蔡大鑫,劉少軍,陳匯林,田光輝
基于植被長(zhǎng)勢(shì)的香蕉區(qū)域估產(chǎn)信息擴(kuò)散模型*
蔡大鑫,劉少軍,陳匯林,田光輝
(海南省氣象科學(xué)研究所/海南省南海氣象防災(zāi)減災(zāi)重點(diǎn)實(shí)驗(yàn)室,???570203)
基于Landsat-8和MODIS數(shù)據(jù),首先采用面向?qū)ο蠓椒▽?duì)海南島香蕉種植區(qū)的空間分布進(jìn)行初次提取,然后采用基于時(shí)序植被指數(shù)的馬氏距離方法進(jìn)行二次提取,最后對(duì)兩次提取結(jié)果進(jìn)行空間疊加,采用隨機(jī)選點(diǎn)實(shí)地驗(yàn)證的方法對(duì)分類精度進(jìn)行評(píng)價(jià)。針對(duì)區(qū)域估產(chǎn)樣本數(shù)量少的問題,統(tǒng)計(jì)2014?2015年的MODIS數(shù)據(jù)和2015年的香蕉區(qū)域產(chǎn)量數(shù)據(jù),以全生育期香蕉長(zhǎng)勢(shì)為輸入變量建立信息擴(kuò)散區(qū)域估產(chǎn)模型,利用交叉驗(yàn)證方法評(píng)價(jià)估產(chǎn)精度,同時(shí)評(píng)價(jià)估產(chǎn)模型對(duì)于產(chǎn)量增減變化趨勢(shì)模擬的準(zhǔn)確性。通過組合多個(gè)生育階段構(gòu)建三種信息擴(kuò)散估產(chǎn)方案,對(duì)比各方案的估產(chǎn)精度。結(jié)果表明:(1)采用面向?qū)ο蠛婉R氏距離的綜合分類方法精度較高,總分類精度和Kappa系數(shù)分別為82.5%和0.7338,一致性檢驗(yàn)的結(jié)果較好。(2)基于全生育期香蕉長(zhǎng)勢(shì)的信息擴(kuò)散模型估產(chǎn)精度較高,平均相對(duì)誤差為26.0%,決定系數(shù)為0.9216,解釋能力和穩(wěn)定性較好;對(duì)年際間產(chǎn)量趨勢(shì)變化的預(yù)估準(zhǔn)確率達(dá)到83.3%。(3)基于全生育期構(gòu)建的單變量信息擴(kuò)散估產(chǎn)方案精度最高,相比其它兩種多變量建模方案平均相對(duì)誤差分別降低2.9個(gè)百分點(diǎn)和10.4個(gè)百分點(diǎn)??梢?,信息擴(kuò)散方法對(duì)于小樣本數(shù)據(jù)的處理能力較強(qiáng),以全生育期為輸入變量構(gòu)建的估產(chǎn)模型精度較高,適應(yīng)性較好,可為熱帶經(jīng)濟(jì)作物區(qū)域估產(chǎn)提供重要參考。
信息擴(kuò)散;估產(chǎn)模型;遙感;經(jīng)濟(jì)作物;香蕉
受限于氣象災(zāi)害和生產(chǎn)技術(shù)水平,海南島香蕉產(chǎn)量穩(wěn)定性差,年際間波動(dòng)較大,因此,開展香蕉估產(chǎn)研究,準(zhǔn)確把握產(chǎn)量的變化趨勢(shì),對(duì)于香蕉種植產(chǎn)業(yè)的規(guī)劃布局和穩(wěn)定發(fā)展具有重要意義。遙感估產(chǎn)是目前應(yīng)用最廣泛的作物估產(chǎn)方法之一,特別適用于大面積、分布均一的種植類型。大面積作物產(chǎn)量遙感估算模型主要包括經(jīng)驗(yàn)?zāi)P?、半機(jī)理模型和機(jī)理模型[1]。許多學(xué)者應(yīng)用遙感方法開展了廣泛的研究,如趙東妮等[2?3]利用HP濾波法、Logistic方法模擬水稻趨勢(shì)產(chǎn)量,分析氣象條件對(duì)產(chǎn)量波動(dòng)的影響。Dettori等[4]通過試驗(yàn)及分析30a數(shù)據(jù)集校準(zhǔn)CERES-Wheat模型,調(diào)試后的模型在預(yù)測(cè)小麥產(chǎn)量和開花期方面表現(xiàn)出相當(dāng)好的性能。劉紅超等[5]以冬小麥關(guān)鍵生育期遙感數(shù)據(jù)與產(chǎn)量建立統(tǒng)計(jì)模型,其估產(chǎn)精度在95%以上。張祎等[6]選用作物機(jī)理模型APSIM模型開展氣候變化對(duì)玉米產(chǎn)量的影響研究,發(fā)現(xiàn)其對(duì)玉米生長(zhǎng)發(fā)育和產(chǎn)量形成有很好的模擬能力。解毅等[7]通過粒子濾波算法同化LAI、土壤含水量、地上干生物量和CERES-Wheat模型狀態(tài)量,構(gòu)建小麥同化估產(chǎn)模型,分析同化變量組合估產(chǎn)的精度。
經(jīng)驗(yàn)方法建模簡(jiǎn)便,精度較高,研究成果也較多,如聚類分區(qū)[8]、混合光譜分析[9]、卷積神經(jīng)網(wǎng)絡(luò)[10]、蒸散發(fā)模型[11]、隨機(jī)森林回歸[12]、時(shí)序定量遙感[13]等。但以往的研究多以小麥、水稻等大宗糧食作物為主,對(duì)經(jīng)濟(jì)作物尤其是下墊面復(fù)雜的熱帶經(jīng)濟(jì)作物研究不多,有關(guān)作物模型的研究也較少見,而且影響產(chǎn)量形成的因素復(fù)雜,因此采用何種方法預(yù)估能夠取得較好效果仍需開展研究加以驗(yàn)證。另外開展大面積區(qū)域估產(chǎn)時(shí)經(jīng)常會(huì)面臨樣本數(shù)量不足的問題,制約了模型的精度和適用性。信息擴(kuò)散是一種對(duì)樣本進(jìn)行集值化的模糊數(shù)學(xué)處理方法,可以將不完備的單值樣本基于擴(kuò)散函數(shù)擴(kuò)散到不同的控制點(diǎn)上,以實(shí)現(xiàn)挖掘更多的信息;還可以通過求取論域的控制點(diǎn)所確定的信息矩陣,獲得論域之間的模糊關(guān)系[14]。但目前的信息擴(kuò)散方法多見于災(zāi)害風(fēng)險(xiǎn)評(píng)估領(lǐng)域,而在作物產(chǎn)量預(yù)估方面應(yīng)用較少。鑒于此,本研究以熱帶經(jīng)濟(jì)作物香蕉為研究對(duì)象,利用信息擴(kuò)散方法構(gòu)建估產(chǎn)模型,評(píng)價(jià)其精度及適用性,同時(shí)分析生育期對(duì)建模精度的影響,以期為及時(shí)了解不同生態(tài)區(qū)域香蕉產(chǎn)量豐歉變化趨勢(shì),制定貿(mào)易和宏觀調(diào)控政策提供參考。
海南島(18°10′?20°10′N,108°37′?111°03′E)面積約3.4萬km2,地勢(shì)四周低平,中間高聳,山地、丘陵、臺(tái)地、平原構(gòu)成環(huán)形層狀地貌,梯級(jí)結(jié)構(gòu)明顯。氣候類型屬熱帶季風(fēng)海洋性氣候,主要特點(diǎn)是光照充足,熱量豐富,降水充沛。香蕉種植區(qū)主要分布在北部和西部,品種有香牙蕉、大蕉、粉蕉、龍牙蕉等。
香蕉沒有固定的生育期,一年四季都可種植。海南以春植為主,當(dāng)年2?4月種植,第二年4?6月收獲,以避開夏、秋季臺(tái)風(fēng)對(duì)成熟期香蕉的影響[15]。選定2014年3月?2015年5月為香蕉生育期,此時(shí)段的MODIS數(shù)據(jù)來源于國(guó)家衛(wèi)星氣象中心網(wǎng)站(http://satellite.nsmc.org.cn/)。Landsat-8數(shù)據(jù)來自美國(guó)地質(zhì)勘探局(USGS),1?7波段分辨率為30m,全色波段分辨率為15m,覆蓋海南全島共4景,時(shí)間及數(shù)據(jù)信息見表1。海南島18個(gè)市縣2014年和2015年香蕉種植面積、總產(chǎn)量數(shù)據(jù)來自《海南統(tǒng)計(jì)年鑒》2015版和2016版。
表1 數(shù)據(jù)源Landsat-8數(shù)據(jù)
MODIS數(shù)據(jù)提取前4個(gè)波段(0.459?0.876μm),經(jīng)投影、校正、插值、裁切后的空間分辨率為250m。由MODIS數(shù)據(jù)計(jì)算NDVI,利用NDVI提取香蕉種植區(qū)面積和構(gòu)建估產(chǎn)模型。對(duì)逐日NDVI數(shù)據(jù)采用最大值合成法合成為月度數(shù)據(jù),即2014年3月?2015年5月逐月NDVI序列數(shù)據(jù)集。采用遙感影像處理軟件ENVI(The Environment for Visualizing Images)處理高分辨率衛(wèi)星數(shù)據(jù)。下載的數(shù)據(jù)級(jí)別為L(zhǎng)1T,已經(jīng)進(jìn)行過較為精確的幾何校正,滿足分類提取的要求。之后進(jìn)行輻射定標(biāo),對(duì)多光譜數(shù)據(jù)和全色數(shù)據(jù)進(jìn)行圖像融合,最后進(jìn)行鑲嵌、勻色和增強(qiáng)。由于高分辨率影像僅用于香蕉面積提取,不參與指數(shù)計(jì)算,因此未進(jìn)行大氣校正。
利用面向?qū)ο蠓诸惡婉R氏距離兩種方法,通過對(duì)衛(wèi)星影像資料的處理提取香蕉種植區(qū)。海南島山地丘陵面積超過三分之一,成片分布的蕉園較少,大量蕉地為分散種植,存在同物異譜或同譜異物的問題,因此采用面向?qū)ο蠓诸惣夹g(shù)對(duì)大面積蕉園種植區(qū)進(jìn)行提取。面向?qū)ο蠓诸惣夹g(shù)以鄰近像元組成的對(duì)象為目標(biāo),在考慮對(duì)象光譜信息的同時(shí),兼顧其形狀和紋理信息,通過對(duì)圖像進(jìn)行分割和分類得到準(zhǔn)確的輸出。之后根據(jù)香蕉與其它植被生育期內(nèi)NDVI序列的差異,利用馬氏距離方法對(duì)分散蕉地進(jìn)行提取[16]。馬氏距離表示數(shù)據(jù)的協(xié)方差距離,可以用來計(jì)算兩個(gè)未知樣本集的相似度或一個(gè)樣本點(diǎn)與數(shù)據(jù)分布集合的距離。NDVI序列是生育期內(nèi)樣本NDVI月合成值曲線,待分類像元的NDVI序列與訓(xùn)練樣本集之間的馬氏距離越小,表明該像元種植香蕉的概率越高。
1.4.1 基于全生育期NDVI的模型
據(jù)研究[17],生育期內(nèi)NDVI累積值與產(chǎn)量存在較好的相關(guān)性。以各市縣香蕉全生育期的NDVI累積值作為信息擴(kuò)散模型的輸入變量,其數(shù)據(jù)生產(chǎn)過程的詳細(xì)流程如下:
(1)逐日MODIS影像計(jì)算NDVI。
(2)NDVI按月進(jìn)行最大值合成,即同位置像元取當(dāng)月最大值。
(3)NDVI月合成值求和得到全生育期NDVI累積值。
(4)利用提取到的香蕉種植區(qū)矢量文件,得到各市縣香蕉全生育期NDVI累積值。
(5)由于NDVI累積值和產(chǎn)量數(shù)據(jù)的數(shù)量級(jí)較大,因此為便于計(jì)算,采用對(duì)數(shù)標(biāo)準(zhǔn)化方法進(jìn)行處理,即求取二者以為底的對(duì)數(shù)。
標(biāo)準(zhǔn)化之后的全生育期NDVI累積值即為模型輸入變量,產(chǎn)量為輸出變量。信息擴(kuò)散估產(chǎn)方法的一般步驟是將輸入輸出樣本在論域進(jìn)行擴(kuò)散,建立由信息增量構(gòu)成的信息矩陣。然后由信息矩陣得到NDVI累積值與產(chǎn)量之間的模糊關(guān)系,即模糊關(guān)系矩陣。最后通過模糊近似推理方法,由輸入樣本得到模擬輸出產(chǎn)量。
X = {(x1, y1), (x2, y2),…, (xn, yn)} (1)
兩個(gè)分量的論域分別為U和V,其中的離散點(diǎn)為uj,j=1,2,…,m和vk,k=1,2,…,t。本文的樣本點(diǎn)經(jīng)標(biāo)準(zhǔn)化處理后的值無量綱,在8.5~12.5之間,因此將論域U和V的區(qū)間設(shè)為8~13,包含樣本序列,論域離散點(diǎn)等步長(zhǎng)取100個(gè)。
U = {u1, u2,…, um}, V = {v1, v2,…, vt} (2)
通過正態(tài)信息擴(kuò)散函數(shù)將樣本信息擴(kuò)散到論域空間U×V的離散點(diǎn)上。
式中,μ(xi, yi)是X×U×V到區(qū)間[0,1]的映射,hx、hy為函數(shù)的擴(kuò)散系數(shù),表示信息擴(kuò)散的控制范圍[14],按以下經(jīng)驗(yàn)公式計(jì)算。
式中,b、a分別為樣本序列的最大值、最小值,n為序列長(zhǎng)度。本文NDVI累積值和產(chǎn)量的擴(kuò)散系數(shù)依式(4)計(jì)算,分別為0.4633和0.5780。
式中,Quv為X賦給U×V的信息增量,則矩陣
為X在U×V上的信息矩陣。由下式得到模糊關(guān)系矩陣。
通過模糊近似推理計(jì)算產(chǎn)量輸出采用文獻(xiàn)[18]的方法。
(1)根據(jù)輸入的單個(gè)驗(yàn)證樣本x0,即NDVI累積值,利用信息分配方法建立論域U的模糊子集。下式中uj為U的離散點(diǎn),Δ為步長(zhǎng)。
(2)由模糊子集和模糊關(guān)系矩陣μR(u, v)得到模糊推論,其隸屬函數(shù)為
(3)取模糊子集向量與模糊關(guān)系矩陣乘積的最大值為權(quán)重向量W(w1, w2,…,wp),其對(duì)應(yīng)的產(chǎn)量論域的vk組成估計(jì)向量G(g1, g2,…,gp),其中p為論域離散點(diǎn)個(gè)數(shù)。
(4)對(duì)估計(jì)向量G和權(quán)重向量W進(jìn)行加權(quán)組合,得到產(chǎn)量估計(jì)y0。
1.4.2 基于分生育期NDVI的模型
作物敏感生育期的長(zhǎng)勢(shì)變化對(duì)產(chǎn)量具有重要影響[19],因此,通過分析香蕉各生育期的特點(diǎn),綜合一般發(fā)育期和敏感發(fā)育期,構(gòu)建不同生長(zhǎng)階段NDVI累積值與產(chǎn)量之間關(guān)系,建立分生育期NDVI的產(chǎn)量估算模型。
香蕉種植區(qū)提取結(jié)果利用總分類精度與Kappa系數(shù)檢驗(yàn),方法見文獻(xiàn)[20]。采用交叉驗(yàn)證的方法比較分析18個(gè)市縣估測(cè)值與實(shí)測(cè)值之間的相對(duì)誤差(RE)、均方根誤差(RMSE)和決定系數(shù)(R2),評(píng)價(jià)信息擴(kuò)散估產(chǎn)模型的適用性。
統(tǒng)計(jì)《海南統(tǒng)計(jì)年鑒》2015版中2014年各市縣的香蕉種植面積,由于后期建模是利用MODIS資料,因此依MODIS影像分辨率將種植面積換算得到總像元數(shù)量N。利用ENVI的面向?qū)ο髨D像分類模塊對(duì)Landsat-8影像中的大面積蕉園進(jìn)行提取。影像分割基于“邊緣檢測(cè)”,分割閾值設(shè)為30;合并基于“具有類似顏色和邊界大小相鄰節(jié)段”,合并閾值設(shè)為90;紋理內(nèi)核大小設(shè)為10。將樣本分成香蕉、林地、草地、水體和其它五個(gè)類別,在分割圖中分別選擇對(duì)應(yīng)樣本作為訓(xùn)練樣本,分類方法選擇K鄰近法。初次分類后的影像依MODIS分辨率進(jìn)行重采樣,其中香蕉像元數(shù)量為N1。將野外實(shí)地調(diào)查得到的香蕉分布點(diǎn)作為訓(xùn)練樣本集,以這些香蕉像元生育期內(nèi)的NDVI序列作為總體特征維度,對(duì)Landsat-8影像中分類得到的非香蕉區(qū)圖層,在MODIS數(shù)據(jù)中分別計(jì)算各像元與香蕉樣本總體之間的馬氏距離,并將所有像元依距離由小到大排成序列,由前往后取N?N1個(gè)像元。兩種方法得到的圖層進(jìn)行空間疊加,即為海南島的香蕉分布,結(jié)果見圖1。
由圖中可見,海南島的香蕉主要分布在北部和西部。為評(píng)價(jià)分類精度,在分類圖中隨機(jī)選取40個(gè)樣本像元,通過實(shí)地調(diào)查獲取地物類型,計(jì)算得到總分類精度和Kappa系數(shù)分別為82.5%和0.7338,一致性檢驗(yàn)的結(jié)果較好。
圖1 綜合面向?qū)ο蠓椒ê婉R氏距離方法提取的海南島香蕉種植區(qū)分布
以各市縣全生育期(3月?翌年5月)標(biāo)準(zhǔn)化NDVI累積值作為輸入變量,以總產(chǎn)量為輸出變量,構(gòu)建信息擴(kuò)散模型。將模擬結(jié)果與2015年各市縣實(shí)際產(chǎn)量對(duì)比。結(jié)果見表2。由表中可見,信息擴(kuò)散法模擬的2015年海南島18個(gè)市縣香蕉產(chǎn)量的平均相對(duì)誤差為26.0%,均方根誤差RMSE為34.2×103t,產(chǎn)量與實(shí)際產(chǎn)量的決定系數(shù)較高(R2=0.9216),偏離程度較小,模擬效果較好。
預(yù)測(cè)當(dāng)年產(chǎn)量與上一年的增減動(dòng)態(tài)變化,可以為經(jīng)濟(jì)決策和生產(chǎn)規(guī)劃提供參考。利用作物長(zhǎng)勢(shì)反映產(chǎn)量的變化趨勢(shì),并根據(jù)距平大小推斷變化程度,在大區(qū)域尺度下可以取得較好效果[21],但隨著研究區(qū)域空間尺度的降低,預(yù)測(cè)誤差會(huì)隨之增大。由《海南統(tǒng)計(jì)年鑒》2015版和2016版分別得到2014年和2015年各市縣香蕉的實(shí)際產(chǎn)量,2015年實(shí)際產(chǎn)量與2014年實(shí)際產(chǎn)量的差值表示實(shí)際產(chǎn)量變化,2015年模擬產(chǎn)量與2014年實(shí)際產(chǎn)量的差值表示模擬產(chǎn)量變化,結(jié)果見表3。由表中可見,增減趨勢(shì)一致的站點(diǎn)占83.3%,預(yù)測(cè)效果較好。
表2 基于全生育期NDVI累積值的信息擴(kuò)散估產(chǎn)模型模擬的2015年各市縣產(chǎn)量與實(shí)際產(chǎn)量對(duì)比
2.3.1 生育階段劃分方案
按照生育進(jìn)程將香蕉的生育期依次劃為幼苗期、營(yíng)養(yǎng)生長(zhǎng)期、花芽分化期、抽蕾期和果實(shí)發(fā)育期,各時(shí)期遭遇氣象災(zāi)害均會(huì)對(duì)產(chǎn)量造成影響,但影響程度有所差異。幼苗期為抽出大葉之前的時(shí)期,歷時(shí)2~3個(gè)月。營(yíng)養(yǎng)生長(zhǎng)期為抽出大葉?花芽分化前,期間抽生20~25片葉,主要是積累營(yíng)養(yǎng)物質(zhì),為后期的花芽分化奠定基礎(chǔ),此期生物積累量占全生育期生物產(chǎn)量的10%~16%。香蕉生長(zhǎng)前期受害主要影響植株長(zhǎng)勢(shì)和干物質(zhì)積累,推遲花芽分化?;ㄑ糠只诤统槔倨跒榛ㄑ糠只?斷蕾,此期易遭受冷害,干冷主要危害葉片,尤其是嫩葉、果穗和果實(shí);濕冷主要危害未抽蕾的植株生長(zhǎng)點(diǎn)或花芽花蕾,造成爛心。果實(shí)發(fā)育期為斷蕾至果實(shí)成熟,此期遇低溫陰雨易造成果實(shí)細(xì)小,果皮灰黃,同時(shí)滋生病害。香蕉進(jìn)入花芽分化后以生殖生長(zhǎng)為主,對(duì)氣象條件的變化較敏感,為敏感生育期,發(fā)育狀況與產(chǎn)量直接相關(guān)。
以不同生育期NDVI累積值的組合作為信息擴(kuò)散模型的多維輸入變量構(gòu)建模型,比較不同發(fā)育階段對(duì)產(chǎn)量形成的影響。綜合香蕉的一般發(fā)育期和敏感發(fā)育期,共構(gòu)建三種估產(chǎn)方案。方案I:以整個(gè)生育期的NDVI累積為輸入變量;方案II:以幼苗初期?營(yíng)養(yǎng)生長(zhǎng)末期的NDVI累積為輸入變量1,以花芽分化初期?果實(shí)發(fā)育末期的NDVI累積為輸入變量2;方案III:以抽蕾期的NDVI累積為輸入變量1,果實(shí)發(fā)育期的NDVI累積為輸入變量2。三種方案的生育期及各輸入變量的擴(kuò)散系數(shù)見表4。
表3 2015年各市縣模擬/實(shí)際香蕉產(chǎn)量相比2014年增減趨勢(shì)對(duì)比
注:“+”表示2015年產(chǎn)量比2014年增加,“-”表示2015年產(chǎn)量比2014年下降。
Note: “+”means that yield in 2015 is up (positive change) compared with 2014, “-”means down (negative change).
2.3.2 產(chǎn)量估算效果
基于不同生育期NDVI累積值構(gòu)建信息擴(kuò)散模型,比較不同發(fā)育階段對(duì)產(chǎn)量形成的影響。由表5可見,三種方案的平均相對(duì)誤差分別為26.0%、28.9%和36.4%,決定系數(shù)分別為0.9216、0.9229和0.8287,以全生育期建模方案(方案I)的精度最高,相比方案II和方案III的平均相對(duì)誤差分別降低了2.9個(gè)和10.4個(gè)百分點(diǎn),而以生育后期NDVI值作為單獨(dú)輸入的方案III估產(chǎn)結(jié)果誤差最大,表明營(yíng)養(yǎng)生長(zhǎng)期的長(zhǎng)勢(shì)變化對(duì)產(chǎn)量影響較大。
表4 三種生育階段建模方案的生育期和擴(kuò)散系數(shù)
表5 三種方案的信息擴(kuò)散模型模擬結(jié)果比較(2015年)
研究發(fā)現(xiàn),作物長(zhǎng)勢(shì)與產(chǎn)量之間存在非線性關(guān)系[22],許多學(xué)者也嘗試應(yīng)用多種方法進(jìn)行模擬以提高估產(chǎn)精度[10,23],并取得了較好的效果。但在進(jìn)行大范圍遙感估產(chǎn)實(shí)踐中,常常會(huì)面臨實(shí)測(cè)數(shù)據(jù)不足的問題,而許多算法模型均建立在大樣本的基礎(chǔ)上[10]。本研究選擇的信息擴(kuò)散方法既可以對(duì)樣本進(jìn)行集值化處理,彌補(bǔ)信息不足,又具有一定的非線性模擬能力,在區(qū)域估產(chǎn)中表現(xiàn)了較好的適應(yīng)性。
作物的生殖生長(zhǎng)期新陳代謝旺盛,是產(chǎn)量形成的關(guān)鍵時(shí)期,此時(shí)的長(zhǎng)勢(shì)狀況與產(chǎn)量的相關(guān)性最強(qiáng)[19],劉紅超等[5,24]的研究都基于這一理論,也取得了較好的效果。但本文對(duì)2015年香蕉產(chǎn)量分生育期建模估產(chǎn)結(jié)果表明,全生育期建模方案的效果最好,而僅考慮果實(shí)生長(zhǎng)關(guān)鍵期的方案誤差較大,其原因可能與海南2014年的氣候狀況有關(guān)。海南每年的臺(tái)風(fēng)季為6?10月,此時(shí)正值香蕉的營(yíng)養(yǎng)生長(zhǎng)期,一般影響較小的臺(tái)風(fēng)可以通過采取防臺(tái)措施,如合理選址、種植抗風(fēng)品種、打防風(fēng)樁、施肥培土等措施減輕災(zāi)害,但2014年海南遭遇史上最強(qiáng)登陸臺(tái)風(fēng)“威馬遜”,兩個(gè)月后又受“海鷗”侵襲,大風(fēng)、暴雨使香蕉的株體斷倒,葉片破損,光合作用降低,養(yǎng)分運(yùn)輸受阻,因此,導(dǎo)致產(chǎn)量對(duì)生長(zhǎng)前期長(zhǎng)勢(shì)變化的響應(yīng)高于后期。香蕉生育期長(zhǎng),氣象災(zāi)害對(duì)產(chǎn)量影響大,前期受害嚴(yán)重會(huì)導(dǎo)致光合產(chǎn)物的分配發(fā)生變化[25],而孕蕾后的作物長(zhǎng)勢(shì)不能完全反映這種變化,有關(guān)生理過程對(duì)長(zhǎng)勢(shì)影響的機(jī)理性研究也較少,因此選用全生育期構(gòu)建的模型更符合熱帶香蕉種植區(qū)的實(shí)際。
(1)信息擴(kuò)散估產(chǎn)模型通過構(gòu)建模糊集合,建立香蕉長(zhǎng)勢(shì)與產(chǎn)量之間的模糊關(guān)系,估計(jì)的產(chǎn)量精度較高,平均相對(duì)誤差為26.0%,解釋能力和穩(wěn)定性均較好,對(duì)于年際間產(chǎn)量變化趨勢(shì)預(yù)測(cè)的準(zhǔn)確率也較高,可以滿足實(shí)際業(yè)務(wù)需求。
(2)通過建立分生育期估產(chǎn)方案對(duì)比各發(fā)育階段對(duì)估產(chǎn)精度的影響,發(fā)現(xiàn)以全生育期香蕉長(zhǎng)勢(shì)作為輸入變量的信息擴(kuò)散模型效果最好,優(yōu)于分階段的多維信息擴(kuò)散方案,可以兼顧氣象災(zāi)害和敏感生育期長(zhǎng)勢(shì)對(duì)產(chǎn)量的影響。以營(yíng)養(yǎng)生長(zhǎng)期和生殖生長(zhǎng)期同時(shí)輸入的估產(chǎn)方案Ⅱ的精度又要高于僅考慮生殖生長(zhǎng)期的方案Ⅲ,表明熱帶地區(qū)香蕉營(yíng)養(yǎng)期長(zhǎng)勢(shì)對(duì)于產(chǎn)量的影響較大。
(3)信息擴(kuò)散方法在小樣本數(shù)據(jù)的處理中具有優(yōu)勢(shì),而且對(duì)于非線性關(guān)系的模擬能力較好,構(gòu)建的全生育期估產(chǎn)模型在香蕉種植區(qū)具有較好的適用性。本文構(gòu)建的估產(chǎn)模型可以在香蕉果實(shí)膨大后期應(yīng)用,也可以在進(jìn)入抽蕾后開展定期滾動(dòng)預(yù)報(bào),以提高時(shí)效性,為農(nóng)業(yè)部門和農(nóng)戶合理安排生產(chǎn)銷售提供科學(xué)依據(jù)。
[1] 陳仲新,任建強(qiáng),唐華俊,等.農(nóng)業(yè)遙感研究應(yīng)用進(jìn)展與展望[J].遙感學(xué)報(bào),2016,20(5):748-767.
Chen Z X,Ren J Q,Tang H J,et al.Progress and perspectives on agricultural remote sensing research and applications in China[J].Journal of Remote Sensing,2016,20(5):748-767.(in Chinese)
[2] 趙東妮,王艷華,任傳友,等.3種水稻趨勢(shì)產(chǎn)量擬合方法的比較分析[J].中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào),2017,25(3):345-355.
Zhao D N,Wang Y H,Ren C Y,et al.Comparative analysis of three fitting methods of rice trend yield[J].Chinese Journal of Eco-Agriculture,2017,25(3):345-355.(in Chinese)
[3] 胡慧芝,劉曉瓊,王建力.氣候變化下漢中盆地水稻產(chǎn)量變化研究[J].自然資源學(xué)報(bào),2018,33(4):609-620.
Hu H Z,Liu X Q,Wang J L.Study on the change of rice yield in Hanzhong basin under climate change[J].Journal of Natural Resources,2018,33(4):609-620.(in Chinese)
[4] Dettori M,Cesaraccio C,Motroni A,et al.Using CERES-Wheat to simulate durum wheat production and phenology in Southern Sardinia,Italy[J].Field Crops Research,2011,120: 179-188.
[5] 劉紅超,梁燕,張喜旺.多時(shí)相影像的冬小麥種植面積提取及估產(chǎn)[J].遙感信息,2017,32(5):87-92.
Liu H C,Liang Y,Zhang X W.Winter wheat area extraction and yield estimation using multi-temporal images[J].Remote Sensing Information,2017,32(5):87-92.(in Chinese)
[6] 張祎,趙艷霞.多模式集合模擬氣候變化對(duì)玉米產(chǎn)量的影響[J].中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào),2017,25(6):941-948.
Zhang Y,Zhao Y X.Multi-model ensemble for simulation of the impact of climate change on maize yield[J].Chinese Journal of Eco-Agriculture,2017,25(6):941-948.(in Chinese)
[7] 解毅,王鵬新,王蕾,等.基于作物及遙感同化模型的小麥產(chǎn)量估測(cè)[J].農(nóng)業(yè)工程學(xué)報(bào),2016,32(20):179-186.
Xie Y,Wang P X,Wang L,et al.Estimation of wheat yield based on crop and remote sensing assimilation models[J]. Transactions of the CSAE,2016,32(20):179-186.(in Chinese)
[8] 李昂,王洋,曹英麗,等.基于無人機(jī)高清數(shù)碼影像的水稻產(chǎn)量估算[J].沈陽農(nóng)業(yè)大學(xué)學(xué)報(bào),2017,48(5):629-635.
Li A,Wang Y,Cao Y L,et al.Rice yield estimation based on high-definition digital image of UAV[J].Journal of Shenyang Agricultural University,2017,48(5):629-635.(in Chinese)
[9] 劉雅婷,龔龑,段博,等.多時(shí)相NDVI與豐度綜合分析的油菜無人機(jī)遙感長(zhǎng)勢(shì)監(jiān)測(cè)[J].武漢大學(xué)學(xué)報(bào)(信息科學(xué)版), 2020,45(2):265-272.
Liu Y T,Gong Y,Duan B,et al.Combining multi-temporal NDVI and abundance from UAV remote sensing data for oilseed rape growth monitoring[J].Geomatics and Information Science of Wuhan University,2020,45(2):265-272.(in Chinese)
[10] 周亮,慕號(hào)偉,馬海姣,等.基于卷積神經(jīng)網(wǎng)絡(luò)的中國(guó)北方冬小麥遙感估產(chǎn)[J].農(nóng)業(yè)工程學(xué)報(bào),2019,35(15):119-128.
Zhou L,Mu H W,Ma H J,et al.Remote sensing estimation on yield of winter wheat in North China based on convolutional neural network[J].Transactions of the CSAE,2019,35(15): 119-128.(in Chinese)
[11] 蔣磊,尚松浩,楊雨亭,等.基于遙感蒸散發(fā)的區(qū)域作物估產(chǎn)方法[J].農(nóng)業(yè)工程學(xué)報(bào),2019,35(14):90-97.
Jiang L,Shang S H,Yang Y T,et al.Method of regional crop yield estimation based on remote sensing evapotranspiration model[J].Transactions of the CSAE,2019,35(14):90-97.(in Chinese)
[12] 王鵬新,齊璇,李俐,等.基于隨機(jī)森林回歸的玉米單產(chǎn)估測(cè)[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2019,50(7):237-245.
Wang P X,Qi X,Li L,et al.Estimation of maize yield based on random forest regression[J].Transactions of the Chinese Society for Agricultural Machinery,2019,50(7):237-245.(in Chinese)
[13] 劉新杰,魏云霞,焦全軍,等.基于時(shí)序定量遙感的冬小麥長(zhǎng)勢(shì)監(jiān)測(cè)與估產(chǎn)研究[J].遙感技術(shù)與應(yīng)用,2019,34(4): 756-765.
Liu X J,Wei Y X,Jiao Q J,et al.Growth monitoring and yield prediction of winter wheat based on time-series quantitative remote sensing data[J].Remote Sensing Technology and Application,2019,34(4):756-765.(in Chinese)
[14] 王學(xué)林,黃琴琴,柳軍.基于信息擴(kuò)散理論的南方雙季早稻氣象災(zāi)害風(fēng)險(xiǎn)評(píng)估[J].中國(guó)農(nóng)業(yè)氣象,2019,40(11):712-722.
Wang X L,Huang Q Q,Liu J.Risk assessment for meteorological disasters of early rice in the southern double-season region based on information diffusion theory[J].Chinese Journal of Agrometeorology,2019,40(11): 712-722.(in Chinese)
[15] 許林兵,高愛平,蒲金基,等.香蕉、芒果安全生產(chǎn)技術(shù)指南[M].北京:中國(guó)農(nóng)業(yè)出版社,2011:49-50.
Xu L B,Gao A P,Pu J J.Technical guide for safe production of banana and mango[M].Beijing:China Agriculture Press,2011:49-50.(in Chinese)
[16] Li Z,Fox J M.Mapping rubber tree growth in mainland Southeast Asia using time-series MODIS 250m NDVI and statistical data[J].Applied Geography,2012,32:420-432.
[17] 高學(xué)慧,黃淑娥,顏流水,等.基于MODIS遙感資料的江西省雙季早稻估產(chǎn)研究[J].江西農(nóng)業(yè)大學(xué)學(xué)報(bào),2013, 35(2):290-295.
Gao X H,Huang S E,Yan L S,et al.Yield estimation on Jiangxi early rice based on MODIS data[J].Acta Agriculturae Universitatis Jiangxiensis,2013,35(2):290- 295.(in Chinese)
[18] 黃崇福.自然災(zāi)害風(fēng)險(xiǎn)評(píng)價(jià):理論與實(shí)踐[M].北京:科學(xué)出版社,2005:83,110-114.
Huang C F.Risk assessment of natural disaster:theory & practice[M]. Beijing:Science Press,2005:83,110-114.(in Chinese)
[19] 譚昌偉,杜穎,童璐,等.基于開花期衛(wèi)星遙感數(shù)據(jù)的大田小麥估產(chǎn)方法比較[J].中國(guó)農(nóng)業(yè)科學(xué),2017,50(16):3101-3109.
Tan C W,Du Y,Tong L,et al.Comparison of the methods for predicting wheat yield based on satellite remote sensing data at anthesis[J].Scientia Agricultura Sinica,2017,50(16):3101- 3109.(in Chinese)
[20] 毛學(xué)剛,杜子涵,劉家倩,等.基于無人機(jī)LiDAR的天然林與人工林林隙提取[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2020,51(3):232-240.
Mao X G,Du Z H,Liu J Q,et al.Extraction of forest gaps in natural forest and man-made forest based on UAV LiDAR[J]. Transactions of the Chinese Society of Agricultural Machinery,2020,51(3):232-240.(in Chinese)
[21] 錢永蘭,侯英雨,延昊,等.基于遙感的國(guó)外作物長(zhǎng)勢(shì)監(jiān)測(cè)與產(chǎn)量趨勢(shì)估計(jì)[J].農(nóng)業(yè)工程學(xué)報(bào),2012,28(13):166-171.
Qian Y L,Hou Y Y,Yan H,et al.Global crop growth condition monitoring and yield trend prediction with remote sensing[J].Transactions of the CSAE,2012,28(13):166-171. (in Chinese)
[22] 王愷寧,王修信.多植被指數(shù)組合的冬小麥遙感估產(chǎn)方法研究[J].干旱區(qū)資源與環(huán)境,2017,31(7):44-49.
Wang K N,Wang X X.Research on winter wheat yield estimation with the multiply remote sensing vegetation index combination[J].Journal of Arid Land Resources and Environment,2017,31(7):44-49.(in Chinese)
[23] 孫擎,楊再?gòu)?qiáng),楊世瓊,等.多種格點(diǎn)作物模型對(duì)中國(guó)區(qū)域水稻產(chǎn)量模擬能力評(píng)估[J].中國(guó)農(nóng)業(yè)氣象,2019,40(4): 199-213.
Sun Q,Yang Z Q,Yang S Q,et al.Evaluations and projections of rice yield from multi-gridded crop model over China[J]. Chinese Journal of Agrometeorology,2019,40(4):199-213.(in Chinese)
[24] 朱婉雪,李仕冀,張旭博,等.基于無人機(jī)遙感植被指數(shù)優(yōu)選的田塊尺度冬小麥估產(chǎn)[J].農(nóng)業(yè)工程學(xué)報(bào),2018,34(11): 78-86.
Zhu W X,Li S J,Zhang X B,et al.Estimation of winter wheat yield using optimal vegetation indices from unmanned aerial vehicle remote sensing[J].Transactions of the CSAE,2018, 34(11):78-86.(in Chinese)
[25] 劉溢健,任建宏,殷俐娜,等.馬鈴薯塊莖膨大期不同程度干旱后復(fù)水的源庫補(bǔ)償效應(yīng)[J].應(yīng)用生態(tài)學(xué)報(bào),2019,30(11): 3777-3786.
Liu Y J,Ren J H,Yin L N,et al.Compensation effect of re-watering after different drought stresses on source-sink metabolism during tuber expansion period of potato[J]. Chinese Journal of Applied Ecology,2019,30(11):3777- 3786.(in Chinese)
Information Diffusion Model of Banana Yield Estimation Based on Vegetation Growth
CAI Da-xin,LIU Shao-jun,CHEN Hui-lin,TIAN Guang-hui
(1. Research Institute of Hainan Meteorological Bureau/Key Laboratory of Meteorological Disaster Preventing and Reducing of South China Sea, Haikou 570203, China)
Banana is an important tropical fruit in Hainan. Limited by meteorological disasters and the level of production technology, banana production has weak stability and large inter-annual fluctuations in Hainan. Remote sensing yield estimation is currently one of the most widely used crop yield estimation methods, especially suitable for large-area, uniformly distributed planting types. Therefore, carrying out research on banana yield estimation by remote sensing and accurately grasping the change trend of yield is of great significance to the planning and stable development of the banana planting industry. Based on Landsat-8 and MODIS data, the object-oriented method was first used to extract the spatial distribution of banana growing areas in Hainan Island, and then the Mahalanobis distance method based on the time series vegetation index was used for the second extraction, and finally the results of the two extractions were spatially overlaid. The method of field verification at random selected points was used to evaluate the classification accuracy. Aiming at the problem of the small number of regional yield estimation samples, the MODIS data from 2014 to 2015 and the banana regional yield data in 2015 were collected. The growth of banana throughout the growth period was used as an input variable to establish an information diffusion model for regional yield estimation. NDVI data was calculated by daily MODIS images, and synthesized to monthly data. The monthly composite values of NDVI was summed to obtain the cumulative value of NDVI throughout the growth period. Using the obtained vector files of banana planting areas, the cumulative NDVI values of bananas were extracted in 18 counties during the whole growth period. As the input and output variables of the information diffusion model, the cumulative value of NDVI and yield data were logarithmically normalized. The normal diffusion function was used to diffuse the sample information into the whole field, and an information matrix composed of information increments was established. Then the fuzzy relationship between the cumulative value of NDVI and the yield was obtained from the information matrix, that was the fuzzy relationship matrix. Finally, through the fuzzy approximate reasoning method, the simulated yield was obtained from the input samples. The cross-validation method was used to evaluate the accuracy of production estimation, and at the same time, the accuracy of the production estimation model for the simulation of production change trends was evaluated. Three kinds of information diffusion estimation schemes were constructed by combining multiple growth stages: scheme I was the NDVI cumulative value modeling scheme for the whole growth period; scheme Ⅱ was the scheme of joint input of vegetative growth stage and reproductive growth stage; scheme Ⅲ was the scheme of joint input during the budding stage and fruit development stage. The estimation accuracy of each plan was compared at last. The results showed that: (1) the comprehensive classification method using object-oriented and Mahalanobis distance had a higher accuracy. The total classification accuracy and Kappa coefficient were 82.5% and 0.7338 respectively, and the result of the consistency test was better. (2) The information diffusion model based on banana growth during the whole growth period had high yield estimation accuracy, with an average relative error of 26.0%, a coefficient of determination of 0.9216, and good explanatory power and stability; the accuracy of the estimation of inter-annual yield change trends reached 83.3%. (3) The univariate information diffusion estimation scheme based on the entire growth period had the highest accuracy, and the average relative error was reduced by 2.9 and 10.4 percentage point respectively compared with the other two multivariate modeling schemes. Based on the above results, it could be found that a fuzzy relationship was established with the information diffusion method between banana growth and yield by constructing a fuzzy set. The model was estimated with high accuracy, good explanatory ability and stability, and the accuracy rate for predicting the inter-annual yield change trend was also high, which could meet actual business needs. Through the establishment of a phase-by-growth yield estimation program to compare the impact of each developmental stage on the yield estimation accuracy, it was found that the effect of information diffusion model with whole growth period as the input variable was the best, which could take into account the impact of meteorological disasters and sensitive growth periods on yield. The accuracy of the yield estimation scheme II, which inputted both the vegetative growth period and the reproductive growth period, was higher than that of the program III, which only considered the reproductive growth period. The performance of information diffusion method with advantages in the processing of small sample data and ability to simulate nonlinear relationships was better. Applicability of yield estimation model based on full growth period in banana planting areas was judged satisfactory. The yield estimation model could be applied in the late stage of banana fruit expansion, and could also be used to carry out regular rolling forecasts after budding, to improve timeliness and provided scientific basis for agricultural departments and farmers to rationally arrange production and sales.
Information diffusion; Estimated model; Remote sensing; Cash crops; Banana
2019?12?03
國(guó)家自然科學(xué)基金(41765007;41465005;41675113);海南省基礎(chǔ)與應(yīng)用基礎(chǔ)研究計(jì)劃(自然科學(xué)領(lǐng)域)高層次人才項(xiàng)目(2019RC359);海南省氣象局科研項(xiàng)目(HNQXMS201502)
蔡大鑫,E-mail:cdxxxhyn@126.com
10.3969/j.issn.1000-6362.2020.09.005
蔡大鑫,劉少軍,陳匯林,等.基于植被長(zhǎng)勢(shì)的香蕉區(qū)域估產(chǎn)信息擴(kuò)散模型[J].中國(guó)農(nóng)業(yè)氣象,2020,41(9):587-596