• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      基于土壤微波輻射布儒斯特角反演土壤含水率

      2020-09-21 14:35:02馬紅章劉素美孫根云
      關(guān)鍵詞:發(fā)射率粗糙度反演

      馬紅章,艾 璐,劉素美,孫根云,孫 林

      基于土壤微波輻射布儒斯特角反演土壤含水率

      馬紅章1,艾 璐1,劉素美1,孫根云2,孫 林3

      (1. 中國石油大學(xué)(華東)理學(xué)院,青島 266580;2. 中國石油大學(xué)(華東)海洋與空間信息學(xué)院,青島 266580;3. 山東科技大學(xué)測繪科學(xué)學(xué)院,青島 266590)

      在利用被動(dòng)微波遙感技術(shù)進(jìn)行裸露地表土壤含水率(Soil Moisture Content,SMC)的反演中,土壤粗糙度是制約反演精度的最關(guān)鍵因素。該研究利用改進(jìn)的積分方程模型(Advanced Integral Equation Model,AIEM)進(jìn)行地表多角度微波發(fā)射率的模擬,探索地表微波輻射多角度信息用于提高地表SMC反演精度的可行性?;诓煌琒MC和不同粗糙度地表多角度V極化發(fā)射率數(shù)據(jù)的變化趨勢提取土壤介質(zhì)布儒斯特角,結(jié)果表明,土壤布儒斯特角對(duì)SMC具有較高的敏感性,C波段(6.6 GHz)不同含水率土壤的布儒斯特角分布在60°~80°范圍內(nèi)。基于AIEM模擬數(shù)據(jù)的分析發(fā)現(xiàn),土壤布儒斯特角正切值與SMC具有較好的線性關(guān)系,線性擬合決定系數(shù)為0.94,均方根誤差為0.027 cm3/cm3,并得到了基于布儒斯特角的裸露地表SMC反演算法。基于模擬數(shù)據(jù)的算法驗(yàn)證結(jié)果表明,算法的SMC預(yù)測值與理論值的決定系數(shù)為0.95,均方根誤差為0.024 cm3/cm3。算法在不同土壤粗糙度自相關(guān)函數(shù)下均表現(xiàn)出穩(wěn)健的特性,SMC預(yù)測精度最大均方根誤差為0.027 cm3/cm3,最小為0.023 cm3/cm3?;诓既逅固亟堑腟MC反演算法利用的是多角度土壤發(fā)射率的相對(duì)變化而非其絕對(duì)數(shù)值,該研究為SMC的多角度被動(dòng)微波遙感提供了一種不同的研究思路。

      土壤;水分;遙感;粗糙度;被動(dòng)微波輻射;布儒斯特角

      0 引 言

      土壤含水率(Soil Moisture Content,SMC)在陸氣能量交換過程中扮演著非常重要的角色,也是氣候模型、水文模型和干旱檢測模型等的主要輸入?yún)?shù),因此,SMC時(shí)空變化信息的準(zhǔn)確獲取可為農(nóng)業(yè)生產(chǎn)和旱澇災(zāi)害監(jiān)測提供重要的依據(jù)[1-3],同時(shí)對(duì)水資源管理以及氣候變化等相關(guān)研究也都具有重要的學(xué)術(shù)意義和應(yīng)用價(jià)值[4-6]。目前,基于光學(xué)和微波遙感技術(shù)進(jìn)行大范圍土壤水分的監(jiān)測研究已經(jīng)得到了長足發(fā)展[7-8],其中,微波對(duì)云有較強(qiáng)的穿透能力,具有全天時(shí)、全天候的觀測能力且微波對(duì)SMC具有較高的敏感性,在土壤水分監(jiān)測中具有獨(dú)特優(yōu)勢,微波遙感已成為地表SMC反演的主要技術(shù)手段之一[9-11]。

      土壤粗糙度是制約微波遙感土壤水分精度的最主要因素,如何降低地表粗糙度對(duì)SMC反演的影響一直是該領(lǐng)域的研究重點(diǎn)。在地表SMC的被動(dòng)微波遙感中,土壤微波發(fā)射率可表示為SMC和土壤粗糙度的非線性復(fù)合函數(shù)。Jackson在忽略土壤粗糙度影響的前提下,基于大量的實(shí)測地表輻射亮溫與SMC數(shù)據(jù),通過統(tǒng)計(jì)回歸方法建立了地表微波發(fā)射率與SMC線性關(guān)系的單通道算法[12],單通道算法雖簡單但土壤粗糙度的影響制約了算法的反演精度。近年來,基于電磁波傳輸理論的地表微波輻射理論模型取得了顯著的發(fā)展,小擾動(dòng)模型、物理光學(xué)模型和幾何光學(xué)模型等是發(fā)展較早的傳統(tǒng)理論模型的代表,后期又發(fā)展了積分方程模型(Integrated Equation Model,IEM)和改進(jìn)的IEM模型(Advanced Integral Equation Model,AIEM)。土壤微波散射IEM模型是使用較廣泛的一個(gè)面散射模型,有較廣的粗糙度適用范圍[13],但由于IEM模型對(duì)實(shí)際地表粗糙度的刻畫并不十分準(zhǔn)確以及不同粗糙度條件下土壤菲涅爾反射系數(shù)的計(jì)算采取了分段的處理方式,導(dǎo)致IEM模型對(duì)不同粗糙程度地表微波輻射的模擬精度存在差異。針對(duì)IEM模型的不足,Wu等[14]通過可計(jì)算任意粗糙度條件下土壤Fresnel反射系數(shù)的連續(xù)模型對(duì)IEM模型進(jìn)行了改進(jìn),但模型在不同頻率條件下對(duì)土壤Fresnel反射系數(shù)的估算仍有差異。Chen等[15]通過構(gòu)建過渡函數(shù)使Fresnel反射系數(shù)在高低頻均可采用相同的計(jì)算方法并通過訂正粗糙度功率譜函數(shù),使模型模擬精度得到進(jìn)一步提高,改進(jìn)后模型被稱為AIEM模型。通過與蒙特卡洛模擬數(shù)據(jù)和試驗(yàn)觀測數(shù)據(jù)的比較證實(shí)了AIEM模型較IEM模型不僅有更寬的粗糙度適用范圍而且具有更強(qiáng)的模擬寬波段和大角度輻射數(shù)據(jù)的能力[16-18]。

      為消除地表粗糙度影響,提高SMC反演精度,國內(nèi)外學(xué)者基于觀測數(shù)據(jù)或理論模型模擬數(shù)據(jù),發(fā)展了土壤粗糙度參數(shù)化的經(jīng)驗(yàn)或半經(jīng)驗(yàn)?zāi)P?,如Dubois模型[19]、Oh模型[20]、Q/H模型[21-22]和Shi模型[23]等,而這些參數(shù)化模型的發(fā)展受限于特定的地表類型、固定的觀測角度數(shù)據(jù)以及采用的近似條件等,導(dǎo)致粗糙度參數(shù)化方案在大面積應(yīng)用中仍然存在不確定性,由此發(fā)展的SMC算法在不同地表?xiàng)l件下的反演精度也有待進(jìn)一步提高。歐空局的土壤水分和海洋鹽度衛(wèi)星(Soil Moisture and Ocean Salinity,SMOS)具備地表多角度微波輻射的觀測能力,多角度觀測數(shù)據(jù)在土壤水分反演中也具備更大的應(yīng)用潛力[24],但目前基于多角度地表微波輻射觀測數(shù)據(jù)進(jìn)行SMC反演中卻沒有考慮角度對(duì)粗糙度影響的差異性,導(dǎo)致多角度數(shù)據(jù)的應(yīng)用潛力未得到充分利用。本研究基于AIEM模型,分析地表微波發(fā)射率多角度模擬結(jié)果,探索地表微波輻射多角度特征在地表SMC反演中的應(yīng)用,以期為土壤水分反演提供一種可靠方法。

      1 材料與方法

      1.1 土壤樣本

      本研究以中國黃河流域分布廣泛的砂質(zhì)土壤為研究對(duì)象,土壤的砂土質(zhì)量分?jǐn)?shù)高于40%,黏土質(zhì)量分?jǐn)?shù)低于20%,土壤容重為1.0~1.4 g/cm3范圍內(nèi)。土壤溫度設(shè)定在適于植被生長的10~35 ℃,以粗糙度均方根高度(,cm)和相關(guān)長度(,cm)2個(gè)參數(shù)表征土壤粗糙度的變化,以單位體積土壤中水分的體積(體積含水率,cm3/cm3)來表示土壤含水率。

      1.2 基于AIEM模型計(jì)算土壤微波發(fā)射率

      AIEM模型主要輸入?yún)?shù)包括微波頻率、土壤介電常數(shù)、觀測角度以及表征土壤粗糙度的均方根高度和相關(guān)長度,模型可模擬土壤微波雙站散射系數(shù),進(jìn)而可通過式(1)計(jì)算土壤的多角度微波發(fā)射率。

      模型輸入?yún)?shù)中的土壤介電常數(shù)選用Dobson模型[25]計(jì)算,Dobson模型主要計(jì)算公式為

      1.3 基于布儒斯特角的土壤含水率反演模型構(gòu)建方法

      1.3.1 土壤布儒斯特角的計(jì)算方法

      電磁波在2種各向同性電介質(zhì)的分界面上發(fā)生反射和折射時(shí),反射電磁波的偏振狀態(tài)會(huì)發(fā)生改變且偏振程度與入射角有關(guān)。當(dāng)入射角度等于某一特定角度時(shí),反射電磁波偏振化程度最高且反射波與透射波垂直[26],此角度稱為該介質(zhì)的布儒斯特角。當(dāng)電磁波入射到空氣土壤分界面上且電磁波入射角度等于布儒斯特角時(shí),電磁波的垂直極化分量會(huì)被土壤介質(zhì)最大程度的吸收,根據(jù)能量守恒原理,當(dāng)觀測角等于布儒斯特角時(shí),土壤介質(zhì)垂直極化發(fā)射率會(huì)達(dá)到最大。不同含水率土壤的布儒斯特角計(jì)算過程如下:1)基于AIEM模型對(duì)不同含水率土壤的V極化發(fā)射率進(jìn)行1°間隔的模擬,以發(fā)射率最大值所對(duì)應(yīng)的角度作為布儒斯特角的近似值,確定不同條件下土壤布儒斯特角的最大變化范圍;2)以5°為間隔取多個(gè)角度(覆蓋布儒斯特角最大變化范圍)的發(fā)射率數(shù)據(jù),利用三次多項(xiàng)式回歸得到發(fā)射率隨角度的變化方程,由方程的一階導(dǎo)數(shù)等于0所對(duì)應(yīng)的角度確定布儒斯特角。

      1.3.2 土壤布儒斯特角與SMC的關(guān)系

      設(shè)電磁波以1入射角從折射率為1空氣介質(zhì)入射到折射率為2的土壤介質(zhì)層時(shí),折射角為2,根據(jù)菲涅爾定律,有

      當(dāng)入射角1等于布儒斯特角時(shí),滿足反射電磁波與折射電磁波相互垂直,即12=90°,因此,土壤介質(zhì)的布儒斯特角(θ,(°))等于土壤與空氣兩者折射率之比的反正切值。

      對(duì)于微波波段電磁波,空氣的折射率1=1,土壤介質(zhì)的折射率2可表示成土壤介電常數(shù)的函數(shù),而土壤介電常數(shù)主要由SMC決定,因此,SMC可用土壤介質(zhì)布儒斯特角正切值的函數(shù)來計(jì)算:

      2 結(jié)果與分析

      2.1 不同含水率土樣的布儒斯特角計(jì)算結(jié)果

      固定AIEM模型和Dobson模型的輸入?yún)?shù)(土壤容重為1.2 g/cm3,土壤溫度為15 ℃,土壤的砂土質(zhì)量分?jǐn)?shù)為50%,黏土質(zhì)量分?jǐn)?shù)為10%,土壤粗糙度均方根高度為1.25 cm,相關(guān)長度為10 cm)。在SMC 4個(gè)等級(jí)上(0.05、0.15、0.25、0.35 cm3/cm3)以1°為間隔模擬土壤V極化發(fā)射率隨觀測角度的變化,如圖1所示,不同含水率土壤的布儒斯特角分布在60°~80°的變化范圍內(nèi)。在該范圍為以5°為間隔取5個(gè)角度(60°、65°、70°、75°、80°)的發(fā)射率數(shù)據(jù),利用發(fā)射率隨角度變化的三次多項(xiàng)式回歸方程,求一階導(dǎo)數(shù)確定布儒斯特角,可知,對(duì)應(yīng)土壤SMC 4個(gè)等級(jí)的布儒斯特角分別為64.8°、72.1°、75.7°和77.7°。

      注:土壤容重為1.2 g·cm-3;土壤溫度為15 ℃;土壤砂土質(zhì)量分?jǐn)?shù)50%,黏土質(zhì)量分?jǐn)?shù)10%;土壤粗糙度均方根高度和相關(guān)長度分別為1.25和10 cm。

      2.2 布儒斯特角對(duì)SMC的魯棒性分析

      AIEM模型和Dobson模型的輸入?yún)?shù)中除SMC外,其他輸入?yún)?shù)如土壤粗糙度、土壤容重以及土壤溫度等均有可能引起土壤布儒斯特角的變化,而影響布儒斯特角與SMC的相關(guān)性,因此進(jìn)行不同條件下的布儒斯特角對(duì)SMC魯棒性分析是很有必要的。以C波段(6.6 GHz)為例,AIEM模型中粗糙度自相關(guān)函數(shù)采用高斯相關(guān),為避免布儒斯特角計(jì)算的誤差,依然采用1°為間隔的角度密集型模擬策略,直接由發(fā)射率大小變化來確定布儒斯特角。

      2.2.1 土壤溫度對(duì)布儒斯特角的影響

      設(shè)定土壤容重為1.2 g/cm3,土壤的砂土質(zhì)量分?jǐn)?shù)50%,黏土質(zhì)量分?jǐn)?shù)10%,土壤粗糙度均方根高度=1.25 cm,相關(guān)長度=10 cm,在SMC 4個(gè)等級(jí)上(0.05、0.15、0.25、0.35 cm3/cm3)分別計(jì)算土壤溫度由10 ℃變化到35 ℃的土壤布儒斯特角數(shù)據(jù),如圖2a所示,在4個(gè)SMC等級(jí)上,隨溫度的升高布儒斯特角沒有出現(xiàn)變化,這說明布儒斯特角與SMC的關(guān)系不受土壤溫度參數(shù)變化的影響。

      2.2.2 土壤容重對(duì)布儒斯特角的影響

      設(shè)定土壤溫度為15 ℃,其他參數(shù)保持2.1節(jié)的設(shè)置,在SMC 4個(gè)等級(jí)上(0.05、0.15、0.25、0.35 cm3/cm3)分別計(jì)算土壤容重由0.9 g/cm3變化到1.4 g/cm3的土壤布儒斯特角數(shù)據(jù),如圖2b所示,土壤容重的變化對(duì)布儒斯特角的取值有輕微的影響,影響程度會(huì)隨土壤濕度的增加而下降,在SMC為0.05 cm3/cm3時(shí),土壤容重從0.9 g/cm3變化到1.4 g/cm3,布儒斯特角取值的增加量未超過2°。在SMC為0.15 cm3/cm3時(shí),土壤容重從0.9 g/cm3變化到1.4 g/cm3,布儒斯特角取值的增加量未超過1°,當(dāng)SMC超過0.15 cm3/cm3后,布儒斯特角取值不再隨土壤容重的變化而變化。

      2.2.3 土壤粗糙度對(duì)布儒斯特角的影響

      按上述設(shè)定保持不變,在SMC 4個(gè)等級(jí)上(0.05、0.15、0.25、0.35 cm3/cm3)分別計(jì)算土壤粗糙度均方根高度()從0.5 cm增大到3.5 cm的土壤布儒斯特角數(shù)據(jù),如圖2c所示,當(dāng)土壤粗糙度均方根高度參數(shù)從0.5 cm增大到3.5 cm,在4個(gè)SMC等級(jí)下,布儒斯特角取值會(huì)出現(xiàn)隨粗糙度的增加而有所增大的變化,但布儒斯特角的變化量均未超過2°。

      2.2.4 SMC對(duì)布儒斯特角的影響

      前面的模擬結(jié)果顯示,土壤容重與粗糙度2個(gè)參數(shù)對(duì)土壤布儒斯特角均有輕微的影響。保持其他參數(shù)設(shè)置不變,分別計(jì)算土壤粗糙度均方根高度和土壤容重4種組合下的SMC從0.05 cm3/cm3增大到0.40 cm3/cm3的土壤布儒斯特角數(shù)據(jù),如圖2d所示,在SMC的取值范圍內(nèi),土壤容重與粗糙度的4種不同組合對(duì)布儒斯特角的變化量仍然未超過2°,這說明土壤容重與粗糙度對(duì)布儒斯特角的影響并不會(huì)產(chǎn)生明顯的累加效應(yīng)。相比較而言,SMC從0.05 cm3/cm3變化到0.40 cm3/cm3,布儒斯特角變化量能達(dá)到15°,說明布儒斯特角對(duì)SMC敏感性的受土壤容重和土壤粗糙度的影響較小。

      注:H和D分別為土壤粗糙度均方根高度和土壤容重。

      2.3 基于布儒斯特角的SMC反演模型分析

      2.3.1 模型構(gòu)建及驗(yàn)證

      利用AIEM模型進(jìn)行了C波段(6.6 GHz)500種不同地表?xiàng)l件下的微波輻射模擬,模擬角度60°~80°,間隔5°;不失一般性,SMC、粗糙度以及土壤質(zhì)地等參數(shù)均在比較大的范圍內(nèi)隨機(jī)取值,粗糙度的刻畫亦隨機(jī)采用AIEM模型中自帶的7種自相關(guān)函數(shù)(高斯相關(guān)、指數(shù)相關(guān)、轉(zhuǎn)換指數(shù)相關(guān)、冪律譜相關(guān)數(shù)相關(guān)、-冪相關(guān)、-指數(shù)相關(guān)、類指數(shù)相關(guān)),保證模擬數(shù)據(jù)能適用于多數(shù)農(nóng)田土壤粗糙度特征,模型具體輸入?yún)?shù)如表1。

      表1 改進(jìn)積分方程模型(AIEM)輸入土壤參數(shù)

      對(duì)500組數(shù)據(jù)進(jìn)行5個(gè)角度V極化發(fā)射率數(shù)據(jù)的回歸擬合再進(jìn)行求導(dǎo)運(yùn)算得到其對(duì)應(yīng)的布儒斯特角,選取前400組數(shù)據(jù)用于布儒斯特角正切值與SMC關(guān)系的回歸,得到SMC的反演回歸模型如式(6)。擬合結(jié)果如圖3a所示,布儒斯特角的正切值與SMC之間有較好的線性關(guān)系,2為0.94,均方根誤差為0.027 cm3/cm3。利用余下的100組數(shù)據(jù)對(duì)反演模型進(jìn)行了驗(yàn)證,結(jié)果如圖 3b所示,模型的SMC預(yù)測值與真實(shí)值間的2達(dá)到0.95,均方根誤差為0.024 cm3/cm3,驗(yàn)證結(jié)果表明式(6)可有效計(jì)算裸露地表土壤含水率。

      注:*表示<10-7。下同。

      Note: * means<10-7. The same below.

      圖3 基于布儒斯特角的SMC反演模型構(gòu)建與驗(yàn)證

      Fig. 3 Establishment and verification of SMC inversion model based on Brewster angle

      2.3.2 自相關(guān)函數(shù)對(duì)模型精度的影響

      表2 不同粗糙度自相關(guān)函數(shù)下的驗(yàn)證結(jié)果

      3 結(jié) 論

      土壤粗糙度一直是影響被動(dòng)微波遙感裸土土壤含水率的最大因素。本研究以地表微波輻射理論模型——改進(jìn)的積分方程模型(Advanced Integral Equation Model,AIEM)為基礎(chǔ),通過對(duì)地表微波發(fā)射率多角度模擬數(shù)據(jù)的分析,探索多角度被動(dòng)微波遙感數(shù)據(jù)在土壤水分反演中的應(yīng)用潛力。結(jié)果表明:

      1)在C波段(6.6 GHz),土壤布儒斯特角對(duì)土壤含水率(Soil Moisture Content, SMC)具有較高的敏感性。SMC可使土壤布儒斯特角發(fā)生15°的變化,而土壤粗糙度和土壤容重等參數(shù)對(duì)土壤布儒斯特角的影響不超過2°。

      2)通過對(duì)AIEM模擬數(shù)據(jù)的分析發(fā)現(xiàn),土壤布儒斯特角正切值與土壤含水率具有較好的一致性關(guān)系,線性擬合決定系數(shù)為0.94,均方根誤差為0.027 cm3/cm3,基于此提出了基于土壤微波輻射布儒斯特角的土壤含水率反演算法。

      3)反演算法利用了多角度土壤微波發(fā)射率的相對(duì)變化趨勢,對(duì)不同的土壤粗糙度自相關(guān)函數(shù)類型算法均表現(xiàn)出穩(wěn)健的特性。對(duì)不同粗糙度自相關(guān)函數(shù)類型,反演算法對(duì)SMC的預(yù)測精度的最大均方根誤差為0.027 cm3/cm3,最小為0.023 cm3/cm3。

      該研究為SMC的多角度被動(dòng)微波遙感提供了一種不同的研究思路。由于目前算法還缺乏基于試驗(yàn)觀測數(shù)據(jù)的驗(yàn)證,還不能證明基于AIEM模擬數(shù)據(jù)得到的反演模型在實(shí)際反演中能取得滿意的結(jié)果,下一步將開展相關(guān)試驗(yàn)收集相關(guān)數(shù)據(jù),驗(yàn)證該算法在實(shí)際應(yīng)用中的可行性。

      [1] Wang Hongquan, Magagi R, Goita K. Potential of a two-component polarimetric decomposition at C-band for soil moisture retrieval over agricultural fields[J]. Remote Sensing of Environment, 2018, 217: 38-51.

      [2] 趙天杰. 被動(dòng)微波反演土壤水分的L波段新發(fā)展及未來展望[J]. 地理科學(xué)進(jìn)展,2018,37(2):198-213. Zhao Tianjie . Recent advances of L-band application in the passive microwave remote sensing of soil moisture and its prospects[J]. Progress in Geography, 2018, 37(2): 198-213. (in Chinese with English abstract)

      [3] 郭交,劉健,寧紀(jì)鋒,等. 基于Sentinel多源數(shù)據(jù)的農(nóng)田地表土壤水分反演模型構(gòu)建與驗(yàn)證[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(14):71-78. Guo Jiao, Liu Jian, Ning Jifeng, et al. Construction and validation of soil moisture retrieval model in farmland based on Sentinel multi-source data[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(14): 71-78. (in Chinese with English abstract)

      [4] 尹楠,姜琦剛,孟治國,等. 基于RADARSAT-2 全極化數(shù)據(jù)反演周期性地表土壤濕度[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(17):72-79. Yin Nan, Jiang Qigang, Meng Zhiguo, et al. Use of fully polarimetric RADARSAT-2 data to retrieve soil moisture of periodic surfaces[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(17): 72-79. (in Chinese with English abstract)

      [5] Xu Xiaoyong, Tolson B A, Li J, et al. Comparison of X-band and L-Band soil moisture retrievals for land data assimilation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(9): 3850-3860.

      [6] Pangaluru K, Velicogna I, Mohajerani Y, et al. Soil moisture variability in India: Relationship of land surface atmosphere fields using maximum covariance analysis[J]. Remote Sensing, 2019, 11(3): 335-339.

      [7] Jin R, Li X, Liu S M, et al. Understanding the heterogeneity of soil moisture and evapotranspiration using multiscale observations from satellites, airborne sensors, and a groundbased observation matrix[J]. IEEE Geoscience & Remote Sensing Letters, 2017, 14(11): 2132-2136.

      [8] Cui Y K, Xiong W T, Hu L, et al. Applying a machine learning method to obtain long time and spatio-temporal continuous soil moisture over the Tibetan Plateau[C]. Yokohama, Japan: IEEE International Geoscience and Remote Sensing Symposium, 2019: 6986-6989.

      [9] 趙少華,秦其明,沈心一,等. 微波遙感技術(shù)監(jiān)測土壤濕度的研究[J]. 微波學(xué)報(bào), 2010, 26(2):90-96. Zhao Shaohua, Qin Qiming, Shen Xinyi, et al. Review of microwave remote sensing on soil moisture monitoring[J]. Journal of Microwaves, 2010, 26(2): 90-96. (in Chinese with English abstract)

      [10] Mccoll K A, Alemohammad S H, Akbar R, et al. The global distribution and dynamics of surface soil moisture[J]. Nature Geoence, 2017, 10(2): 100–104.

      [11] 楊貴軍,岳繼博,李長春,等. 基于改進(jìn)水云模型和Radarsat-2數(shù)據(jù)的農(nóng)田土壤含水量估算[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(22):146-153. Yang Guijun, Yue Jibo, Li Changchun, et al. Estimation of soil moisture in farmland using improved water cloud model and Radarsat-2 data[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(22): 146-153. (in Chinese with English abstract)

      [12] Jackson T J. Measuring surface soil moisture using passive microwave remote sensing[J]. Hydrol Processes, 1993, 7(11): 139-152.

      [13] Zeng J, Chen K S, Bi H, et al. A comprehensive analysis of rough soil surface scattering and emission predicted by AIEM with comparison to numerical simulations and experimental measurements[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(3): 1696-1708.

      [14] Wu T D, Chen K S, Shi J, et al. A transition model for there flection coefficient in surface scattering[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(9): 2040-2050.

      [15] Chen K S, Wu T D, Tsang L, et al. Emission of rough surfaces calculated by the integral equation method with comparison to three-dimensional moment method simulations[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(1): 90-101.

      [16] Wu T D, Chen K S. A reappraisal of the validity of the IEM model for backscattering from rough surface[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(4): 743-753.

      [17] Yang Y, Chen K S, Tsang L, et al. Depolarized backscattering of rough surface by AIEM model[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(11): 4740-4752.

      [18] Shi J C, Chen K S, Li Q, et al. A parameterized surface reflectivity model and estimation of bare-surface soil moisture with L-band radiometer[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(12): 2674-2686.

      [19] Dubois P C, Van Z J, Engman E T. Measuring soil moisture withimaging Radars[J]. IEEE Transactions on Geoseience and Remote Sensing, 1995, 33(4): 915-926.

      [20] Oh Y, Sarabandi K, Ulaby F T. An empirical model and an inversion technique for radar scattering from bare soil surfaces[J]. IEEE Transactions on Geoseience and Remote Sensing, 1992, 30(2): 370-381.

      [21] Wigneron J P, Laguerre L, Kerr Y H. A simple parameterization of the L-band microwave emission from rough agricultural soils[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(8): 1697-1707.

      [22] Wigneron J P, Chanzy A, Kerr Y H, et al. Evaluating an improved parameterization of the soil emission in L-MEB[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(4): 1177-1189.

      [23] Shi J C, Wang J, Hsu A Y, et al. Estimation of bare surface soil moisture and surface roughness parameter using L-band SAR image data[J]. IEEE Transactions on Geoseience and Remote Sensing, 1997, 35(5): 1254-1266.

      [24] Niclos R, Rivas R, Garcia-Santos V, et al. SMOS level-2 soil moisture product evaluation in rain-fed croplands of the pampean region of Argentina[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(1): 499-512.

      [25] Dobson M C, Ulaby F T, Hallikainen M T. Microwave dielectric behavior of wet soil Part II: Dielectric mixing models[J]. IEEE Trans Geosci Remote Sensing, 1985, GE-23(1): 35-46.

      [26] Chandravati Prajapati, Nirmal K Viswanathan. Observation of diffractive-correction and spin-orbit interaction induced effects around the Brewster angle[J]. Journal of Optics, 2019, 21(8): 2040-8986.

      Inversion of soil moisture based on Brewster angle of soil microwave radiation

      Ma Hongzhang1, Ai Lu1, Liu Sumei1, Sun Genyun2, Sun Lin3

      (1.,,266580,; 2.,,266580,; 3.,,266590,)

      Soil moisture plays a major role in the water and energy budgets of continental surfaces. In the inversion of soil moisture using passive microwave remote sensing technology, soil roughness is the most critical factor restricting the accuracy of the inversion algorithm. Multi-angle remote sensing data has certain advantages in obtaining surface roughness information. Therefore, multi-angle passive microwave observation data has greater application potential in soil moisture inversion. At present, there are few studies on how to use multi-angle passive microwave data to reduce the effect of roughness on soil moisture inversion. Therefore, this study explored the application method of multi-angle passive microwave remote sensing data in soil moisture inversion by analyzing the multi-angle simulated data of soil microwave emissivity. In this study, the Advanced Integral Equation Model (AIEM) was used to simulate the multi-angle microwave radiation of the soil with different Soil Moisture Content (SMC) and roughness. The Brewster angle was calculated based on the trend of the V polarized emissivity with observation angle. The calculation results of Brewster angle showed that Brewster angles of soils with different moisture content distributed in the range of 60°-80°. Based on analysis of the simulated data, Brewster angle had a good consistency with SMC while Brewster angle was not sensitive to parameters such as soil temperature, soil bulk density, and soil roughness. The Brewster angle would change by 15° with SMC changed from 0.05 cm3/cm3to 0.40 cm3/cm3. When the root mean square height of soil roughness increased from 0.5 cm to 3.5 cm, the Brewster angle value increased with the increase of roughness, but the maximum change in angle did not exceed 2°. When the bulk density of the soil changed from 0.9 g/cm3to 1.4 g/cm3, the Brewster angle value increased by no more than 1°. The soil temperature changed from 10 ℃ to 35 ℃, and the Brewster angle changed with the increase of soil temperature. When the root mean square height of the soil roughness and the soil bulk density were combined with different values, the maximum change of Brewster angle did not exceed 2°. This showed that the total influence of soil roughness and soil bulk density on Brewster angle had no obvious accumulation of errors. This study presented an algorithm for inversion of SMC by using the Brewster angle information of soil microwave radiation. Through the analysis of simulated data, a good linear relationship between the tangent value of Brewster angle and SMC was found. The regression results based on simulated data showed that the coefficient of linear fitness between the tangent of Brewster angle and SMC was 0.94, and the root mean square error was 0.027 cm3/cm3. The verification results based on simulated data showed that the coefficient of determination between predicted value of SMC and theoretical value was 0.95, and the root mean square error was 0.024 cm3/cm3. The inversion algorithm proposed here had robust characteristics for different types of soil roughness autocorrelation functions. The prediction accuracy of the algorithm for SMC was little affected by the roughness autocorrelation functions. For different types of roughness autocorrelation functions, the root mean square error between the predicted value of SMC and the theoretical value was 0.023-0.027 cm3/cm3. The SMC inversion algorithm based on Brewster angle utilized the relative change of multi-angle soil emissivity rather than its absolute value and this research provided a novel research idea for the inversion of SMC by using multi-angle passive microwave remote sensing data.

      soils; moisture; remote sensing; soil roughness; passive microwave radiation; Brewster angle

      馬紅章,艾璐,劉素美,等. 基于土壤微波輻射布儒斯特角反演土壤含水率[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(14):182-187.doi:10.11975/j.issn.1002-6819.2020.14.022 http://www.tcsae.org

      Ma Hongzhang,Ai Lu,Liu Sumei, et al. Inversion of soil moisture based on Brewster angle of soil microwave radiation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(14): 182-187. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.14.022 http://www.tcsae.org

      2020-02-22

      2020-06-10

      國家自然科學(xué)基金項(xiàng)目(41971292);山東省自然科學(xué)基金項(xiàng)目(ZR2017MD007、ZR2018BD007)

      馬紅章,博士,副教授,主要從事多源遙感輻射傳輸建模與數(shù)據(jù)協(xié)同機(jī)理研究。Email:mahzh@upc.edu.cn

      10.11975/j.issn.1002-6819.2020.14.022

      TP722.6;S152.7

      A

      1002-6819(2020)-14-0182-06

      猜你喜歡
      發(fā)射率粗糙度反演
      反演對(duì)稱變換在解決平面幾何問題中的應(yīng)用
      氧氣A(O,O)波段氣輝體發(fā)射率和臨邊輻射強(qiáng)度模擬與分析
      基于無人機(jī)影像的巖體結(jié)構(gòu)面粗糙度獲取
      甘肅科技(2020年20期)2020-04-13 00:30:18
      冷沖模磨削表面粗糙度的加工試驗(yàn)與應(yīng)用
      模具制造(2019年4期)2019-06-24 03:36:48
      基于低頻軟約束的疊前AVA稀疏層反演
      基于自適應(yīng)遺傳算法的CSAMT一維反演
      基于BP神經(jīng)網(wǎng)絡(luò)的面齒輪齒面粗糙度研究
      鋼材銹蝕率與表面三維粗糙度參數(shù)的關(guān)系
      低溫狀態(tài)下的材料法向發(fā)射率測量
      塔克拉瑪干沙漠地表發(fā)射率及分布變化特征
      舟曲县| 沾化县| 黎城县| 高雄县| 土默特左旗| 三亚市| 大理市| 保山市| 福海县| 黑龙江省| 津南区| 廊坊市| 左云县| 迁西县| 湖南省| 平和县| 宣城市| 南安市| 建湖县| 凤台县| 霸州市| 毕节市| 康马县| 正安县| 罗田县| 通河县| 黄陵县| 吉首市| 安吉县| 平乡县| 大荔县| 保定市| 顺昌县| 霍林郭勒市| 团风县| 大化| 商水县| 隆林| 西华县| 谷城县| 民丰县|