• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      一類具有非局部條件的Sobolev型Hilfer分?jǐn)?shù)階發(fā)展方程的有限近似可控性

      2020-08-31 14:50王星昭顧海波馬麗娜陳奕如

      王星昭 顧海波 馬麗娜 陳奕如

      摘 ?要: 研究了Hilbert空間中具有非局部條件的Sobolev型Hilfer分?jǐn)?shù)階發(fā)展方程的有限近似可控性.在控制系統(tǒng)對應(yīng)的線性系統(tǒng)是近似可控的這一假設(shè)下,通過使用分?jǐn)?shù)階微積分理論、半群理論、變分法和Schaefer不動(dòng)點(diǎn)定理,得到了控制系統(tǒng)有限近似可控的充分條件.

      關(guān)鍵詞: Hilfer分?jǐn)?shù)階導(dǎo)數(shù); 發(fā)展方程; 非局部條件; 有限近似可控性

      中圖分類號: O 231.2 ? ?文獻(xiàn)標(biāo)志碼: A ? ?文章編號: 1000-5137(2020)04-0371-10

      Abstract: We discuss the finite-approximate controllability of Hilfer fractional evolution equations of Sobolev type with nonlocal conditions in Hilbert spaces.With the assumption that the corresponding linear system is approximately controllable,we obtain sufficient conditions for finite-approximate controllability of the control system by using fractional calculus,semigroup theory,variational analysis and Schaefer fixed point theorem.

      Key words: Hilfer fractional derivative; evolution equation; nonlocal conditions; finite-approximate controllability

      0 ?引 ?言

      近20年來,分?jǐn)?shù)階微分方程的定性理論、穩(wěn)定性和可控性概念,因其在科學(xué)和工程等諸多領(lǐng)域的廣泛應(yīng)用,受到越來越多的數(shù)學(xué)家、物理學(xué)家和工程師們的關(guān)注.近幾年間,有大批學(xué)者研究了多種不同類型的線性和非線性動(dòng)力系統(tǒng)的可控性問題.例如:2013年,KERBOUA等[1]研究了Hilbert空間中一類帶有Caputo分?jǐn)?shù)階導(dǎo)數(shù)的Sobolev型隨機(jī)發(fā)展方程的近似可控性,方程具有非局部條件;2015年,MAHMUDOV等[2]研究了Hilbert空間中一類帶有Hilfer分?jǐn)?shù)階導(dǎo)數(shù)的發(fā)展方程的近似可控性;2016年,GE等[3]用近似法,研究了Banach空間中一類帶有Caputo分?jǐn)?shù)階導(dǎo)數(shù)的發(fā)展方程的近似可控性,方程具有非局部條件和脈沖條件;2017年,CHANG等[4]利用預(yù)解算子的性質(zhì),研究了Banach空間中兩類Sobolev型發(fā)展方程的近似可控性,即一類帶有Caputo分?jǐn)?shù)階導(dǎo)數(shù),一類帶有Riemann-Liouville分?jǐn)?shù)階導(dǎo)數(shù);2018年,MAHMUDOV用近似法和變分法,分別研究了Hilbert空間中一類帶有Caputo分?jǐn)?shù)階導(dǎo)數(shù)發(fā)展方程的偏近似可控性[5]和有限近似可控性[6],方程具有非局部條件;2019年,HE等[7]研究了Hilbert空間中一類帶有Riemann-Liouville分?jǐn)?shù)階導(dǎo)數(shù)的隨機(jī)波動(dòng)方程的近似可控性;HUANG等[8]研究了Banach空間中一類帶有Caputo分?jǐn)?shù)階導(dǎo)數(shù)的拋物方程的近似可控性.

      然而,具有非局部條件的Sobolev型Hilfer分?jǐn)?shù)階發(fā)展方程的有限近似可控性至今還沒有被研究.事實(shí)上,在線性系統(tǒng)中,若控制系統(tǒng)是近似可控性的,則其一定也是有限近似可控的[9-11],但在非線性系統(tǒng)中,卻沒有這一結(jié)論.由此可見,有限近似可控性是一個(gè)比近似可控性更強(qiáng)的性質(zhì).

      參考文獻(xiàn):

      [1] KERBOUA M,DEBBOUCHE A.Approximate controllability of Sobolev type nonlocal fractional stochastic dynamic systems in Hilbert spaces [J].Abstract and Applied Analysis,2013,2013:262191.

      [2] MAHMUDOV N,MCKIBBEN M.On the approximate controllability of fractional evolution equations with generalized Riemann-Liouville fractional derivative [J].Journal of Function Spaces,2015,2015:263823.

      [3] GE F D,ZHOU H C.Approximate controllability of semilinear evolution equations of fractional order with nonlocal and impulsive conditions via an approximating technique [J].Applied Mathematics and Computation,2016,275:107-120.

      [4] CHANG Y K,PEREIRA A.Approximate controllability for fractional differential equations of Sobolev type via properties on resolvent operators [J].Fractional Calculus and Applied Analysis,2017,20(4):963-987.

      [5] MAHMUDOV N.Partial-approximate controllability of nonlocal fractional evolution equations via approximating method [J].Applied Mathematics and Computation,2018,334:227-238.

      [6] MAHMUDOV N.Finite-approximate controllability of fractional evolution equations:variational approach [J].Fractional Calculus and Applied Analysis,2018,21(4):919-936.

      [7] HE J W,PENG L.Approximate controllability for a class of fractional stochastic wave equations [J].Computers and Mathematics with Applications,2019,78(5):1463-1476.

      [8] HUANG Y,LIU Z H.Approximate controllability for fractional semilinear parabolic equations [J].Computers and Mathematics with Applications,2019,77(11):2971-2979.

      [9] FABRE C,PUEL J P.Approximate controllability of the semilinear heat equation [J].Proceedings of the Royal Society of Edinburgh Section A:Mathematics,1995,125(1):31-61.

      [10] LIONS J L,ZUAZUA E.The cost of controlling unstable systems:time irreversible systems [J].Revista Matemaeica UCM,1997,10(2):481-523.

      [11] ZUAZUA E.Finite dimensional null controllability for the semilinear heat equation [J].Journal de Mathématiques Pureset Appliquées,1997,76(3):237-264.

      [12] PODLUBNY I.Fractional Differential Equations [M].San Diego:Academic Press,1999.

      [13] HILFER R.Applications of Fractional Calculus in Physics [M].Singapore:World Scientific,2000.

      [14] GU H B,TRUJILLO J J.Existence of mild solution for evolution equation with Hilfer fractional derivative[J].Applied Mathematics and Computation,2015,257:344-354.

      [15] ZHOU Y,JIAO F.Nonlocal Cauchy problem for fractional evolution equations [J].Nonlinear Analysis:Real World Applications,2010,11(5):4465-4475.

      [16] MAHMUDOV N.Finite-approximate controllability of evolution equations [J].Applied and Computational Mathematics,2017,16(2):159-167.

      [17] CURTAIN R F,ZWART H J.An Introduction to Infinite Dimensional Linear Systems Theory [M].New York:Springer-Verlag,1995.

      (責(zé)任編輯:馮珍珍)

      长顺县| 拜泉县| 泰安市| 兰考县| 英超| 德保县| 泸定县| 衡山县| 阿拉善盟| 吉水县| 衡山县| 石棉县| 淮滨县| 巴青县| 武隆县| 新昌县| 广汉市| 丰都县| 个旧市| 文水县| 宜春市| 汨罗市| 麻栗坡县| 平塘县| 个旧市| 武功县| 龙州县| 昌图县| 营口市| 仙居县| 九龙坡区| 保康县| 涟源市| 商水县| 乌审旗| 平昌县| 长宁区| 临海市| 樟树市| 新巴尔虎左旗| 松滋市|