• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      超大口徑彎月鏡支撐點(diǎn)布局-剛度-校正力聯(lián)合優(yōu)化

      2020-09-05 01:34:40習(xí)興華張超杰胡海飛關(guān)英俊
      光電工程 2020年8期
      關(guān)鍵詞:面形支撐點(diǎn)反射鏡

      習(xí)興華,張超杰,胡海飛,關(guān)英俊*

      超大口徑彎月鏡支撐點(diǎn)布局-剛度-校正力聯(lián)合優(yōu)化

      習(xí)興華1,張超杰1,胡海飛2,3,關(guān)英俊1*

      1長(zhǎng)春工業(yè)大學(xué)機(jī)電工程學(xué)院,吉林 長(zhǎng)春 130012;2中國(guó)科學(xué)院長(zhǎng)春光學(xué)精密機(jī)械與物理研究所,吉林 長(zhǎng)春 130033;3吉林大學(xué)機(jī)械與航空航天工程學(xué)院,吉林 長(zhǎng)春 130025

      在超大口徑原位加工與檢測(cè)中,目前多采用被動(dòng)式Whiffletree液壓支撐系統(tǒng)(原位支撐),而該類(lèi)支撐單元的軸向剛度存在較大差異性,會(huì)顯著影響輕薄型反射鏡的面形精度。為解決這一問(wèn)題,研究了主動(dòng)型原位支撐的支點(diǎn)布局、單元?jiǎng)偠群椭鲃?dòng)校正力的聯(lián)合優(yōu)化方法。首先,針對(duì)支撐單元?jiǎng)偠炔町?,提出了支撐剛度、支點(diǎn)位置的分級(jí)布局優(yōu)化方法,獲得了支撐系統(tǒng)的初始優(yōu)化解;其次,結(jié)合模式定標(biāo)法和最小二乘法,進(jìn)行了支撐點(diǎn)主動(dòng)力校正,以獲得支撐面形的最終優(yōu)化解;最后,結(jié)合具體案例的數(shù)字仿真試驗(yàn),驗(yàn)證了方法的有效性。結(jié)果表明:對(duì)于4 m彎月型輕薄反射鏡,僅被動(dòng)支撐下,分級(jí)布局優(yōu)化后,60點(diǎn)方案面形精度RMS值由150.6 nm減少到32.9 nm,78點(diǎn)方案面形精度RMS值由45.2 nm減少到22.6 nm,優(yōu)化效果顯著;進(jìn)一步經(jīng)主動(dòng)校正后,60點(diǎn)方案和78點(diǎn)方案面形精度RMS值分別為14.6 nm和6.9 nm,均滿(mǎn)足面形精度RMS值小于/40(=632.8 nm)的指標(biāo)要求;最終選取60點(diǎn)軸向支撐方案。通過(guò)對(duì)支點(diǎn)布局、支撐剛度和校正力進(jìn)行聯(lián)合優(yōu)化,可以大幅增加原位支撐系統(tǒng)的適用性、靈活性,降低實(shí)施難度。

      布局優(yōu)化;主動(dòng)光學(xué);液壓Whiffletree;剛度差異;原位支撐

      1 引 言

      隨著人們對(duì)空間望遠(yuǎn)鏡的靈敏度、分辨率、視場(chǎng)角和輻照亮度等方面的要求越來(lái)越高,導(dǎo)致空間望遠(yuǎn)鏡儀器越做越大,許多都已經(jīng)達(dá)到了2 m以上的超大口徑,大幅度增加了反射鏡加工支撐難度。對(duì)于處于地面環(huán)境下的空間反射鏡而言,除去溫度等其他因素的影響,自重變形對(duì)反射鏡的面形精度影響較大,而且口徑越大、精度越高的反射鏡,其支撐難度就越大。自重變形主要受支撐點(diǎn)數(shù)量、支撐點(diǎn)位置和支撐單元?jiǎng)偠鹊纫蛩赜绊慬1]。研究超大口徑反射鏡的原位重力卸載技術(shù),對(duì)提高其加工與檢測(cè)精度和效率具有重大促進(jìn)作用。

      在支撐方面,長(zhǎng)春理工大學(xué)設(shè)計(jì)了一種頸口側(cè)壁開(kāi)槽的柔性支撐[2]。在大口徑反射鏡支撐位置優(yōu)化方面,中國(guó)科學(xué)院長(zhǎng)春光學(xué)精密機(jī)械與物理研究所(簡(jiǎn)稱(chēng)長(zhǎng)春光機(jī)所)確定了TMT三鏡、某2 m口徑反射鏡的被動(dòng)支撐方案并優(yōu)化了支撐點(diǎn)位置,面形精度得到改善[3-4]。但是對(duì)于僅采用被動(dòng)支撐的大口徑反射鏡而言,需要較多的支撐數(shù)量來(lái)保證其面形精度,導(dǎo)致被動(dòng)支撐的實(shí)施難度增加。

      為減少被動(dòng)支撐數(shù)量并提高支撐面形精度,人們不斷將主動(dòng)光學(xué)技術(shù)應(yīng)用于反射鏡支撐系統(tǒng)中。歐洲天文臺(tái)于1989年成功將主動(dòng)校正技術(shù)應(yīng)用于口徑為3.58 m的NTT望遠(yuǎn)鏡主鏡,其后還有8 m的VLT、美國(guó)NASA的3.67 m AEOS、4.3 m SOAR[5]。

      在國(guó)內(nèi),南京天文儀器廠設(shè)計(jì)了500 mm口徑的薄鏡面主動(dòng)支撐系統(tǒng)。其后長(zhǎng)春光機(jī)所對(duì)620 mm口徑薄鏡進(jìn)行主動(dòng)校正技術(shù)研究[6],并應(yīng)用于1.23 m SiC反射鏡、4 m SiC反射鏡[7-8]。中國(guó)科學(xué)院光電技術(shù)研究所以1.2 m薄鏡進(jìn)行主動(dòng)校正技術(shù)研究,搭建了主動(dòng)光學(xué)試驗(yàn)平臺(tái)并進(jìn)行了試驗(yàn)驗(yàn)證[5]。

      然而,目前有研究發(fā)現(xiàn),群組支撐單元的剛度存在較大差異性,且對(duì)反射鏡支撐面形精度具有較大影響,已經(jīng)成為原位加工檢測(cè)中的一個(gè)隱患[9]。因此,本文研究主動(dòng)型原位支撐的支點(diǎn)布局、單元?jiǎng)偠群椭鲃?dòng)校正力的聯(lián)合優(yōu)化方法,并結(jié)合4 m彎月薄鏡的原位支撐系統(tǒng)設(shè)計(jì)方案驗(yàn)證該方法的有效性。

      對(duì)于4 m彎月薄鏡而言,由于其口徑過(guò)大,通過(guò)傳統(tǒng)經(jīng)驗(yàn)公式得到的支撐點(diǎn)數(shù)量過(guò)多,提高了支撐單元的剛度差異對(duì)系統(tǒng)影響的復(fù)雜程度,也增加了主動(dòng)校正難度。本文通過(guò)有限元分析,確定了初步支撐方案;然后,通過(guò)分級(jí)優(yōu)化方法,得到支撐單元的最佳剛度組合方案以及支撐單元最佳點(diǎn)位;最后,進(jìn)行主動(dòng)校正,得到理想重力卸載面形精度。

      2 布局優(yōu)化模型

      根據(jù)靜力支撐原理,支撐力應(yīng)滿(mǎn)足以下關(guān)系:

      其中:為支撐點(diǎn)的支撐力,k為支撐單元的剛度,dz為支撐單元軸向壓縮量。

      在被動(dòng)式靜壓支撐系統(tǒng)中,受相同支路內(nèi)支撐單元輸出力相等的特征限制,由式(1)可知,若每個(gè)液壓支撐單元?jiǎng)偠?i>k不同,會(huì)導(dǎo)致均力下各個(gè)支撐單元的軸向高度不同,這將影響反射鏡支撐高度穩(wěn)定性,從而影響鏡面面形精度。為提高系統(tǒng)的支撐精度,如能對(duì)支撐單元?jiǎng)偠冗M(jìn)行合理分配,并對(duì)支撐點(diǎn)位置進(jìn)行布局優(yōu)化,其性能提升將非常顯著。

      2.1 布局-剛度優(yōu)化模型

      對(duì)于個(gè)支撐單元的變剛度原位支撐系統(tǒng),其布局優(yōu)化方法模型可描述為

      式中:k為支撐單元的剛度值,P(x,y)為支撐單元中心位置(支撐點(diǎn))在直角坐標(biāo)系平面的投影位置,為剛度數(shù)據(jù)庫(kù),Dz為去除剛體位移后,光軸方向第個(gè)節(jié)點(diǎn)變形量。面形精度評(píng)價(jià)指標(biāo)RMS值和PV值可分別表示為

      2.2 自動(dòng)化流程

      支撐剛度和支撐位置相互耦合,共同影響反射鏡支撐面形精度,為了降低問(wèn)題的復(fù)雜性,通過(guò)分級(jí)迭代的思想,對(duì)二者進(jìn)行解耦后對(duì)支撐位置布局優(yōu)化。用Isight軟件建立了支撐剛度-位置耦合系統(tǒng)的分級(jí)布局優(yōu)化分析流程,如圖1所示。

      圖1 支撐系統(tǒng)優(yōu)化流程圖

      首先提取一種剛度組合方案映射到有限元模型中,采用遺傳算法和序列二次規(guī)劃法作為優(yōu)化算法以面形精度RMS值為目標(biāo)進(jìn)行布局優(yōu)化,得到該剛度組合方案下各支撐點(diǎn)最優(yōu)位置,并記錄剛度方案、支撐位置信息、RMS和PV值。然后再提取其他剛度組合方案進(jìn)行支撐點(diǎn)位置尋優(yōu),通過(guò)對(duì)比各剛度組合方案布局優(yōu)化結(jié)果的面形精度RMS值,輸出最優(yōu)剛度方案與支撐位置信息及對(duì)應(yīng)的RMS值和PV值。

      3 主動(dòng)校正原理

      主動(dòng)光學(xué)的一項(xiàng)關(guān)鍵技術(shù)為波前擬合技術(shù)。波前擬合技術(shù)主要是擬合實(shí)際工況下的鏡面變形,主要包括兩種擬合方式:Zernike多項(xiàng)式擬合和自由諧振模式擬合。

      Zernike多項(xiàng)式擬合與自由諧振模式擬合相比,前者側(cè)重光學(xué)像差的表達(dá),每一項(xiàng)都有與之匹配的光學(xué)像差,但是由于Zernike多項(xiàng)式在邊緣存在彎矩作用,反射鏡若產(chǎn)生Zernike多項(xiàng)式的模式變形需要更大的校正力[10];后者側(cè)重反射鏡機(jī)械結(jié)構(gòu)特性,由于低頻自由諧振模式能量較小[11],所以產(chǎn)生該模式變形所需的力較小,且各項(xiàng)自由諧振模式之間相互正交,但是模態(tài)振型函數(shù)受鏡子結(jié)構(gòu)幾何參數(shù)限制,不同的鏡子模態(tài)振型表達(dá)形式并不統(tǒng)一。

      對(duì)于彎月薄鏡,如果校正力過(guò)大,會(huì)造成鏡子的破壞,為保證施加校正力后鏡子的安全,本文采用自由諧振模式進(jìn)行波前擬合。

      自由諧振模式下波前擬合表達(dá)式為

      取個(gè)鏡面節(jié)點(diǎn),通過(guò)有限元軟件進(jìn)行自由模態(tài)分析,取前項(xiàng)自由模態(tài)下這些節(jié)點(diǎn)沿光軸方向的向量值組成模態(tài)振型矩陣:

      通過(guò)有限元分析,求取實(shí)際工況下鏡面節(jié)點(diǎn)變形值,則自由諧振模式波前擬合的矩陣表達(dá)形式為

      采用最小二乘法對(duì)擬合系數(shù)進(jìn)行求解:

      主動(dòng)光學(xué)的另一項(xiàng)關(guān)鍵技術(shù)為校正力求解技術(shù)。波前擬合方式不同,則校正力求解方式不同。自由諧振模式波前擬合的校正力計(jì)算方法為模式定標(biāo)法。

      模式定標(biāo)流程可歸納總結(jié)[12]為

      4 案例應(yīng)用

      輕薄型彎月鏡只需要較小的校正力,即可實(shí)現(xiàn)較好的主動(dòng)光學(xué)面形校正效果,因此在光學(xué)工程中具有較大的應(yīng)用潛力,以下通過(guò)對(duì)4 m口徑SiC彎月薄鏡的方案預(yù)研來(lái)驗(yàn)證上述布局-剛度-校正力聯(lián)合優(yōu)化方法的有效性。該4 m彎月模型曲率半徑為6 m,中心厚度為50 mm,中心孔直徑為500 mm。

      4.1 支撐點(diǎn)數(shù)

      為了滿(mǎn)足4 m彎月薄鏡的支撐面形精度要求,同時(shí)保證鏡子不會(huì)由于應(yīng)力過(guò)大造成結(jié)構(gòu)破壞,采用Whiffletree液壓被動(dòng)支撐和力促動(dòng)器主動(dòng)支撐的組合支撐方案。由支撐變形理論可知,每個(gè)支撐圈上支撐點(diǎn)數(shù)量影響軸向支撐點(diǎn)之間的變形,支撐圈半徑和支撐圈上的載荷分布影響徑向變形。為了保證鏡子在自重下的面形精度,同時(shí)盡量降低支撐系統(tǒng)的控制難度,需要合理地設(shè)計(jì)支撐圈數(shù)和支撐點(diǎn)數(shù)目。

      Nelson[13]對(duì)圓形薄板各支撐圈數(shù)和各圈支撐點(diǎn)分配以及支撐點(diǎn)位置進(jìn)行了詳細(xì)的理論分析,支撐點(diǎn)分布和面形精度RMS值的關(guān)系為

      因此,提出4圈60點(diǎn)、66點(diǎn)被動(dòng)支撐和5圈78點(diǎn)、84點(diǎn)被動(dòng)支撐方案,以各方案被動(dòng)支撐下的面形精度RMS值作為評(píng)價(jià)標(biāo)準(zhǔn),確定初步支撐點(diǎn)布局方案。為了便于對(duì)比,各個(gè)方案支撐單元?jiǎng)偠仍O(shè)置為文獻(xiàn)[14]中平均值1944 N/mm。通過(guò)有限元分析,得出各方案在自重變形下的面形精度RMS值如表1所示。

      表1 各支撐方案自重變形下面形精度

      由表1可知,4圈60點(diǎn)支撐方案面形精度RMS值與66點(diǎn)方案的RMS值較為接近;5圈78點(diǎn)軸向支撐方案面形精度RMS值與84點(diǎn)方案的RMS值接近。所以選擇均為三角形排布的4圈60點(diǎn)和5圈78點(diǎn)軸向支撐方案作為對(duì)比。

      按照?qǐng)D2所示兩種支撐方案的點(diǎn)位分布,以120°將液壓支撐單元分為3個(gè)組,分別與其對(duì)應(yīng)的虛擬硬點(diǎn)相連,在虛擬硬點(diǎn)處約束U、RR三個(gè)自由度,鏡子邊緣設(shè)置3個(gè)虛擬硬點(diǎn)約束UUR三個(gè)自由度[15]。液壓支撐單元用彈簧單元模擬并賦予相應(yīng)的剛度值,建立有限元模型。并對(duì)兩種支撐方案進(jìn)行支撐剛度-位置耦合系統(tǒng)的分級(jí)布局優(yōu)化。

      圖2 兩種方案軸向支撐點(diǎn)布局示意圖。(a) 60點(diǎn)軸向支撐系統(tǒng);(b) 78點(diǎn)軸向支撐系統(tǒng)

      4.2 支撐剛度-位置分級(jí)優(yōu)化

      實(shí)際中各個(gè)支撐單元?jiǎng)偠瓤赡芏疾幌嗤?,為減少計(jì)算時(shí)間,假定通過(guò)分組互聯(lián)的方式可以實(shí)現(xiàn)前期工作中得到的1918 N/mm,1890 N/mm,1935 N/mm,1978 N/mm和2002 N/mm等5種單元?jiǎng)偠戎礫8],并假定相同支撐半徑下支撐單元?jiǎng)偠认嗤?,?duì)60點(diǎn)和78點(diǎn)支撐方案進(jìn)行布局優(yōu)化。兩種方案優(yōu)化前后的剛度分配、支撐半徑和面形精度如表2和表3所示,其中1、2、3、4和5為各支撐圈剛度值,1、2、3、4和5為各支撐圈半徑。

      由表2和表3可知,60點(diǎn)初始支撐方案經(jīng)過(guò)優(yōu)化后,RMS值降低了78.2%,PV值降低了73.3%;78點(diǎn)初始支撐方案經(jīng)過(guò)優(yōu)化后,RMS值降低了50%,PV值降低了59.8%。結(jié)果表明,經(jīng)過(guò)分級(jí)布局優(yōu)化后,得到了合適的剛度分配方案和支撐位置,面形精度得到顯著改善,證明了此分級(jí)優(yōu)化方法有效。

      4.3 模式法主動(dòng)力校正

      將60點(diǎn)軸向支撐方案的有限元模型進(jìn)行自由模態(tài)分析,取去除剛體模態(tài)的前20階自由模態(tài)振型進(jìn)行定標(biāo)力計(jì)算,其振型圖如圖3所示。

      根據(jù)模式定標(biāo)流程,首先提取前20階模態(tài)振型中60個(gè)主動(dòng)支撐點(diǎn)的軸向位移U,將U作為強(qiáng)制位移重新施加到對(duì)應(yīng)的主動(dòng)支撐點(diǎn)上,通過(guò)有限元靜力學(xué)分析,求得主動(dòng)支撐點(diǎn)的節(jié)點(diǎn)反力,將施加到主動(dòng)支撐點(diǎn)上,再次進(jìn)行有限元靜力學(xué)分析,計(jì)算面形精度RMS值RMS。

      根據(jù)式(9)計(jì)算出鏡面面形RMS值歸一化值=1000 nm時(shí)的模式定標(biāo)力,其定標(biāo)結(jié)果如表4所示,其中1max,2max,3max和4max分別為4個(gè)支撐圈上的最大校正力,定標(biāo)誤差為施加定標(biāo)力后的鏡面面形RMS值相較于歸一化值的誤差。

      由于模式定標(biāo)法的定標(biāo)值受主動(dòng)支撐點(diǎn)的位置、數(shù)量和支撐圈數(shù)限制,模態(tài)振型階數(shù)越高,定標(biāo)效果就會(huì)越差。如果增加主動(dòng)支撐點(diǎn)數(shù)量和支撐圈數(shù),定標(biāo)后的鏡面面形圖就會(huì)接近模態(tài)振型圖,定標(biāo)效果將會(huì)提高。

      由表4可知利用該定標(biāo)流程得到的前20階自由諧振模式的校正能力較好,所以采用前20階模態(tài)振型擬合自重下鏡面變形,求得擬合系數(shù)后代入式(10)計(jì)算主動(dòng)校正力,將校正力施加到支撐點(diǎn)上,對(duì)鏡面面形進(jìn)行主動(dòng)校正。60點(diǎn)軸向支撐方案經(jīng)初次校正后鏡面面形RMS值減小到14.6 nm。經(jīng)過(guò)相同過(guò)程,78點(diǎn)軸向支撐方案初次校正后鏡面面形RMS值減小到6.0 nm。兩種方案校正后的面形如圖4所示。兩種方案均滿(mǎn)足面形精度RMS值小于/40(=632.8 nm)的指標(biāo)要求,最終選擇支撐數(shù)量更少的60點(diǎn)軸向液壓支撐方案。

      表2 60點(diǎn)軸向支撐系統(tǒng)布局優(yōu)化結(jié)果

      表3 78點(diǎn)軸向支撐系統(tǒng)布局優(yōu)化結(jié)果

      圖3 反射鏡前20階模態(tài)振型

      表4 60點(diǎn)支撐方案模式定標(biāo)計(jì)算結(jié)果

      5 結(jié) 論

      本文為解決反射鏡Whiffletree液壓被動(dòng)支撐單元間的剛度差異對(duì)反射鏡重力卸載面形的影響,提出了對(duì)液壓支撐單元?jiǎng)偠群椭挝恢眠M(jìn)行迭代尋優(yōu)的分級(jí)優(yōu)化方法,并通過(guò)模式法主動(dòng)力校正技術(shù)對(duì)系統(tǒng)支撐的性能進(jìn)行了進(jìn)一步優(yōu)化。通過(guò)4 m口徑彎月薄鏡案例應(yīng)用表明,其60點(diǎn)和78點(diǎn)主動(dòng)式軸向液壓支撐方案分別得到了14.6 nm和6 nm RMS,優(yōu)化效果顯著,滿(mǎn)足指標(biāo)要求。本著支撐單元數(shù)量更少,降低控制難度的原則,優(yōu)選60點(diǎn)軸向液壓支撐方案作為最終方案。

      圖4 主動(dòng)校正后面形。(a) 60點(diǎn)方案校正后面形;(b) 78點(diǎn)方案校正后面形

      通過(guò)對(duì)支點(diǎn)布局、支撐剛度和校正力進(jìn)行聯(lián)合優(yōu)化,可大幅增加原位支撐系統(tǒng)的適用性、靈活性,降低實(shí)施難度,為其在未來(lái)彎月形超薄鏡面原位制造中的應(yīng)用奠定基礎(chǔ)。

      [1] Zhang L, Ye L, Zhang J P,. Gravity and support error separation of 1.2 m lightweight space mirror[J]., 2018, 47(7): 0722002.

      張瓏, 葉璐, 張金平, 等. 1.2m輕量化空間反射鏡的重力支撐變形分離[J]. 光子學(xué)報(bào), 2018, 47(7): 0722002.

      [2] Liu M, Zhang L Z, Li X,. Design of flexure support of space compact reflector subassembly and dynamic analysis[J]., 2018, 45(5): 170686.

      柳鳴, 張立中, 李響, 等. 空間輕小型反射鏡柔性支撐設(shè)計(jì)與動(dòng)力學(xué)分析[J]. 光電工程, 2018, 45(5): 170686.

      [3] Hu H F, Luo X, Xin H W,. Layout optimization of equal-force supports for ultra-large optical fabrication[J]., 2014, 34(4): 0422003.

      胡海飛, 羅霄, 辛宏偉, 等. 超大口徑光學(xué)制造均力支撐布局優(yōu)化[J]. 光學(xué)學(xué)報(bào), 2014, 34(4): 0422003.

      [4] Guo P, Zhang J X, Yang F,. Optimization of TMT M3 prototype’s support points[J]., 2015, 52(11): 112205.

      郭鵬, 張景旭, 楊飛, 等. TMT三鏡縮比系統(tǒng)支撐點(diǎn)位置優(yōu)化[J]. 激光與光電子學(xué)進(jìn)展, 2015, 52(11): 112205.

      [5] Dai X L. Study on the active control technology of a thin primary mirror[D]. Beijing: University of Chinese Academy of Sciences (Institute of Optics and Electronics, Chinese Academy of Sciences), 2018.

      戴曉霖. 薄型主鏡面形主動(dòng)控制技術(shù)研究[D]. 北京: 中國(guó)科學(xué)院大學(xué)(中國(guó)科學(xué)院光電技術(shù)研究所), 2018.

      [6] Li H Z, Zhang Z D, Wang J L,. Active surface-profile correction of 620 mm thin-mirror based on flotation support[J].

      , 2013, 33(5): 0511001.

      李宏壯, 張振鐸, 王建立, 等. 基于浮動(dòng)支撐的620 mm薄反射鏡面形主動(dòng)校正[J]. 光學(xué)學(xué)報(bào), 2013, 33(5): 0511001.

      [7] Zhu Y, Chen T, Wang J L,Active correction of 1.23 m SiC mirror using bending mode[J]., 2017, 25(10): 2551–2563.

      朱熠, 陳濤, 王建立, 等. 1.23 m SiC主鏡的本征模式主動(dòng)光學(xué)校正[J]. 光學(xué)精密工程, 2017, 25(10): 2551–2563.

      [8] Lan B, Wu X X, Li J F,. Influence of axial-force errors on the deformation of the 4 m lightweight mirror and its correction[J]., 2017, 56(3): 611–619.

      [9] Hu H F, Luo X, Liu Z Y,. Designing a hydraulic support system for large monolithic mirror’s precise in-situ testing-polishing iteration[J]., 2019, 27(3): 3746–3760.

      [10] Chen F L, Zhang J X, Wu X X,. Deformation of thin primary mirror fitted with its vibration mode[J]., 2011, 40(11): 2238–2243.

      陳夫林, 張景旭, 吳小霞, 等. 模態(tài)振型擬合薄鏡面變形分析[J]. 紅外與激光工程, 2011, 40(11): 2238–2243.

      [11] Noethe L. Use of minimum-energy modes for modal-active optics corrections of thin meniscus mirrors[J]., 1991, 38(6): 1043–1066.

      [12] Fan L, Qiao B, Wang F G. Calibration of moment correction for thin mirror surface based on free harmonic vibration modal[J]., 2016, 39(3): 9–13.

      范磊, 喬兵, 王富國(guó). 薄鏡面力矩校正在自由諧振模式下的定標(biāo)計(jì)算[J]. 長(zhǎng)春理工大學(xué)學(xué)報(bào)(自然科學(xué)版), 2016, 39(3): 9–13.

      [13] Nelson J E, Lubliner J, Mast T S. Telescope mirror supports: plate deflections on point supports[J]., 1982, 332(12): 212–228.

      [14] Hu H F, Zhao H W, Liu Z Y,. Hydrostatic support system for in-situ optical testing of a 4 m aperture SiC mirror[J]., 2017, 25(10): 2607–2613.

      胡海飛, 趙宏偉, 劉振宇, 等. 4 m口徑SiC反射鏡原位檢測(cè)用靜壓支撐系統(tǒng)[J]. 光學(xué)精密工程, 2017, 25(10): 2607–2613.

      [15] Wang F G, Li H Z, Yang F. Ability of the thin mirror active optics to correct optical astigmatio[J]., 2010, 39(5): 871–875.

      王富國(guó), 李宏壯, 楊飛. 薄鏡面主動(dòng)光學(xué)對(duì)光學(xué)像差的校正能力分析[J]. 光子學(xué)報(bào), 2010, 39(5): 871–875.

      Layout-stiffness-correction force joint optimization of support system for ultra-large thin meniscus mirror

      Xi Xinghua1, Zhang Chaojie1, Hu Haifei2,3, Guan Yingjun1*

      1School of Mechanical and Electrical Engineering, Changchun University of Technology, Changchun, Jilin 130012, China;2Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin 130033, China;3School of Mechanical and Aerospace Engineering, Jilin University, Changchun, Jilin 130025, China

      Optimization flow for support system

      Overview:With the increasing requirements for the sensitivity, resolution and angle of view of space telescopes, the aperture of space mirror are getting bigger and bigger, which greatly increases the difficulty of mirror fabrication support. For the space mirror in the in-situ fabrication and testing, besides the influence of other factors such as temperature, the self-weight deformation has a great influence on mirror surface figure. And the larger the aperture and the higher the precision, the more difficult the support is. The self-weight deformation is mainly affected by factors such as the number of support points, the position of the support points and the stiffness of the support unit. Passive hydraulic support units (PHSUs) are frequently used in the in-situ fabrication and testing. However, some studies have found that the number of supporting units of large-aperture mirrors is too large, resulting in a large difference in the stiffness of each group of hydraulic support units, and has a great influence on mirror surface figure. It has become a hidden danger affecting the accuracy of in-situ fabrication and testing. In order to reduce the number of supporting units and increase the accuracy of the supporting surface, the joint optimization method of layout, stiffness and active correction is studied. Firstly, for the difference of PHUS' stiffness, a hierarchical layout optimization method for support stiffness and support position is proposed to obtain the initial optimization solution of the support system. Then, the mode calibration method and the least square method is used for active correction of support system to obtain the final optimized solution of the mirror surface figure. Finally, the effectiveness of the method is verified by a numerical simulation experiment with specific cases. The results show that, for 4 m thin meniscus mirror, after layout optimization, with the hydraulic passive support system, the root mean square (RMS) of the mirror surface errors of 60 point axial support system is reduced from 150.6 nm to 32.9 nm, and the RMS value of the mirror surface errors of 78 point axial support system is reduced from 45.2 nm to 22.6 nm. The optimization effect is remarkable. After active correction, the RMS value of the mirror surface errors of 60 point axial support system is 14.6 nm, and it is 6.9 nm for 78 point axial support system. The requirement of the RMS value of the mirror surface error is less than/40 (=632.8 nm). The support systems meet the requirement. Finally, the 60 point axial support system was selected. Through the joint optimization of layout, stiffness and active correction for supporting points, it can greatly increase the applicability, flexibility and reduce the difficulty of implementation for the in-situ support system.

      Citation: Xi X H, Zhang C J, Hu H F,Layout-stiffness-correction force joint optimization of support system for ultra-large thin meniscus mirror[J]., 2020, 47(8): 190551

      Layout-stiffness-correction force joint optimization of support system for ultra-large thin meniscus mirror

      Xi Xinghua1, Zhang Chaojie1, Hu Haifei2,3, Guan Yingjun1*

      1School of Mechanical and Electrical Engineering, Changchun University of Technology, Changchun, Jilin 130012, China;2Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin 130033, China;3School of Mechanical and Aerospace Engineering, Jilin University, Changchun, Jilin 130025, China

      Passive hydraulic support units (PHSUs) are frequently used in the in-situ fabrication and testing (in-situ support). However, the difference in PHSUs’ stiffness will affect the mirror surface figure, especially for those thin meniscus mirrors. In order to solve this problem, the joint optimization method of layout, stiffness and active correction is studied. Firstly, for the difference of PHUS' stiffness, a hierarchical layout optimization method for support stiffness and support position is proposed to obtain the initial optimization solution of the support system. Then, the mode calibration method and the least square method is used for active correction of support system to obtain the final optimized solution of the mirror surface figure. Finally, the effectiveness of the method is verified by a numerical simulation experiment with specific cases. The results show that, for 4 m thin meniscus mirror, after layout optimization, with the hydraulic passive support system, the root mean square (RMS) of the mirror surface errors of 60 point axial support system is reduced from 150.6 nm to 32.9 nm, and the RMS value of the mirror surface errors of 78 point axial support system is reduced from 45.2 nm to 22.6 nm. The optimization effect is remarkable. After active correction, the RMS value of the mirror surface errors of 60point axial support system is 14.6 nm, and it is 6.9 nm for 78 point axial support system. The requirement of the RMS value of the mirror surface error is less than/40 (=632.8 nm). The support systems meet the requirement. Finally, the 60 point axial support system was selected. Through the joint optimization of layout, stiffness and active correction for supporting points, it can greatly increase the applicability, flexibility and reduce the difficulty of implementation for the in-situ support system.

      layout optimization; active optics; hydraulic Whiffletree; stiffness difference; in-situ support

      TH751;TH74

      A

      10.12086/oee.2020.190551

      : Xi X H, Zhang C J, Hu H F,. Layout-stiffness-correction force joint optimization of support system for ultra-large thin meniscus mirror[J]., 2020,47(8): 190551

      習(xí)興華,張超杰,胡海飛,等. 超大口徑彎月鏡支撐點(diǎn)布局-剛度-校正力聯(lián)合優(yōu)化[J]. 光電工程,2020,47(8): 190551

      Supported by National Natural Science Foundation of China (11873007) and Central Guiding Local Science and Technology Development Fund (202002035JC)

      * E-mail: gyj5460@sohu.com

      2019-09-19;

      2020-01-09

      國(guó)家自然科學(xué)基金資助項(xiàng)目(11873007);中央引導(dǎo)地方科技發(fā)展基金(202002035JC)

      習(xí)興華(1994-),男,碩士研究生,主要從事空間光學(xué)遙感器結(jié)構(gòu)優(yōu)化設(shè)計(jì)方面的研究。E-mail:1973038493@qq.com

      關(guān)英俊(1978-),男,博士,教授,博士生導(dǎo)師,主要從事空間光學(xué)遙感器結(jié)構(gòu)優(yōu)化設(shè)計(jì)方面的研究。E-mail:gyj5460@sohu.com

      猜你喜歡
      面形支撐點(diǎn)反射鏡
      問(wèn)題與征解
      高發(fā)電量固定式光伏支架
      新能源科技(2022年9期)2022-11-20 19:28:56
      反射鏡面形三坐標(biāo)白光掃描檢測(cè)精度研究
      使用最小二乘迭代相移方法測(cè)量透明元件*
      大口徑反射鏡重力卸載設(shè)計(jì)
      超光譜儀光柵面形對(duì)光譜性能影響的仿真分析
      找準(zhǔn)科學(xué)養(yǎng)護(hù)的支撐點(diǎn)——江蘇高速公路瀝青路面養(yǎng)護(hù)策略思考
      人生支撐點(diǎn)
      百姓生活(2017年6期)2017-06-10 16:05:27
      人生的支撐點(diǎn)
      幸福家庭(2016年10期)2016-11-25 08:19:40
      機(jī)動(dòng)車(chē)載快速反射鏡激光指向修正量的解算
      桂林市| 长宁区| 武义县| 长泰县| 竹北市| 东丽区| 湾仔区| 五峰| 临沂市| 金平| 西充县| 镶黄旗| 吴川市| 大悟县| 马边| 民勤县| 安龙县| 边坝县| 即墨市| 阳谷县| 鄢陵县| 南江县| 容城县| 克山县| 祥云县| 吉木乃县| 府谷县| 西林县| 广昌县| 泌阳县| 阜城县| 乐平市| 田林县| 柯坪县| 图木舒克市| 通河县| 江川县| 怀远县| 辛集市| 沙湾县| 临泉县|