李磊 王曉娜 由春媛
【摘 要】 目的:通過綜合應(yīng)用二維斑點(diǎn)追蹤技術(shù)和組織多普勒技術(shù)定量評(píng)價(jià)2型糖尿病患者左室收縮功能和舒張功能的變化特性。方法:選取2型糖尿病患者32例為病例組,正常健康者20例為對(duì)照組。兩組均先進(jìn)行常規(guī)經(jīng)胸超聲心動(dòng)圖采集左室長軸三切面、短軸三切面,然后采用二維斑點(diǎn)追蹤技術(shù)計(jì)算左室長軸縱向和圓周應(yīng)變,并取長軸縱向應(yīng)變、圓周應(yīng)變的絕對(duì)值與糖化血紅蛋白、空腹血糖做相關(guān)性分析。多普勒技術(shù)檢測E、A、e'值,計(jì)算E/A和E/e'。最后,對(duì)上述參數(shù)進(jìn)行對(duì)比分析。結(jié)果:2型糖尿病組整體縱向應(yīng)變和圓周應(yīng)變均低于正常對(duì)照組,差異有統(tǒng)計(jì)學(xué)意義(P<0.05),同一短軸水平圓周應(yīng)變均低于正常對(duì)照組(P<0.05)。糖尿病組E'低于正常組,而E/E'高于正常組(P<0.05)。整體縱向應(yīng)變、整體圓周應(yīng)變絕對(duì)值與糖化血紅蛋白均呈負(fù)相關(guān),相關(guān)系數(shù)r值分別為-0.460、-0.452,P<0.01,二者的絕對(duì)值與空腹血糖均無相關(guān)性。結(jié)論:2型糖尿病患者左室應(yīng)變較正常組降低,同時(shí)存在舒張功能障礙,糖化血紅蛋白水平與左室應(yīng)變呈負(fù)相關(guān)。綜合應(yīng)用二維斑點(diǎn)追蹤技術(shù)和組織多普勒技術(shù)能夠更敏感、更準(zhǔn)確地發(fā)現(xiàn)心肌功能變化。
【關(guān)鍵詞】 糖尿病;斑點(diǎn)追蹤;組織多普勒;心室功能;糖化血紅蛋白
【中圖分類號(hào)】 R587.1 ? 【文獻(xiàn)標(biāo)志碼】A ? 【文章編號(hào)】1005-0019(2020)17-011-01
Abstract:Objective:To quantitatively evaluate left ventricular function in type 2 diabetes mellitus(T2DM) by using two-dimensional speckle tracking imaging and tissue doppler imaging. Methods:Thirty-two T2DM patients and twenty matched controls were enrolled in the study. High frame rate two-dimensional images of three consecutive cardiac cycles were recorded from the LV apical four-chamber view,two-chamber view, long-axis view and the short-axis views at the levels of mitral annulus, papillary muscle and apex of the LV respectively. Global longitudinal strain (GLS) and global circumferential strain (GCS) were assessed using speckle tracking imaging. Took the absolute value of GLS and GCS to analyze the correlation with glycosylated hemoglobin A1c (HbAlc), fasting plasma glucose (FPG). The values of E、A、e' were measured by Doppler imaging. We calculated E/A and E/e'. Results:GLS and GCS in T2DM patients were significantly lower than those in normal controls (all P <0.05). Compared with group normal control(NC), the CS of T2DM patients were significantly lower in the basal、middle and apical parts of cardium(all P <0.05). Compared with group normal control, e' of T2DM patients were significantly higher and E/E' of T2DM patients were significantly lower (all P <0.05). The absolute value of GLS, GCS and HbAlc were negatively correlated, the correlation coefficients respectively were -0.460(GLS), -0.452(GCS), P<0.01. The absolute value of GLS, GCS and FPG were not correlated significantly. Conclusion:GLS and GCS in T2DM patients were significantly lower than those in normal controls. T2DM patients also had diastolic dysfunction. HbAlc and the strains of left ventricular are negatively correlated. The two-dimensional speckle tracking and tissue doppler imaging may detect left ventricular dysfunctions in T2DM patients more sensitively and accurately.
Key words:Type 2 diabetes mellitus; Two-dimensional speckle tracking; tissue doppler imaging; Left ventricular function; glycosylated hemoglobin A1c
近年來,糖尿病的發(fā)病率逐年遞增,不但患者更易發(fā)生心肌梗死、冠心病等心血管疾病[1],而且糖尿病也是公認(rèn)的心力衰竭的重要因素[2],男性患者發(fā)生心力衰竭的概率是正常對(duì)照組兩倍,女性患者則是五倍[3]。由于糖尿病會(huì)引起心肌細(xì)胞結(jié)構(gòu)、功能的改變,即使沒有明確的臨床癥狀,患者左室收縮功能亦有下降,被稱為糖尿病心肌病[4-5]。但是,常規(guī)超聲心動(dòng)圖很難發(fā)現(xiàn)這種心肌早期功能改變。二維斑點(diǎn)追蹤顯像(two-dimensional speckle tracking imaging, 2D-STI)技術(shù)作為一種比較成熟技術(shù),無角度依賴性,通過逐幀追蹤心肌運(yùn)動(dòng),量化各階段的心肌的應(yīng)變、峰值速度,為早期發(fā)現(xiàn)糖尿病患者左室收縮功能改變提供可定量的檢查技術(shù)[6-7]。組織多普勒(Tissue Doppler imagines, TDI)技術(shù)因其技術(shù)不受心室前后負(fù)荷等因素的影響,可以直接檢測心肌舒張運(yùn)動(dòng)速度,應(yīng)用比較廣泛[8]。為了更加準(zhǔn)確和全面的評(píng)價(jià)糖尿病患者左室功能改變,本研究通過綜合應(yīng)用二維斑點(diǎn)追蹤技術(shù)和組織多普勒技術(shù),對(duì)2型糖尿病患者左室收縮功能和舒張功能同時(shí)開展研究,并研究整體縱向應(yīng)變(global longitudinal strain,GLS)、整體圓周應(yīng)變(global circumferential strain, GCS)與糖化血紅蛋白(glycosylated hemoglobin A1c,HbAlc)、空腹血糖(fasting plasma glucose, FPG)的相關(guān)性。旨在更加靈敏、更加準(zhǔn)確的發(fā)現(xiàn)2型糖尿病患者早期的左室功能變化,以便指導(dǎo)臨床及早進(jìn)行干預(yù)治療。
資料與方法
一、研究對(duì)象
選自2019年1月至2019年6月在我院住院的Ⅱ型糖尿病患者32例,其中男20例,女13例,年齡36~76歲,平均(58.12±11.56)歲。Ⅱ型糖尿病診斷標(biāo)準(zhǔn)依據(jù)美國糖尿病協(xié)會(huì)指南[9]。對(duì)照組選取體檢健康者20例,男11例,女9例,年齡28~73歲,平均(54.85±10.34)歲。排除標(biāo)準(zhǔn)為:高血壓、冠心病、心臟瓣膜病、先天性心臟病、心肌病、嚴(yán)重心律失常及其他疾病引起的心功能不全患者。本研究經(jīng)本院倫理醫(yī)學(xué)倫理委員會(huì)審核批準(zhǔn),參與受試者均簽署知情同意書。
二、儀器與方法
1. 圖像采集:應(yīng)用Philips 7C 彩色多普勒超聲診斷儀,S5-1經(jīng)胸探頭,頻率1~5MHz。囑受檢者左側(cè)臥位,平靜呼吸,同步連接心電圖,調(diào)節(jié)圖像幀頻達(dá)到分析要求,采集心尖四腔心、兩腔心及三腔心連續(xù)3個(gè)心動(dòng)周期的二維動(dòng)態(tài)圖像。用同樣的方法采集二尖瓣水平、乳頭肌水平及心尖水平左室短軸二維動(dòng)態(tài)圖像。采集需要測量室間隔、左室后壁、左室質(zhì)量指數(shù)、左房容積指數(shù)、舒張?jiān)缙诙獍昕谘魉俣取⑹鎻埻砥诙獍暄魉俣?、二尖瓣游離壁舒張?jiān)缙诜逯邓俣燃笆议g隔瓣環(huán)舒張?jiān)缙诜逯邓俣鹊亩S圖像。
2. QLAB 6.0超聲圖像處理軟件分析存儲(chǔ)的二維動(dòng)態(tài)圖像資料。分別對(duì)心尖三腔心、四腔心、兩腔心的左心室心內(nèi)膜面進(jìn)行描記,適當(dāng)調(diào)整感興趣區(qū)寬度使其剛好覆蓋左室心肌全層,軟件根據(jù)三個(gè)切面的動(dòng)態(tài)跟蹤自動(dòng)計(jì)算左室整體縱向應(yīng)變。然后,對(duì)二尖瓣水平短軸、乳頭肌水平短軸以及心尖水平短軸切面圖像進(jìn)行描記和追蹤,軟件自動(dòng)給出各切面的應(yīng)變值,將三個(gè)切面的應(yīng)變值進(jìn)行平均得到左室整體圓周應(yīng)變(圖1)。根據(jù)心尖四腔心切面和心尖兩腔心切面的動(dòng)態(tài)圖,應(yīng)用Simpson法計(jì)算左室舒張末期容積、收縮末期容積和LVEF。
三、統(tǒng)計(jì)學(xué)分析
采用SAS 8.0統(tǒng)計(jì)學(xué)軟件進(jìn)行分析。所有數(shù)據(jù)需進(jìn)行正態(tài)性檢驗(yàn)及方差齊性檢驗(yàn)。服從正態(tài)分布的計(jì)量資料以均數(shù)±標(biāo)準(zhǔn)差表示,兩組間差異性比較采用獨(dú)立樣本t檢驗(yàn)。不服從正態(tài)分布的計(jì)量資料組間差異性比較采用Wilcoxon秩和檢驗(yàn);計(jì)數(shù)資料以百分比表示,組間差異性比較采用卡方檢驗(yàn)。整體縱向應(yīng)變、圓周應(yīng)變與糖化血紅蛋白的相關(guān)性,變量均為正態(tài)分布者采用Pearson相關(guān)性分析,否則選用Spearman相關(guān)分析。以P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
結(jié)果
一、常規(guī)臨床特征的比較
兩組間常規(guī)臨床特征中年齡、性別、體表面積、心率、收縮壓、舒張壓、尿酸、肌酐及總膽固醇方面差異無統(tǒng)計(jì)學(xué)意義(P>0.05),具有可比性。糖尿病組(DM)的FPG、HbA1c較對(duì)照組增加,差異有統(tǒng)計(jì)學(xué)意義(P<0.05),見表1。
二、常規(guī)超聲心動(dòng)圖參數(shù)的比較
兩組間左心室舒張末室間隔厚度、左心室舒張末左心室后壁厚度、左室質(zhì)量指數(shù)、左心室舒張末容積、左心室收縮末容積、左心室射血分?jǐn)?shù)、左房容積指數(shù)及二尖瓣血流頻譜E/A值差異均無統(tǒng)計(jì)學(xué)意義(P >0.05)。糖尿病組e'低于正常組,E/e'高于正常對(duì)照組(P<0.05),見表2。
三、兩組左室應(yīng)變參數(shù)比較
糖尿病組整體縱向應(yīng)變低于正常對(duì)照組,差異有統(tǒng)計(jì)學(xué)意義(P<0.05)。糖尿病組整體圓周應(yīng)變及各切面的圓周應(yīng)變均低于正常對(duì)照組,差異有統(tǒng)計(jì)學(xué)意義(P<0.05),見表3。
四、糖尿病組血糖水平與GLS、GCS的相關(guān)性
HbAlc與GLS、GCS的絕對(duì)值均呈負(fù)相關(guān),相關(guān)系數(shù)r值分別為-0.460,-0.452,P<0.01。而FPG與GLS、GCS的絕對(duì)值均無相關(guān)性。
討論
糖尿病患者血糖如果長期得不到控制,就會(huì)引起很多并發(fā)癥,導(dǎo)致糖尿病腎病、糖尿病性視網(wǎng)膜病及糖尿病性神經(jīng)病變。越來越多的研究證實(shí),糖尿病患者高血糖也可引起心肌結(jié)構(gòu)和功能的改變,稱為糖尿病型心肌病[4-5]。糖尿病型心肌病的病理生理學(xué)機(jī)制主要是:心肌微循環(huán)障礙、心肌間質(zhì)纖維化及心室肌細(xì)胞肥大等[10]。糖尿病型心肌病早期常無臨床改變,常規(guī)超聲心動(dòng)圖參數(shù)不能判斷糖尿病對(duì)心肌的損害程度,而當(dāng)出現(xiàn)心力衰竭時(shí)為時(shí)過晚,因此早期準(zhǔn)確診斷心肌改變尤為重要。二維斑點(diǎn)追蹤技術(shù)通過計(jì)算左室心肌應(yīng)變及應(yīng)變率,可早期較敏感發(fā)現(xiàn)心肌功能改變[11]。本研究發(fā)現(xiàn)糖尿病患者整體縱向應(yīng)變、圓周應(yīng)變均低于正常對(duì)照組,與以前的研究結(jié)果一致[7,12-13],證實(shí)糖尿病患者存在心肌收縮功能改變。此外,研究表明糖尿病型心肌病患者左室舒張功能早于收縮功能改變[10,14],而在診斷舒張功能障礙方面,組織多普勒技術(shù)較二尖瓣血流頻譜更敏感、特異性更高[15]。本研究發(fā)現(xiàn)糖尿病組MED e'和LAT e'均低于正常組,E/e'高于正常對(duì)照組,這說明糖尿病患者存在左室舒張功能減低。另外,糖尿病組E/A值較正常組無統(tǒng)計(jì)學(xué)差異,這說明組織多普勒技術(shù)能更敏感發(fā)現(xiàn)糖尿病患者舒張功能的改變,不能僅憑E/A值來判斷。
應(yīng)該常規(guī)應(yīng)用組織多普勒技術(shù),以便更早發(fā)現(xiàn)左室舒張功能改變。綜合上述結(jié)果,糖尿病患者同時(shí)存在應(yīng)變降低以及E/e'升高,說明入組患者心肌功能已不是早期改變,可能已趨向更嚴(yán)重的階段,應(yīng)盡早干預(yù)治療。
糖尿病患者高血糖水平會(huì)在心肌細(xì)胞內(nèi)引起一系列分子及代謝改變,高血糖會(huì)使線粒體過氧化反應(yīng)產(chǎn)物增加,過多的活性氧(reactive oxygen species, ROS)加速了心肌細(xì)胞的凋亡和DNA的破壞,最終引起心肌纖維化,影響心肌功能[16]。本研究選取糖尿病患者空腹血糖和糖化血紅蛋白與左心室應(yīng)變進(jìn)行相關(guān)性分析,發(fā)現(xiàn)糖尿病患者的空腹血糖與左室應(yīng)變無相關(guān)性,而糖化血紅蛋白與左心室應(yīng)變絕對(duì)值成負(fù)相關(guān)。這可能是由于空腹血糖只能反映糖尿病患者采血時(shí)刻的血糖的水平,糖化血紅蛋白可反映近2-3個(gè)月以來血糖水平。糖尿病患者左室應(yīng)變的改變應(yīng)該是長期高血糖導(dǎo)致的,空腹血糖不能反映這一過程。糖化血紅蛋白每增加1%,冠心病增加15%、心臟衰竭增加11%[17],因此糖尿病患者應(yīng)嚴(yán)格控制血糖水平。文獻(xiàn)[18]采用三維斑點(diǎn)追蹤技術(shù)的研究表明,在血糖控制不佳的糖尿病患者中三個(gè)方向的應(yīng)變均降低,而血糖控制良好的患者則僅有縱向應(yīng)變下降,圓周和徑向應(yīng)變保持不變。結(jié)合糖化血紅蛋白和空腹血糖可知,入組的糖尿病患者血糖控制不佳,大概率病情比較嚴(yán)重,需要及早治療。
綜上所述,如果糖尿病患者的血糖長期得不到有效控制,可能沒有臨床癥狀,但是心肌損害已經(jīng)發(fā)生。通過綜合應(yīng)用二維斑點(diǎn)追蹤技術(shù)和組織多普勒技術(shù)可以更敏感、更準(zhǔn)確的發(fā)現(xiàn)早期心肌收縮和舒張功能的改變,加之患者的糖化血紅蛋白水平,以便指導(dǎo)臨床及早干預(yù)治療,嚴(yán)格控制患者的血糖水平,盡可能減少糖尿病型心肌病并發(fā)癥的發(fā)生率,提高患者生存質(zhì)量,下一步研究將重點(diǎn)關(guān)注治療后血糖控制良好的糖尿病患者相關(guān)指標(biāo)變化情況。
參考文獻(xiàn)
[1] Philouze C, Obert P, Nottin S, et al. Dobutamine stress echocardiography unmasks early left ventricular dysfunction in asymptomatic patients with uncomplicated type 2 diabetes: a comprehensive two-dimensional speckle-tracking imaging study[J]. J Am Soc Echocardiogr, 2018,31(5):587-597.
[2] Dhingra R, Vasan RS. Diabetes and the risk of heart failure[J]. Heart Fail Clin,2012,8(1):1 25-133.
[3] Kannel WB, McGee DL. Diabetes and cardiovascular disease: the Framingham study[J]. JAMA, 1979,241(19):2035-2038.
[4] Hayat SA, Patel B, Khattar RS, et al. Diabetic cardiomyopathy: mechanisms, diagnosis and treatment[J]. Clinical Science,2004,107(6):539-557.
[5] Miki T, Yuda S, Kouzu H, et al. Diabetic cardiomyopathy:pathophysiology and clinical features[J]. eart Fail Rev,2013,18(2):149-166.
[6] Guo R, Wang K, Song W, et al. Myocardial dysfunction in early diabetes patients with microalbuminuria: a 2-dimensional speckle tracking strain study[J]. Cell Biochem Biophys, 2014,70(1):573-578.
[7] 薛衍敏,潘翠珍,李政. 分層二維斑點(diǎn)追蹤顯像技術(shù)評(píng)價(jià)糖尿病患者左室心肌各層收縮功能的變化[J]. 中華超聲影像學(xué)雜志,2015,24(12):1024-1027.
[8] 鄭嘉榮,邢月貞,高麗,等. 組織多普勒技術(shù)對(duì)2型糖尿病性心臟病患者右室功能的研究[J]. 中華超聲影像學(xué)雜志,2018,20(2):86-89.
[9] American Diabetes Association. Standards of medical care of in diabetes-2013[J]. Diabetes Care,2013,36(Suppl 1): S11-S66.
[10] Voulgari C, Papadogiannis D, Tentolouris N. Diabetic cardiomyopathy: from the pathophysiology of the cardiac myocytes to current diagnosis and management strategies[J]. Vasc Health Risk Manag, 2010,6:883-903.
[11] Fang ZY, Prins JB, Marwick TH. Diabetic cardiomyopathy: evidence, mechanisms, and therapeutic implications[J]. Endocr Rev, 2004, 25(4):543-567.
[12] Enomoto M, Ishizu T, Seo Y, et al. Myocardial dysfunction identified by three-dimensional speckle tracking echocardiography in type 2 diabetes patients relates to complications of microangiopathy[J]. J Cardiol,2016,68(4):282-287.
[13] Tadic M, Ilic S, Cuspidi C, et al. Left ventricular mechanics in untreated normotensive patients with type 2 diabetes mellitus:a two and three-dimensional speckle tracking study [J].Echocardiography, 2015, 32(6):947-955.
[14] Nunes S, Soares E, Fernandes J, et al. Early cardiac changes in a rat model of prediabetes: brain natriuretic peptide overexpression seems to be the best marker[J]. Cardiovasc Diabetol, 2013,12:44.
[15] Miki T, Yuda S, Kouzu H, et al. Diabetic cardiomyopathy: pathophysiology and clinical features[J]. Heart Fail Rev,2013,18(2):149-166.
[16] Aragno M, Mastrocola R, Medana C, et al. Oxidative stress-dependent impairment of cardiac-specific transcription factors in experimental diabetes[J].Endocrinology 2006 ,147(12):5967-5974.
[17] Zhang Y, Hu G, Yuan Z, et al. Glycosylated Hemoglobin in relationship to cardiovascular outcomes and death in patients with type 2 diabetes: a systematic reviewandMeta-Analysis[J]. Plosone, 2012,7(8): e42551.
[18] Zhang X, Wei X, Liang Y, et al. Differential changes of left ventricular myocardial deformation in diabetic patients with controlled and uncontrolled blood glucose: a three-dimensional speckle-tracking echocardiography-based study [J]. J Am Soc Echocardiogr, 2013,26(5):499-506.