楊莉琳, 姚琦馥, 梁 琍, 魯小明
土壤氮素內(nèi)循環(huán)對(duì)生態(tài)覆被變化響應(yīng)的研究進(jìn)展*
楊莉琳, 姚琦馥, 梁 琍, 魯小明
(銅仁學(xué)院 銅仁 554300)
生態(tài)覆被; 土地利用變化; 活性氮; 氮轉(zhuǎn)化; 土壤微生物
活性氮是相對(duì)于占地球大氣總量79%的非活性氮(N2)而言。由于N2是穩(wěn)定態(tài)氮素, 這個(gè)巨大的氮貯庫(kù)并不能被自然界生物直接利用。只有將N2的分子鍵破壞, 得到的單個(gè)氮原子通過(guò)固氮作用或同化作用與其他營(yíng)養(yǎng)元素如O、H或C相結(jié)合, 才能被大多數(shù)植物、動(dòng)物和微生物利用[1]?;钚缘苯雨P(guān)系到植被生長(zhǎng)、氣候變化和生態(tài)環(huán)境的安全與持續(xù)。
工業(yè)革命前自然界循環(huán)的活性氮總量很少, 人類(lèi)對(duì)自然生態(tài)系統(tǒng)干預(yù)較少, 生物固氮是植物獲得活性氮的主要途徑, 植物生產(chǎn)力主要受土壤中氮量的限制。工業(yè)革命后, 尤其是近50年來(lái), 工業(yè)合成銨和化肥在全球大量施用成為土壤活性氮的主要來(lái)源, 土壤因而成了人為活性氮的天然匯。全球人為活性氮在1860年只有15 Tg?a–1(1 Tg=106t), 到了21世紀(jì)初已增加到165 Tg?a–1, 增長(zhǎng)了10倍, 其中來(lái)自于糧食生產(chǎn)的活性氮是能源生產(chǎn)的5倍。然而, 糧食生產(chǎn)的活性氮中人類(lèi)每年只攝取大約12 Tg [每人2 kg(N)?a–1], 其余近90%的活性氮以硝酸鹽、亞硝酸鹽或氮氧化物的形態(tài)排放到土壤、水體和大氣等環(huán)境中[2-3]。這些活性氮一旦進(jìn)入環(huán)境, 就會(huì)通過(guò)各生態(tài)系統(tǒng)迅速串聯(lián)并蔓延開(kāi)來(lái), 在環(huán)境中積累或循環(huán), 并影響著全球生態(tài)環(huán)境和許多生態(tài)過(guò)程[2]。如以NO (NO=NO+NO2)形式排放到大氣中產(chǎn)生溫室效應(yīng), 引起全球氣候變暖[4]; 生物多樣性喪失和親氮雜草侵入; 生態(tài)系統(tǒng)功能發(fā)生改變; 之前受活性氮限制的生態(tài)系統(tǒng)生產(chǎn)力增加; 森林等系統(tǒng)土壤中氮飽和、水體污染、有毒藻類(lèi)繁盛、魚(yú)類(lèi)死亡以及沿海生態(tài)系統(tǒng)富營(yíng)養(yǎng)化; 通過(guò)食物鏈人類(lèi)易患高鐵血紅蛋白血癥、藍(lán)嬰兒綜合癥、癌癥、呼吸系統(tǒng)和心臟疾病等。因此, 活性氮在土壤圈-生物圈-大氣圈之間循環(huán)的改變與失衡, 對(duì)各環(huán)節(jié)中氮水平維持在適當(dāng)范圍內(nèi)提出了嚴(yán)格的限制, 也是生態(tài)與環(huán)境學(xué)家、管理工作者和政策制定者的關(guān)注重點(diǎn)[5]。
自然生態(tài)系統(tǒng)中, 不同覆被類(lèi)型的土壤氮庫(kù)差異很大。森林不僅影響全球氣候的碳匯, 而且還是世界上最大的有機(jī)氮庫(kù)[7]。特別是古森林, 其碎屑生物量和微生物固氮作用比成熟的次生林更能保留氮,是強(qiáng)大的氮匯[8]。尤其是土壤風(fēng)化程度高的熱帶林區(qū), 有機(jī)質(zhì)及氮庫(kù)在土壤功能和森林可持續(xù)性方面發(fā)揮著重要作用。當(dāng)森林被清除時(shí), 土壤有機(jī)質(zhì)與有機(jī)氮幾乎立即開(kāi)始失去, 并引發(fā)一系列土壤退化[9]。
天然森林生態(tài)系統(tǒng)的凈礦化和凈硝化均很低, 天然林通常受土壤低氮供應(yīng)的限制, 氮素處于封閉、積累型循環(huán), 地上部每年的凈初級(jí)生產(chǎn)力與土壤凈氮礦化呈線性正相關(guān)[29]。美國(guó)北部的天然草地轉(zhuǎn)換為森林35~75 a的土壤氮礦化和微生物活性基本沒(méi)有變化[30]。因?yàn)榈獡p失與氮凈礦化率和枯枝落葉氮通量(植物氮循環(huán)指標(biāo))密切相關(guān), 盡管原始林和次生林的氮量沒(méi)有顯著差異, 但是原始森林的微生物固氮速度比次生林快, 原始森林的粗木屑和微生物量氮的吸收和轉(zhuǎn)化也比次生林大。美國(guó)密西根州半島西部原始闊葉林總氮礦化大約是次生林的2倍, 而總硝化沒(méi)有差異[8]。
3.2.1 退耕還林還草對(duì)土壤氮庫(kù)積累的效應(yīng)
植被種類(lèi)直接影響生態(tài)系統(tǒng)的修復(fù)速率。在遺棄50 a以上的荒地上種植闊葉林、針葉林、牧場(chǎng)和種植園, 會(huì)顯著影響土壤氮含量和硝化速率[20]。我國(guó)黃土高原退耕還林還草30 a后, 恢復(fù)的草原、刺槐()、紅松()、油松()以及油松-紫穗槐()混交林等土壤有機(jī)質(zhì)、全氮、有效氮均提高了2倍多, 其中, 刺槐-紫穗槐混合林恢復(fù)最迅速, 油松-紫穗槐混交林恢復(fù)較慢[45]。晉西黃土丘陵區(qū)退耕還林或撂荒地還林還草后, 荒草地土壤全氮表聚效應(yīng)最強(qiáng), 0~48 cm土層中以刺槐林地的全氮含量提升最快[46]。黃土高原的退化草地分別栽種油松和檸條()30多年后, 油松地0~20 cm土層有效氮減少, 而檸條灌叢林地的有效氮卻增加[47]。在巴西里約熱內(nèi)盧州沿海城鎮(zhèn)的退化土地上, 于1991年種植了7種速生的先鋒豆科植物用以恢復(fù)退化土壤的肥力, 13 a中土壤氮庫(kù)的年增長(zhǎng)率為0.13 Mg×hm-2[9]。豆類(lèi)植物能增加土壤氮和碳的積累, C3植物和雜草會(huì)降低氮和碳的積累率, C4植物提高了土壤C/N比[28]。
盡管種植林草是增加土壤對(duì)碳、氮固定的途徑, 但生態(tài)系統(tǒng)恢復(fù)重建絕非易事, 正所謂毀壞容易修復(fù)難。明尼蘇達(dá)州廢棄61 a的農(nóng)田要恢復(fù)到之前耕作時(shí)95%的水平, 氮庫(kù)需要180 a, 碳庫(kù)需要230 a, 且碳的積累速率受氮積累的影響[28]。也有研究結(jié)果報(bào)道, 在50 a內(nèi)可以成功恢復(fù)嚴(yán)重退化的森林土壤氮的有效性, 但如果在恢復(fù)過(guò)程中繼續(xù)收獲林下植被和凋落物, 則難以實(shí)現(xiàn)這種恢復(fù)速率和恢復(fù)水平[15]。
3.2.2 恢復(fù)重建土壤氮碳庫(kù)的其他措施
相對(duì)于單一植被系統(tǒng), 農(nóng)林復(fù)合系統(tǒng)對(duì)生態(tài)的恢復(fù)效果一直被廣泛推崇??煽?)林/農(nóng)復(fù)合系統(tǒng)的土壤碳氮貯量低于天然林, 但高于單一的可可林, 在維持生態(tài)系統(tǒng)功能服務(wù)方面比單一農(nóng)業(yè)種植更好, 并接近天然森林[48]。尤其是在障礙性土壤區(qū)域, 實(shí)施農(nóng)林復(fù)合系統(tǒng)是克服土壤障礙, 恢復(fù)生態(tài)功能的重要途徑。我國(guó)華北低平原鹽堿地區(qū)棗()/冬小麥()-夏玉米間作22 a以上的研究表明, 棗/糧間作系統(tǒng)的種植和生態(tài)效益仍然比單作農(nóng)業(yè)和單作棗樹(shù)高[49]。
休耕和輪作也是恢復(fù)土壤有機(jī)質(zhì)和氮含量的有效措施[50]。對(duì)亞馬遜河流域多樣化的森林研究表明, 土壤修復(fù)除了修復(fù)物或施用化肥, 還可以通過(guò)延長(zhǎng)田間使用時(shí)間、縮短休耕期來(lái)提升土壤肥力, 提高生物多樣性[51]。
土壤微生物是氮素等養(yǎng)分元素循環(huán)的引擎, 氨化作用、固氮作用、硝化作用和反硝化作用構(gòu)成土壤氮循環(huán)的主要環(huán)節(jié), 且每一個(gè)過(guò)程都需要相應(yīng)微生物參與。土壤微生物群落結(jié)構(gòu)控制了不同生態(tài)系統(tǒng)中的氮素轉(zhuǎn)化, 進(jìn)而調(diào)節(jié)生態(tài)系統(tǒng)的功能與穩(wěn)定。自然森林土壤中有較高的微生物量氮, 凈氮礦化相對(duì)較少[31], 因此森林系統(tǒng)常受供氮量低的限制。外生菌根等微生物也是森林系統(tǒng)的重要氮源, 澳大利亞國(guó)家公園強(qiáng)酸且貧瘠土壤上生長(zhǎng)著極度瀕危的Wollemi松樹(shù), 高度依賴(lài)于其根部一個(gè)獨(dú)特的細(xì)菌群落[55]。可見(jiàn)不同森林的土壤微生物量差異很大。小興安嶺6種森林類(lèi)型的土壤微生物碳與微生物氮的大小順序依次為: 次生白樺()林>人工紅松林>擇伐林>闊葉紅松林>人工落葉松()林>谷地云冷杉()林, 總體表現(xiàn)為闊葉林(次生白樺林、闊葉紅松林和擇伐林)的土壤微生物量高于針葉林或針葉樹(shù)占比較高的森林類(lèi)型[56]。
地上部植被和土壤環(huán)境均對(duì)土壤微生物生物量氮和氮礦化有影響[37]。幼齡草甸土壤微生物生物量氮較低, 隨著年限增加, 微生物氮與全氮比(Nmic/TN)增加, 土壤總氮礦化率下降, 氮對(duì)植物的有效性降低, 植物產(chǎn)量下降[57]。
城市化過(guò)程對(duì)土壤氮循環(huán)的關(guān)鍵微生物影響很大。城市草坪土壤中的氨氧化古菌(AOA)豐度高于郊區(qū)和農(nóng)村的農(nóng)田土壤, AOA對(duì)城市草坪土壤硝化起關(guān)鍵作用。城市草坪土壤中的根瘤菌、變形桿菌()和綠彎菌()也比農(nóng)田土壤豐富, 但城市草坪土壤AOB和反硝化細(xì)菌nirS, nosZ)的相對(duì)豐度低于郊區(qū)草坪和農(nóng)田[27]。
由于土壤環(huán)境的多樣性和土壤微生物的復(fù)雜性,導(dǎo)致生態(tài)覆被/土地利用變化與土壤氮循環(huán)過(guò)程的效應(yīng)至今難有確定結(jié)論。在生態(tài)覆被/土地利用加劇和全球氣候變暖趨勢(shì)下, 對(duì)這一科學(xué)問(wèn)題的探索仍是研究熱點(diǎn)。其瓶頸仍然在于土壤微生物, 因?yàn)橥寥乐卸鄶?shù)微生物在休眠狀態(tài)下長(zhǎng)時(shí)間存活, 休眠期間細(xì)胞活性很低甚至沒(méi)有活性。傳統(tǒng)的平板培養(yǎng)法無(wú)法將它們分離出來(lái)。目前常用的熏蒸法測(cè)定土壤微生物碳和微生物氮誤差非常大, 結(jié)果重現(xiàn)性差。運(yùn)用分子生物學(xué)技術(shù)研究土壤微生物與土壤氮素循環(huán)之間的關(guān)系是目前的方向, 但是, 微生物群落的數(shù)量(豐度)以及多樣性指數(shù)(如Shannon和Simpson指數(shù))難以揭示復(fù)雜的微生物群落結(jié)構(gòu)與功能微生物之間量化關(guān)系[63-65]。特別是找出微生物群落中控制生態(tài)功能的關(guān)鍵物種是本方向研究中的一個(gè)難點(diǎn)。近年來(lái), 利用高通量基因芯片數(shù)據(jù)和微生物群落的生態(tài)網(wǎng)絡(luò)分析方法是提升土壤微生物群落結(jié)構(gòu)研究定量化和可視化新方向。
[1] ERISMAN J W, DE VRIES W, KROS H, et al. An outlook for a national integrated nitrogen policy[J]. Environmental Science & Policy, 2001, 4(2/3): 87–95
[2] GALLOWAY J N, ABER J D, ERISMAN J W, et al. The nitrogen cascade[J]. BioScience, 2003, 53(4): 341–356
[3] SMIL V. Detonator of the population explosion[J]. Nature, 1999, 400(6743): 415
[4] GüTLEIN A, GERSCHLAUER F, KIKOTI I, et al. Impacts of climate and land use on N2O and CH4fluxes from tropical ecosystems in the Mt. Kilimanjaro region, Tanzania[J]. Global Change Biology, 2018, 24(3): 1239–1255
[5] XU Z Z, JIANG Y L, ZHOU G S. Nitrogen cycles in terrestrial ecosystems: Climate change impacts and mitigation[J]. Environmental Reviews, 2016, 24(2): 132–143
[6] DILLY O, BLUME H P, SEHY U, et al. Variation of stabilised, microbial and biologically active carbon and nitrogen in soil under contrasting land use and agricultural management practices[J]. Chemosphere, 2003, 52(3): 557–569
[7] MARTY C, HOULE D, GAGNON C, et al. The relationships of soil total nitrogen concentrations, pools and C∶N ratios with climate, vegetation types and nitrate deposition in temperate and boreal forests of eastern Canada[J]. CATENA, 2017, 152: 163–172
[8] FISK M C, ZAK D R, CROW T R. Nitrogen storage and cycling in old-and second-growth northern hardwood forests[J]. Ecology, 2002, 83(1): 73–87
[9] MACEDO M O, RESENDE A S, GARCIA P C, et al. Changes in soil C and N stocks and nutrient dynamics 13 years after recovery of degraded land using leguminous nitrogen-?xing trees[J]. Forest Ecology and Management, 2008, 255(5/6): 1516–1524
[10] 薛曉輝, 趙常萬(wàn), 張嵩. 黔西北不同土地利用類(lèi)型下土壤全氮及硝態(tài)氮的分布與殘留[J]. 草地學(xué)報(bào), 2016, 24(4): 819–824 XUE X H, ZHAO C W, ZHANG S. Distribution and residual of soil total N and nitrate-N under different land-use types in Northwest Guizhou[J]. Acta Agrestia Sinica, 2016, 24(4): 819–824
[11] PETRENKO C L, BRADLEY-COOK J, LACROIX E M, et al. Comparison of carbon and nitrogen storage in mineral soils of graminoid and shrub tundra sites, western Greenland[J]. Arctic Science, 2016, 2(4): 165–182
[12] YANG L L, ZHANG F S, MAO R Z, et al. Conversion of natural ecosystems to cropland increases the soil net nitrogen mineralization and nitri?cation in Tibet[J]. Pedosphere, 2008, 18(6): 699–706
[13] YANG W H, RYALS R A, CUSACK D F, et al. Cross-biome assessment of gross soil nitrogen cycling in California ecosystems[J]. Soil Biology and Biochemistry, 2017, 107: 144–155
[14] ZHAO H L, HE Y H, ZHOU R L, et al. Effects of desertification on soil organic C and N content in sandy farmland and grassland of Inner Mongolia[J]. CATENA, 2009, 77(3): 187–191
[15] MO J M, BROWN S, PENG S L, et al. Nitrogen availability in disturbed, rehabilitated and mature forests of tropical China[J]. Forest Ecology and Management, 2003, 175(1/3): 573–583
[16] KONG W B, YAO Y F, ZHAO Z N, et al. Effects of vegetation and slope aspect on soil nitrogen mineralization during the growing season in sloping lands of the Loess Plateau[J]. CATENA, 2019, 172: 753–763
[17] 劉翥, 楊玉盛, 朱錦懋, 等. 中亞熱帶森林轉(zhuǎn)換對(duì)土壤可溶性有機(jī)質(zhì)數(shù)量與光譜學(xué)特征的影響[J]. 生態(tài)學(xué)報(bào), 2015, 35(19): 6288–6297 LIU Z, YANG Y S, ZHU J M, et al. Effects of forest conversion on quantities and spectroscopic characteristics of soil dissolved organic matter in subtropical China[J]. Acta Ecologica Sinica, 2015, 35(19): 6288–6297
[18] ALLEN K, CORRE M D, TJOA A, et al. Soil nitrogen-cycling responses to conversion of lowland forests to oil palm and rubber plantations in Sumatra, Indonesia[J]. PLoS One, 2015, 10(7): e0133325
[19] DILLY O. Regulation of the respiratory quotient of soil microbiota by availability of nutrients[J]. FEMS Microbiology Ecology, 2003, 43(3): 375–381
[20] COMPTON J E, BOONE R D. Long-term impacts of agriculture on soil carbon and nitrogen in new England forests[J]. Ecology, 2000, 81(8): 2314–2330
[21] MAHARJAN M, SANAULLAH M, RAZAVI B S, et al. Effect of land use and management practices on microbial biomass and enzyme activities in subtropical top- and sub-soils[J]. Applied Soil Ecology, 2017, 113: 22–28
[22] TRIPATHI N, SINGH R S. Cultivation impacts nitrogen transformation in Indian forest ecosystems[J]. Nutrient Cycling in Agroecosystems, 2007, 77(3): 233–243
[23] PRASAD P, BASU S, BEHERA N. A comparative account of the microbiological characteristics of soils under natural forest, grassland and cropfield from Eastern India[J]. Plant and Soil, 1995, 175(1): 85–91
[24] GE N N, WEI X R, WANG X, et al. Soil texture determines the distribution of aggregate-associated carbon, nitrogen and phosphorous under two contrasting land use types in the Loess Plateau[J]. CATENA, 2019, 172: 148–157
[25] WANG Z P, HAN X G, LI L H. Effects of grassland conversion to croplands on soil organic carbon in the temperate Inner Mongolia[J]. Journal of Environmental Management, 2008, 86(3): 529–534
[26] YANG L L, ZHANG F S, GAO Q, et al. Impact of land-use types on soil nitrogen net mineralization in the sandstorm and water source area of Beijing, China[J]. CATENA, 2010, 82(1): 15–22
[27] WANG H T, MARSHALL C W, CHENG M Y, et al. Changes in land use driven by urbanization impact nitrogen cycling and the microbial community composition in soils[J]. Scientific Reports, 2017, 7: 44049
[28] KNOPS J M H, TILMAN D. Dynamics of soil nitrogen and carbon accumulation for 61 years after agricultural abandonment[J]. Ecology, 2000, 81(1): 88–98
[29] BONITO G M, COLEMAN D C, HAINES B L, et al. Can nitrogen budgets explain differences in soil nitrogen mineralization rates of forest stands along an elevation gradient?[J]. Forest Ecology and Management, 2003, 176(1/3): 563–574
[30] MCKINLEY D C, RICE C W, BLAIR J M. Conversion of grassland to coniferous woodland has limited effects on soil nitrogen cycle processes[J]. Soil Biology and Biochemistry, 2008, 40(10): 2627–2633
[31] AGGANGAN R T, O’CONNELL A M, MCGRATH J F, et al. Fertilizer and previous land use effects on C and N mineralization in soils fromplantations[J]. Soil Biology and Biochemistry, 1998, 30(13): 1791–1798
[32] ROSS D J, TATE K R, SCOTT N A, et al. Land-use change: Effects on soil carbon, nitrogen and phosphorus pools and fluxes in three adjacent ecosystems[J]. Soil Biology and Biochemistry, 1999, 31(6): 803–813
[33] PARFITT R L, SCOTT N A, ROSS D J, et al. Land-use change effects on soil C and N transformations in soils of high N status: Comparisons under indigenous forest, pasture and pine plantation[J]. Biogeochemistry, 2003, 66(3): 203–221
[34] 楊雪玲, 陳群, 周育智, 等. 不同土地利用類(lèi)型對(duì)土壤有機(jī)碳礦化過(guò)程的影響[J]. 安徽農(nóng)業(yè)科學(xué), 2017, 45(4): 110–114 YANG X L, CHEN Q, ZHOU Y Z, et al. Effects of different land use types on soil organic mineralization in Huainan City[J]. Journal of Anhui Agricultural Sciences, 2017, 45(4): 110–114
[35] NEILL C, PICCOLO M C, STEUDLER P A, et al. Nitrogen dynamics in soils of forests and active pastures in the western Brazilian Amazon Basin[J]. Soil Biology and Biochemistry, 1995, 27(9): 1167–1175
[36] RHOADES C C, COLEMAN D C. Nitrogen mineralization and nitrification following land conversion in montane Ecuador[J]. Soil Biology and Biochemistry, 1999, 31(10): 1347–1354
[37] TRIPATHI N, SINGH R S. Influence of different land uses on soil nitrogen transformations after conversion from an Indian dry tropical forest[J]. CATENA, 2009, 77(3): 216–223
[38] SILVER W L, THOMPSON A W, REICH A, et al. Nitrogen cycling in tropical plantation forests: Potential controls on nitrogen retention[J]. Ecological Applications, 2005, 15(5): 1604–1614
[39] 高雪峰, 韓國(guó)棟. 放牧對(duì)羊草草原土壤氮素循環(huán)的影響[J]. 土壤, 2011, 43(2): 161–166 GAO X F, HAN G D. Study on effect of grazing on steepe soil nitrogen cycle[J]. Soils, 2011, 43(2): 161–166
[40] 賈龍, 黃榮珍, 王赫, 等. 紅壤區(qū)坡耕地改造后不同土地利用類(lèi)型對(duì)土壤養(yǎng)分的影響[J]. 南昌工程學(xué)院學(xué)報(bào), 2016, 35(6): 35–40 JIA L, HUANG R Z, WANG H, et al. Effect of different land use types on soil nutrients in red soil region[J]. Journal of Nanchang Institute of Technology, 2016, 35(6): 35–40
[41] 王志齊, 杜蘭蘭, 趙慢, 等. 黃土區(qū)不同退耕方式下土壤碳氮的差異及其影響因素[J]. 應(yīng)用生態(tài)學(xué)報(bào), 2016, 27(3): 716–722 WANG Z Q, DU L L, ZHAO M, et al. Differences in soil organic carbon and total nitrogen and their impact factors under different restoration patterns in the Loess Plateau[J]. Chinese Journal of Applied Ecology, 2016, 27(3): 716–722
[42] ZOU L Q, CHEN F S, DUNCAN D S, et al. Reforestation and slope-position effects on nitrogen, phosphorus pools, and carbon stability of various soil aggregates in a red soil hilly land of subtropical China[J]. Canadian Journal of Forest Research, 2015, 45(1): 26–35
[43] LI X J, YANG H T, SHI W L, et al. Afforestation with xerophytic shrubs accelerates soil net nitrogen nitrification and mineralization in the Tengger Desert, Northern China[J]. CATENA, 2018, 169: 11–20
[44] 簡(jiǎn)興, 王松, 王玉良, 等. 城市濕地轉(zhuǎn)變?yōu)椴煌恋乩妙?lèi)型后土壤碳氮分布特征[J]. 應(yīng)用生態(tài)學(xué)報(bào), 2016, 27(5): 1408–1416 JIAN X, WANG S, WANG Y L, et al. Distribution characteristics of soil carbon and nitrogen in different land use types changed from urban wetlands[J]. Chinese Journal of Applied Ecology, 2016, 27(5): 1408–1416
[45] WANG B, XUE S, LIU G B, et al. Changes in soil nutrient and enzyme activities under different vegetations in the Loess Plateau area, Northwest China[J]. CATENA, 2012, 92: 186–195
[46] 楊帆, 潘成忠, 鞠洪秀. 晉西黃土丘陵區(qū)不同土地利用類(lèi)型對(duì)土壤碳氮儲(chǔ)量的影響[J]. 水土保持研究, 2016, 23(4): 318–324 YANG F, PAN C Z, JU H X. Effects of different land use types on storage of soil organic carbon and total nitrogen in western Shanxi Hilly Loess Plateau region[J]. Research of Soil and Water Conservation, 2016, 23(4): 318–324
[47] WEI X R, SHAO M A, FU X L, et al. The effects of land use on soil N mineralization during the growing season on the northern Loess Plateau of China[J]. Geoderma, 2011, 160(3/4): 590–598
[48] OBENG E A, AGUILAR F X. Marginal effects on biodiversity, carbon sequestration and nutrient cycling of transitions from tropical forests to cacao farming systems[J]. Agroforestry Systems, 2015, 89(1): 19–35
[49] YANG L L, DING X Q, LIU X J, et al. Impacts of long-term jujube tree/winter wheat-summer maize intercropping on soil fertility and economic efficiency — A case study in the lower North China Plain[J]. European Journal of Agronomy, 2016, 75: 105–117
[50] VAN EERD L L, CONGREVES K A, HAYES A, et al. Long-term tillage and crop rotation effects on soil quality, organic carbon, and total nitrogen[J]. Canadian Journal of Soil Science, 2014, 94(3): 303–315
[51] WOOD S L R, RHEMTULLA J M, COOMES O T. Cropping history trumps fallow duration in long-term soil and vegetation dynamics of shifting cultivation systems[J]. Ecological Applications, 2017, 27(2): 519–531
[52] 王敬, 張金波, 蔡祖聰. 太湖地區(qū)稻麥輪作農(nóng)田改葡萄園對(duì)土壤氮轉(zhuǎn)化過(guò)程的影響[J]. 土壤學(xué)報(bào), 2016, 53(1): 166–176 WANG J, ZHANG J B, CAI Z C, et al. Effects of conversion of paddy field into vineyard on soil nitrogen transformation in the Taihu Lake region of China[J]. Acta Pedologica Sinica, 2016, 53(1): 166–176
[53] URI V, L?HMUS K, KUND M, et al. The effect of land use type on net nitrogen mineralization on abandoned agricultural land: Silver birch standgrassland[J]. Forest Ecology and Management, 2008, 255(1): 226–233
[54] TEMPLER P H, GROFFMAN P M, FLECKER A S, et al. Land use change and soil nutrient transformations in the Los Haitises region of the Dominican Republic[J]. Soil Biology and Biochemistry, 2005, 37(2): 215–225
[55] RIGG J L, OFFORD C A, SINGH B K, et al. Variation in soil microbial communities associated with critically endangered Wollemi pine affects fungal, but not bacterial, assembly within seedling roots[J]. Pedobiologia, 2016, 59(1/2): 61–71
[56] 劉純, 劉延坤, 金光澤. 小興安嶺6種森林類(lèi)型土壤微生物量的季節(jié)變化特征[J]. 生態(tài)學(xué)報(bào), 2014, 34(2): 451–459 LIU C, LIU Y K, JIN G Z. Seasonal dynamics of soil microbial biomass in six forest types in Xiaoxing’an Mountains, China[J]. Acta Ecologica Sinica, 2014, 34(2): 451–459
[57] BLA?KO R, HOLM BACH L, YARWOOD S A, et al. Shifts in soil microbial community structure, nitrogen cycling and the concomitant declining N availability in ageing primary boreal forest ecosystems[J]. Soil Biology and Biochemistry, 2015, 91: 200–211
[58] POTTHAST K, HAMER U, MAKESCHIN F. Land-use change in a tropical mountain rainforest region of southern Ecuador affects soil microorganisms and nutrient cycling[J]. Biogeochemistry, 2012, 111(1/3): 151–167
[59] GOENSTER S, GRüNDLER C, BUERKERT A, et al. Soil microbial indicators across land use types in the river oasis Bulgan sum center, Western Mongolia[J]. Ecological Indicators, 2017, 76: 111–118
[60] VAN LEEUWEN J P, DJUKIC I, BLOEM J, et al. Effects of land use on soil microbial biomass, activity and community structure at different soil depths in the Danube floodplain[J]. European Journal of Soil Biology, 2017, 79: 14–20
[61] MOSCATELLI M C, DI TIZIO A, MARINARI S, et al. Microbial indicators related to soil carbon in Mediterranean land use systems[J]. Soil and Tillage Research, 2007, 97(1): 51–59
[62] 楊莉琳, 毛任釗, 劉俊杰, 等. 土地利用變化對(duì)土壤硝化及氨氧化細(xì)菌區(qū)系的影響[J]. 環(huán)境科學(xué), 2011, 32(11): 3455–3460 YANG L L, MAO R Z, LIU J J, et al. Impact of land-use type changes on soil nitrification and ammonia-oxidizing bacterial community composition[J]. Environmental Science, 2011, 32(11): 3455–3460
[63] KOWALCHUK G A, BODELIER P L E, HEILIG G H J, et al. Community analysis of ammonia-oxidising bacteria, in relation to oxygen availability in soils and root-oxygenated sediments, using PCR, DGGE and oligonucleotide probe hybridisation[J]. FEMS Microbiology Ecology, 1998, 27(4): 339–350
[64] HERMANSSON A, B?CKMAN J S K, SVENSSON B H, et al. Quantification of ammonia-oxidising bacteria in limed and non-limed acidic coniferous forest soil using real-time PCR[J]. Soil Biology and Biochemistry, 2004, 36(12): 1935–1941
[65] GRIFFITHS R I, WHITELEY A S, O’DONNELL A G, et al. Influence of depth and sampling time on bacterial community structure in an upland grassland soil[J]. FEMS Microbiology Ecology, 2003, 43(1): 35–43
Research progress on soil nitrogen internal cycling response to ecological cover change*
YANG Lilin, YAO Qifu, LIANG Li, LU Xiaoming
(Tongren University, Tongren 554300, China)
Ecosystem cover; Land use change; Active N; Nitrogen cycling; Soil microbe
S153
10.13930/j.cnki.cjea.190908
楊莉琳, 姚琦馥, 梁琍, 魯小明. 土壤氮素內(nèi)循環(huán)對(duì)生態(tài)覆被變化響應(yīng)的研究進(jìn)展[J]. 中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào)(中英文), 2020, 28(10): 1543-1550
YANG L L, YAO Q F, LIANG L, LU X M. Research progress on soil nitrogen internal cycling response to ecological cover change[J]. Chinese Journal of Eco-Agriculture, 2020, 28(10): 1543-1550
* 國(guó)家自然科學(xué)基金項(xiàng)目(31270521)、貴州省教育廳創(chuàng)新群體重大研究項(xiàng)目(黔教合KY字[2016]053號(hào))、貴州省科技計(jì)劃項(xiàng)目(黔科合基礎(chǔ)[2019]1312)、貴州省創(chuàng)新人才團(tuán)隊(duì)(黔教合人才團(tuán)隊(duì)字[2015]67號(hào))、銅仁學(xué)院博士基金項(xiàng)目(trxyDH1525)和農(nóng)業(yè)生態(tài)創(chuàng)新團(tuán)隊(duì)(CXTD[2020-10])資助
楊莉琳, 主要研究方向?yàn)橥寥鲤B(yǎng)分循環(huán)與環(huán)境生態(tài)。E-mail: yangllin@sjziam.ac.cn
2019-12-24
2020-04-09
* This study was supported by the National Natural Sciences Foundation of China (31270521), the Major Research Project of Innovation Group for Guizhou Education Department (Qian Education NO. [2016] 053th), the Science and Technology Plan Project for Guizhou Province (Qian Science NO.[2019] 1312), the Guizhou Innovation Talent Group (Qian Education NO. [2015] 67th), the Doctoral Fund Project for Tongren University (trxyDH1525), and Agro-ecological Innovation Research Group (CXTD[2020-10]).
, YANG Lilin, E-mail: yangllin@sjziam.ac.cn
Dec. 24, 2019;
Apr. 9, 2020