量數據的獲取主要依靠田間調查,但是一方面僅根據癥狀來判斷病情容易出現(xiàn)誤判,如苗期小麥條銹病與葉銹病容易混淆;另一方面對在寄主組織內潛伏侵染或未顯癥或隱癥病原菌來說,由于此時尚未顯癥,無法準確估計病原菌的菌源量,從而影響對病害的預測。近年來,快速發(fā)展的分子生物學技術如實時熒光定量PCR、數字PCR等為植物病原菌的定量檢測提供了新工具。

      1 基于實時熒光定量PCR(qPCR)的植物病原菌定量檢測

      實時熒光定量PCR(real-time quantitative PCR,qPCR)技術通過在PCR反應體系中加入特定的熒光結合物質或者熒光探針,實時監(jiān)測熒光量的變化,獲得待測樣品達到熒光檢測閾值的循環(huán)數(cycle threshold,Ct值),再根據已知濃度標準品的Ct值與其濃度對數建立的標準曲線計算樣品中模板DNA的濃度。該技術實現(xiàn)了從定性研究到定量研究,在寄主組織內、空氣中、土壤中以及種子中的植物病原菌的定量檢測中得到了廣泛應用,如Yan等[2]和Zheng等[3]分別利用qPCR技術定量檢測了小麥葉片中條銹病菌P.striiformis f.sp. tritici和白粉病菌B.graminis f.sp. tritici的越冬菌量;結合孢子捕捉器和qPCR,Rogers等[4]和Cao等[5]分別建立了空氣中油菜菌核病菌Sclerotinia sclerotiorum和小麥白粉病菌B.graminis f.sp. tritici孢子濃度的檢測技術;關于土壤中蕓薹根腫菌P.brassicae、Pythium tracheiphilum和穿刺短體線蟲Pratylenchus neglectus的qPCR定量檢測研究均有報道[1,6-7];菠菜種子中黃萎病菌Verticillium dahliae和水稻種子中惡苗病菌Fusarium fujikuroi的qPCR定量檢測技術也已建立[8-9],并且國內外有多篇文章對該方面的研究進展進行了綜述[10-13]。

      2 基于數字PCR的植物病原菌定量檢測

      數字PCR(digital PCR)是近年來發(fā)展起來的一種定量分析技術,與qPCR技術不同的是它采用直接計數或泊松分布公式來計算每個反應單元的平均濃度(含量),從而進行定量分析,不需要依賴于擴增曲線的循環(huán)閾值(Ct),不受擴增效率的影響。其原理是通過將一個樣本分成幾十到幾萬個不同的反應單元,每個單元包含一個或多個拷貝的目標分子(DNA模板),并進行PCR擴增,擴增結束后對采集每個反應單元的熒光信號進行統(tǒng)計學分析[14]。近年來該技術也開始應用于植物病原菌的定量檢測研究。Blaya等對煙草疫霉Phytophthora nicotianae qPCR和數字PCR定量檢測結果的比較發(fā)現(xiàn),數字PCR可檢測的濃度更低,受樣品的影響更小[15]。對柑橘潰瘍病菌Xanthomonas citri subsp. citri和木質部難養(yǎng)菌Xylella fastidiosa的研究也得到類似的研究結果[16-17]。另外梨火疫病菌Erwinia amylovora、馬鈴薯青枯病菌Ralstonia solanacearum[18]、葡萄土壤桿菌Agrobacterium vitis[19]、柑橘黃龍病菌Candidatus Liberibacter asiaticus[20-21]、蕓薹根腫菌P.brassicae[22]等植物病原菌的數字PCR定量檢測技術也有報道。但是目前由于數字PCR設備價格昂貴、檢測成本高、分析的樣品通量低等,制約了其推廣應用。

      3 基于RNA水平的real-time PCR(qRT-PCR)技術的植物病原菌活體定量檢測

      由于細胞死亡后DNA仍能保留較長時間,如細菌死亡數周后還能用PCR技術檢測到[23]。因此若以DNA為材料檢測寄主組織內病原菌的菌源量,很容易將組織內已死亡的病原菌統(tǒng)計在內,從而導致獲得的菌源量數據偏高[24-25]。為了準確估計病原菌的菌源量,需要將樣品中的“死菌”與“活菌”區(qū)分,近年來在這方面的研究也取得了一定的進展。和DNA不同,RNA特別是mRNA的半衰期較短,一般只存在于活細胞中。細胞死亡后,RNA會迅速地被降解成寡核苷酸片段[26]。Chimento等[27]研究結果表明,櫟樹猝死病菌Phytophthora ramorum在死亡7 d后,就檢測不到病菌中的mRNA,而死亡3個月后,病原菌中的DNA還能被檢測到。因此通過提取樣品中的RNA,利用RNA 反轉錄試劑盒將RNA反轉錄成cDNA,設計特異性引物,以cDNA為模板進行real-time PCR反應,可以用來定量檢測樣品中活的病原菌的含量。近年來有利用qRT-PCR技術定量檢測寄主中活的植物病原真菌的研究報道,Pavón等[28]建立了鏈格孢屬Alternaria spp. 真菌的qRT-PCR檢測技術,并利用該技術對新鮮果蔬樣品和加工后樣品中活的病原菌進行了定量檢測,結果與傳統(tǒng)培養(yǎng)方法得到的結果存在極顯著的相關性。Ma等[29]建立了可用來定量檢測葉片中活的條銹菌P.striiformis f.sp. tritici的qRT-PCR技術,并利用該技術對我國甘肅和青海不同海拔地區(qū)的小麥條銹菌越冬菌量進行了定量檢測。Fan等[30]建立了蘋果樹腐爛病菌Valsa mali的qRT-PCR檢測技術并定量檢測接種生防菌后蘋果枝條中的V.mali活菌含量,從而用來研究生防菌的防效和防治機制。另外,基于qRT-PCR的栗黑水疫霉Phytophthora cambivora和樟疫霉P.cinnamomi的活體定量檢測研究也已報道[31-32]。此外該技術在植物病原細菌如柑橘潰瘍病菌X. citri subsp. citri[33]、植物病原線蟲如松材線蟲Bursaphelenchus xylophilus[34]和馬鈴薯孢囊線蟲Globodera spp.[35]的活體定量檢測中均有報道。qRT-PCR技術最明顯的不足之處在于RNA提取過程中的損失、污染及降解問題,不同的RNA提取方法獲得的RNA的質量和濃度均有差異。其次靶基因的選擇對結果也有很大的影響,有些基因在病原菌不同發(fā)育階段的表達量存在較大差異,從而影響對活體和死體病原菌的區(qū)分,如Ma等的研究結果表明利用小麥條銹病菌延伸因子EF1引物,采用qRT-PCR可以定量檢測小麥葉片組織內活的條銹菌的生物量,但不能區(qū)分活的和死的小麥條銹病菌的夏孢子[36];對4個柑橘潰瘍病菌X. citri subsp. citri靶標基因(gumD、rpfB、avrBs2和gyrB)的研究也發(fā)現(xiàn),只有gumD基因適合用來區(qū)分死的和活的X. citri subsp. citri細胞[33]。

      4 基于核酸染料(EMA/PMA)和qPCR的植物病原菌活體定量檢測

      疊氮溴化乙錠(ethidium monoazide,EMA)和疊氮溴化丙錠(propidium monoazide,PMA)是兩種對DNA分子具有高度親和力的光敏染料,它們不能透過完整的細胞膜,但可以穿過受破壞的細胞膜進入細胞內,選擇性地結合細胞膜受損傷的死細胞的DNA并抑制其進行PCR擴增。其中EMA在進入膜損傷細胞并插入雙鏈DNA后,在可見光的作用下,通過與DNA雙螺旋發(fā)生不可逆的共價交叉偶合,從而抑制PCR反應中引物與死菌DNA的結合,達到區(qū)分死菌和活菌的目的[37];而PMA在進入膜損傷細胞并插入雙鏈DNA后,在可見光激活下,PMA分子中具有光敏性的疊氮基團會生成高反應性的nitrene基,很容易地在結合部位與碳氫化合物部分結合生成穩(wěn)定牢固的共價氮碳鍵,產生穩(wěn)定的共價交聯(lián)沉淀物,有效地抑制死菌細胞DNA的擴增[38]。2003年Nogva等[39]提出了EMA-PCR方法用于區(qū)分死菌和活菌,隨后2006年Nocker等[40]研究發(fā)現(xiàn)EMA在一定程度上對某些種屬細菌的活細胞也產生影響,提出了與EMA結構類似的PMA結合qPCR的活菌檢測技術。此后將EMA/PMA與PCR、qPCR和LAMP 技術相結合在食源性致病菌的活菌檢測研究中得到了廣泛的應用[25,41-44]。在活的植物病原菌的定量檢測方面,目前關于EMA/PMA和qPCR相結合定量檢測植物病原細菌的研究報道較多。其中基于EMA-qPCR和基于PMA-qPCR的活柑橘黃龍病菌Candidatus Liberibacter asiaticus定量檢測技術都已建立[45-46]。此外基于EMA-qPCR的番茄細菌性潰瘍病菌Clavibacter michiganensis subsp.michiganensis活菌[47]和基于PMA-qPCR的黃瓜細菌性角斑病菌Pseudomonas syringae pv. lachrymans[48]、胡蘿卜細菌性枯萎病菌X. hortorum pv. carotae[49]、玉米細菌性枯萎病菌Pantoea stewartii subsp. stewartii[50]、植物細菌性青枯病菌Ralstonia solanacearum[51]、獼猴桃潰瘍病菌P.syringae pv. actinidia[52]活菌的定量檢測技術均有報道。在其他植物病原菌方面,Vilanova等[53]報道了用來定量檢測果實和花上存活的褐腐病菌Monilinia fructicola的PMA-qPCR技術;Christoforou等[54]建立了可以用來定量檢測田間存活的馬鈴薯孢囊線蟲(Globodera pallida 和G.rostochiensis)的PMA-qPCR檢測技術;Al-Daoud等[55]利用PMA與qPCR相結合的技術定量檢測土壤中存活的蕓薹根腫菌P.brassicae的休眠孢子。雖然基于EMA/PMA的活體定量檢測技術解決了qRT-PCR技術中RNA提取過程中的問題,但是影響其效率的因素也有不少[41-42],包括1)染料的濃度、孵育時間和處理溫度;2)光源、光照時間等;3)靶基因的長度和序列;另外樣品中微生物的濃度、死細胞和活細胞的比例等都會影響EMA/PMA的效率。

      5 展望

      建立精準、可靠的植物病原菌定量檢測方法,準確估計病原菌的種群數量,對于深入研究植物病害的流行規(guī)律,提高病害預測的準確性具有重要意義。qPCR技術目前在植物病原菌定量檢測中得到了比較廣泛的應用,而數字PCR技術由于檢測樣品的通量很低、成本高,在植物病原菌的定量檢測研究中應用還較少。但是數字PCR技術和qPCR相比具有獨特的優(yōu)勢,且靈敏度和穩(wěn)定性更高,隨著技術不斷發(fā)展,低成本的數字PCR產品將被開發(fā)出來,其應用范圍會越來越廣泛。

      利用常規(guī)分離培養(yǎng)和一般的分子檢測方法,均無法實現(xiàn)對寄主中活的病原菌越夏和越冬菌源、土壤中存活的病原菌以及活的非可培養(yǎng)(viable but nonculturable,VBNG)狀態(tài)細菌的定量檢測。qRT-PCR技術、核酸染料(EMA/PMA)和qPCR相結合的技術是目前用于病原菌活體定量檢測的兩種主要技術,不僅實現(xiàn)了對樣品中病原菌的定量檢測,還可以區(qū)分樣品中的死活病原菌細胞,較好地解決上述難題。雖然這兩種技術在植物病原菌的檢測中還處于起步階段,但是隨著這些技術的進一步發(fā)展和完善,將具有廣闊應用前景。另外,隨著一些高通量、快速精準、檢測靈敏度高的新型檢測方法如多重熒光定量PCR的開發(fā),可為植物病原菌活體定量檢測提供新技術。

      參考文獻

      [1] WALLENHAMMAR A C, ALMQUIST C, SDERSTRM M, et al. In-field distribution of Plasmodiophora brassicae measured using quantitative real-time PCR [J]. Plant Pathology, 2012, 61(1): 16-28.

      [2] YAN Jiahui, LUO Yong, CHEN Tingting, et al. Field distribution of wheat stripe rust latent infection using real-time PCR [J]. Plant Disease, 2012, 96(4): 544-551.

      [3] ZHENG Yaming, LUO Yong, ZHOU Yilin, et al. Real-time PCR quantification of latent infection of wheat powdery mildew in the field [J]. European Journal of Plant Pathology, 2013, 136(3): 565-575.

      [4] ROGERS S, ATKINS S, WEST J. Detection and quantification of airborne inoculum of Sclerotinia sclerotiorum using quantitative PCR [J]. Plant Pathology, 2009, 58(2): 324-331.

      [5] CAO Xueren, YAO Dongming, ZHOU Yilin, et al. Detection and quantification of airborne inoculum of Blumeria graminis f.sp. tritici using quantitative PCR [J]. European Journal of Plant Pathology, 2016, 146(1): 225-229.

      [6] VAN DER HEYDEN H, WALLON T, LEVESQUE C A, et al. Detection and quantification of Pythium tracheiphilum in soil by multiplex real-time qPCR [J]. Plant Disease, 2019, 103(3): 475-483.

      [7] BAIDOO R, YAN Guiping, NAGACHANDRABOSE S, et al. Developing a real-time PCR assay for direct identification and quantification of Pratylenchus penetrans in soil [J]. Plant Disease, 2017, 101(8): 1432-1441.

      [8] DURESSA D, RAUSCHER G, KOIKE S T, et al. A real-time PCR assay for detection and quantification of Verticillium dahliae in spinach seed [J]. Phytopathology, 2012, 102(4): 443-451.

      [9] AMARAL CARNEIRO G, MATIC S, ORTU G, et al. Development and validation of a TaqMan real time PCR assay for the specific detection and quantification of Fusarium fujikuroi in rice plants and seeds [J]. Phytopathology, 2017, 107(7): 885-892.

      [10]SCHENA L, NIGRO F, IPPOLITO A, et al. Real-time quantitative PCR: a new technology to detect and study phytopathogenic and antagonistic fungi [J]. European Journal of Plant Pathology, 2004, 110(9): 893-908.

      [11]LUCHI N, CAPRETTI P, PAZZAGLI M, et al. Powerful qPCR assays for the early detection of latent invaders: interdisciplinary approaches in clinical cancer research and plant pathology [J]. Applied Microbiology and Biotechnology, 2016, 100(12): 5189-5204.

      [12]駱勇. 植物病害分子流行學概述[J]. 植物病理學報, 2009, 39(1): 1-10.

      [13]鄭亞明, 駱勇, 周益林, 等. 實時熒光定量PCR在植物病害流行學中的應用[J]. 植物保護, 2011, 37(4): 18-22.

      [14]VOGELSTEIN B, KINZLER K W. Digital PCR [J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(16): 9236-9241.

      [15]BLAYA J, LLORET E, SANTISIMA-TRINIDAD A B, et al. Molecular methods (digital PCR and real-time PCR) for the quantification of low copy DNA of Phytophthora nicotianae in environmental samples [J]. Pest Management Science, 2016, 72(4): 747-753.

      [16]ZHAO Yun, XIA Qingyan, YIN Youping, et al. Comparison of droplet digital PCR and quantitative PCR assays for quantitative detection of Xanthomonas citri subsp. citri [J/OL]. PLoS ONE, 2016, 11(7): e0159004. DOI: 10.1371/journal. pone. 0159004.

      [17]DUPAS E, LEGENDRE B, OLIVIER V, et al. Comparison of real-time PCR and droplet digital PCR for the detection of Xylella fastidiosa in plants [J]. Journal of Microbiological Methods, 2019, 162: 86-95.

      [18]DREO T, PIRC M, RAMAK , et al. Optimising droplet digital PCR analysis approaches for detection and quantification of bacteria: a case study of fire blight and potato brown rot [J]. Analytical and Bioanalytical Chemistry, 2014, 406(26): 6513-6528.

      [19]TANJA V, LOUISE N. Quantification of Agrobacterium vitis from grapevine nursery stock and vineyard soil using droplet digital PCR [J]. Plant Disease, 2018, 102(11): 2136-2141.

      [20]ZHONG Xi, LIU Xuelu, LOU Binghai, et al. Development of a sensitive and reliable droplet digital PCR assay for the detection of ‘Candidatus Liberibacter asiaticus [J]. Journal of Integrative Agriculture, 2018, 17(2): 483-487.

      [21]SELVARAJ V, MAHESHWARI Y, HAJERI S, et al. Development of a duplex droplet digital PCR assay for absolute quantitative detection of “Candidatus Liberibacter asiaticus” [J/OL]. PLoS ONE, 2018, 13(5): e0197184. DOI: 10.1371/journal. pone. 0197184.

      [22]GOSSEN B D, AL-DAOUD F, DUMONCEAUX T, et al. Comparison of techniques for estimation of resting spores of Plasmodiophora brassicae in soil [J]. Plant Pathology, 2019, 68(5): 954-961.

      [23]JOSEPHSON K L, GERBA C P, PEPPER I L. Polymerase chain reaction detection of nonviable bacterial pathogens [J]. Applied and Environmental Microbiology, 1993, 59(10): 3513-3515.

      [24]KEER J, BIRCH L. Molecular methods for the assessment of bacterial viability [J]. Journal of Microbiological Methods, 2003, 53: 175-183.

      [25]FITTIPALDI M, NOCKER A, CODONY F. Progress in understanding preferential detection of live cells using viability dyes in combination with DNA amplification [J]. Journal of Microbiological Methods, 2012, 91: 276-289.

      [26]TOURRIRE H, CHEBLI K, TAZI J. mRNA degradation machines in eukaryotic cells [J]. Biochimie, 2002, 84(8): 821-837.

      [27]CHIMENTO A, CACCIOLA S O, GARBELOTTO M. Detection of mRNA by reverse-transcription PCR as an indicator of viability in Phytophthora ramorum [J]. Forest Pathology, 2012, 42(1): 14-21.

      [28]PAVN M , GONZLEZ I, MARTN R, et al. A real-time reverse-transcriptase PCR technique for detection and quantification of viable Alternaria spp. in foodstuffs [J]. Food Control, 2012, 28(2): 286-294.

      [29]MA Lijie, KONG Xinyu, QIAO Jiaxing, et al. Overwintering of Puccinia striiformis f. tritici on winter wheat at varying altitudes in Gansu and Qinghai provinces [J]. Plant Disease, 2016, 100(6): 1138-1145.

      [30]FAN Dongying, LI Yanfang, ZHAO Lingyun, et al. Study on interactions between the major apple Valsa canker pathogen Valsa mali and its biocontrol agent Saccharothrix yanglingensis Hhs. 015 using RT-qPCR [J/OL]. PLoS ONE, 2016, 11(9): e0162174. DOI: 10.1371/journal. pone. 0162174.

      [31]VETTRAINO A M, TOMASSINI A, VANNINI A, et al. Use of mRNA as an indicator of the viability of Phytophthora cambivora [J]. Acta Horticulturae, 2010, 866: 431-434.

      [32]KUNADIYA M, DUNSTAN W, WHITE D, et al. A qPCR assay for the detection of Phytophthora cinnamomi including an mRNA protocol designed to establish propagule viability in environmental samples [J]. Plant Disease, 2019, 103(9): 2443-2450.

      [33]GOLMOHAMMADI M, LLOP P, SCUDERI G, et al. mRNA from selected genes is useful for specific detection and quantification of viable Xanthomonas citri subsp. citri [J]. Plant Pathology, 2012, 61(3): 479-488.

      [34]LEAL I, FOORD B, ALLEN E, et al. Development of two reverse transcription-PCR methods to detect living pinewood nematode, Bursaphelenchus xylophilus, in wood [J]. Forest Pathology, 2013, 43(2): 104-114.

      [35]MENDES O, VAN GENT-PELZER M P E, VAND L T A J, et al. Quantification of viable eggs of the potato cyst nematodes (Globodera spp.) using either trehalose or RNA-specific real-time PCR [J]. Nematology, 2014, 16(10): 1219-1232.

      [36]MA Lijie, QIAO Jiaxing, KONG Xinyu, et al. Effect of low temperature and wheat winter-hardiness on survival of Puccinia striiformis f.sp. tritici under controlled conditions [J/OL]. PLoS ONE, 2015, 10(6): e0130691. DOI: 10.1371/journal. pone. 0130691.

      [37]KNUT R, BIRGITTE M, SIGNE M D, et al. Use of ethidium monoazide and PCR in combination for quantification of viable and dead cells in complex samples [J]. Applied and Environmental Microbiology, 2005, 71(2): 1018-1024.

      [38]NOCKER A, CAMPER A K. Novel approaches toward preferential detection of viable cells using nucleic acid amplification techniques [J]. FEMS Microbiology Letters, 2008, 291(2): 137-142.

      [39]NOGVA H K, DRMTORP, S M, NISSEN H, et al. Ethidium monoazide for DNA-based differentiation of viable and dead bacteria by 5′-nuclease PCR [J]. BioTechniques, 2003, 34(4): 804-813.

      [40]NOCKER A, CHEUNG C Y, CAMPER A K. Comparison of propidium monoazide with ethidium monoazide for differentiation of live vs. dead bacteria by selective removal of DNA from dead cells [J]. Journal of Microbiological Methods, 2006, 67(2): 310-320.

      [41]ELIZAQUVEL P, AZNAR R, SNCHEZ G. Recent developments in the use of viability dyes and quantitative PCR in the food microbiology field [J]. Journal of Applied Microbiology, 2014, 116(1): 1-13.

      [42]ZENG Dexin, CHEN Zi, JIANG Yuan, et al. Advances and challenges in viability detection of foodborne pathogens [J/OL]. Frontiers in Microbiology, 2016, 7: 1833. DOI: 10.3389/fmicb. 2016. 01833.

      [43]呂嬙, 姜兆興, 王海艷, 等. 疊氮溴化乙錠與PCR技術結合檢測活菌研究進展 [J]. 食品研究與開發(fā), 2017, 38(24): 220-224.

      [44]肖莉莉, 張昭寰, 婁陽, 等. 疊氮溴化丙錠(PMA)在食源性致病菌檢測中的應用[J]. 中國食品學報, 2016, 16(6): 187-194.

      [45]TRIVEDI P, SAGARAM U S, KIM J S, et al. Quantification of viable Candidatus Liberibacter asiaticus in hosts using quantitative PCR with the aid of ethidium monoazide (EMA) [J]. European Journal of Plant Pathology, 2009, 124(4): 553-563.

      [46]HU H, DAVIS M J, BRLANSKY R H. Quantification of live ‘Candidatus Liberibacter asiaticus populations using real-time PCR and propidium monoazide [J]. Plant Disease, 2013, 97(9): 1158-1167.

      [47]LUO Laixing, WALTERS C, BOLKAN H, et al. Quantification of viable cells of Clavibacter michiganensis subsp. michiganensis using a DNA binding dye and a real-time PCR assay [J]. Plant Pathology, 2008, 57(2): 332-337.

      [48]MENG Xianglong, CHAI Ali, CHEN Lu, et al. Rapid detection and quantification of viable Pseudomonas syringae pv. lachrymans cells in contaminated cucumber seeds using propidium monoazide and a real-time PCR assay [J]. Canadian Journal of Plant Pathology, 2016, 38(3): 296-306.

      [49]TEMPLE T N, DU TOIT L J, DERIE M L, et al. Quantitative molecular detection of Xanthomonas hortorum pv. carotae in carrot seed before and after hot-water treatment [J]. Plant Disease, 2013, 97(12): 1585-1592.

      [50]馮建軍, 劉杰, 王飛, 等. PMA結合實時熒光PCR進行玉米細菌性枯萎病菌細胞活性檢測初步研究[J]. 植物檢疫, 2014, 28(2): 27-32.

      [51]王帥, 徐進, 許景升, 等. PMA-qPCR定量檢測青枯菌活菌方法的建立[J].植物保護, 2018, 44(6): 122-128.

      [52]肖妍, 劉蕓宏, 高貴田, 等. PMA-qPCR方法檢測陜西獼猴桃潰瘍菌優(yōu)勢病原菌活菌的研究[J].食品與機械, 2019, 35(4): 48-53.

      [53]VILANOVA L, USALL J, TEIXID N, et al. Assessment of viable conidia of Monilinia fructicola in flower and stone fruit combining propidium monoazide (PMA)and qPCR [J]. Plant Pathology, 2017, 66(8): 1276-1287.

      [54]CHRISTOFOROU Μ, PANTELIDES I S, KANETIS L, et al. Rapid detection and quantification of viable potato cyst nematodes using qPCR in combination with propidium monoazide [J]. Plant Pathology, 2014, 63(5): 1185-1192.

      [55]AL-DAOUD F, GOSSEN B D, ROBSON J, et al. Propidium monoazide improves quantification of resting spores of Plasmodiophora brassicae with qPCR [J]. Plant Disease, 2017, 101(3): 442-447.

      (責任編輯:田 喆)

      北流市| 鲜城| 日喀则市| 且末县| 山阴县| 周宁县| 方山县| 茂名市| 瑞丽市| 北川| 和田市| 铜川市| 黔西| 怀柔区| 正定县| 东乡县| 滨州市| 太康县| 江川县| 大余县| 海阳市| 丹江口市| 保康县| 宁阳县| 墨竹工卡县| 根河市| 六枝特区| 云浮市| 霍邱县| 军事| 越西县| 建宁县| 彩票| 凌源市| 抚远县| 通海县| 嘉荫县| 克拉玛依市| 从江县| 德兴市| 肇州县|