焦宏哲李 歡陳 惠鮑 勇孫 穎楊玉盛司友濤?
增溫、施氮對(duì)中亞熱帶杉木林土壤可溶性有機(jī)質(zhì)的影響*
焦宏哲1,2,李 歡1,2,陳 惠1,2,鮑 勇1,2,孫 穎1,2,楊玉盛1,2,司友濤1,2?
(1. 福建師范大學(xué)地理科學(xué)學(xué)院,福州 350007;2. 濕潤(rùn)亞熱帶山地生態(tài)國(guó)家重點(diǎn)實(shí)驗(yàn)室培育基地,福州 350007)
受人類(lèi)活動(dòng)的影響,1880—2012年,全球地表平均溫度約提高0.85 °C;同時(shí),1980—2010年間我國(guó)大氣氮沉降以0.41 kg·hm–2的速率逐年增加。全球變暖和大氣氮沉降將通過(guò)影響環(huán)境因子變化進(jìn)而影響土壤可溶性有機(jī)質(zhì)(DOM,Dissolved organic matter)。為探究增溫和施氮對(duì)DOM數(shù)量及其結(jié)構(gòu)的影響,選取我國(guó)中亞熱帶杉木人工林土壤進(jìn)行增溫以及施氮試驗(yàn),試驗(yàn)設(shè)對(duì)照(CT,0 kg·hm–2·a–1)、增溫(W,+5℃,0 kg·hm–2·a–1)、高氮(HN,80 kg·hm–2·a–1)、低氮(LN,40 kg·hm–2·a–1)、增溫×高氮(WHN,+5℃,80 kg·hm–2·a–1)、增溫×低氮(WLN,+5℃,40 kg·hm–2·a–1)6種處理。結(jié)果表明,與CT相比,W處理的土壤可溶性有機(jī)碳(DOC,Dissolved organic carbon)和可溶性有機(jī)氮(DON,Dissolved organic nitrogen)增加,但其芳香性指數(shù)和腐殖化程度低,這很可能是由于增溫促進(jìn)了土壤有機(jī)質(zhì)(SOM,Soil organic matter)向DOM的轉(zhuǎn)化。季節(jié)通過(guò)影響土壤環(huán)境,對(duì)施氮后的土壤DOM結(jié)構(gòu)有不同影響:干季(2015年1月)時(shí),施氮使DOM含量增加,其芳香性指數(shù)顯著升高;雨季(2015年4月)時(shí),施氮處理的土壤DOM含量升高,但其芳香性指數(shù)和腐殖化程度呈下降趨勢(shì)。在增溫和施氮的交互作用下DOM含量達(dá)到最高,其結(jié)構(gòu)相對(duì)簡(jiǎn)單。除了溫度和氮含量的直接影響外,RDA(冗余分析)表明,土壤含水量和pH也是決定土壤DOM變化的重要因子。增溫和施氮均可以降低土壤pH,使得SOM更容易向DOM轉(zhuǎn)化。增溫會(huì)加速植物殘?bào)w和SOM向DOM的溶解過(guò)程;施氮會(huì)通過(guò)促進(jìn)植物生長(zhǎng),增加土壤DOM的含量。
增溫;氮添加;杉木人工林;可溶性有機(jī)質(zhì)
土壤有機(jī)質(zhì)(SOM,Soil organic matter)在全球碳循環(huán)中扮演著十分重要的角色[1]。其中,可溶性有機(jī)質(zhì)(DOM,Dissolved organic matter)雖然占SOM的比例小于5%,卻具有周轉(zhuǎn)速度快、活性高的特性。土壤DOM主要來(lái)自地表凋落物的淋溶、根系分泌物、殘根分解和固相SOM的分解轉(zhuǎn)化。同時(shí),土壤DOM可能在不同土層間發(fā)生遷移,甚至?xí)w移到生態(tài)系統(tǒng)之外,也有可能被微生物分解利用、被土壤顆粒吸附,這些過(guò)程均會(huì)降低土壤DOM的含量[2]。因此,DOM不僅影響生態(tài)系統(tǒng)的物質(zhì)循環(huán)和能量流動(dòng),而且在調(diào)節(jié)森林生態(tài)系統(tǒng)各養(yǎng)分庫(kù)的平衡方面起重要作用。
根據(jù)IPCC(Intergovernmental Panel on Climate Change)在2013年發(fā)布的第五次評(píng)估報(bào)告[3],1880—2012年,全球地表平均溫度約提高0.85℃。同時(shí),大氣氮沉降強(qiáng)度不斷增加,19世紀(jì)60年代人類(lèi)活動(dòng)產(chǎn)生的N為15 Tg·a–1,20世紀(jì)90年代早期增至156 Tg·a–1,預(yù)計(jì)2050年將增至270 Tg·a–1[4]。氣候變暖和大氣氮沉降會(huì)通過(guò)影響森林初級(jí)生產(chǎn)力調(diào)控植物向土壤輸入有機(jī)碳的過(guò)程,也會(huì)通過(guò)改變土壤溫度、pH等環(huán)境因子改變微生物對(duì)SOM的分解轉(zhuǎn)化過(guò)程,并最終改變SOM。在這些過(guò)程中,DOM是外源輸入新鮮有機(jī)質(zhì)庫(kù)、本底SOM庫(kù)和微生物可利用的能量和養(yǎng)分庫(kù)之間的橋梁。因此DOM能敏感地反映氣候變暖和氮沉降對(duì)SOM的影響[5]。
有研究表明[6],土壤可溶性有機(jī)碳(DOC,Dissolved organic carbon)的含量與溫度呈正比,這可能是因?yàn)樵鰷厥刮⑸锘钚栽鰪?qiáng),促進(jìn)了土壤有機(jī)質(zhì)的周轉(zhuǎn),從而使DOM含量增加[7]。然而,MacDonald等[8]發(fā)現(xiàn)增溫對(duì)土壤DOC含量沒(méi)有影響。Camino-Serrano等[9]則發(fā)現(xiàn)增溫后DOM整體呈下降趨勢(shì)。施氮與DOM含量的關(guān)系亦不確定。如,在美國(guó)科羅拉多研究發(fā)現(xiàn)施氮促進(jìn)土壤DOC含量增加,這可能是因?yàn)殚L(zhǎng)期施肥會(huì)促進(jìn)土壤有機(jī)質(zhì)儲(chǔ)量的增加,進(jìn)而增加土壤DOC含量[10]。Rappe-George等[11]研究發(fā)現(xiàn)施氮對(duì)土壤DOM無(wú)顯著影響。而Zak等[12]認(rèn)為施氮能夠抑制微生物及酶的活性,從而導(dǎo)致DOM含量的減少。
過(guò)去研究表明[13],增溫會(huì)使土壤微生物分解速率加快,增加土壤腐殖質(zhì)成分和高芳香碳化合物。Nguyen和Choi等[14]研究發(fā)現(xiàn)施氮對(duì)土壤DOM腐殖化指數(shù)影響不明顯,常單娜等[15]認(rèn)為施氮肥會(huì)使土壤DOM芳香化指數(shù)和腐殖化指數(shù)升高,而Hagedorn等[16]卻發(fā)現(xiàn)施氮會(huì)使土壤DOM中芳香化合物減少。顯然,增溫和施氮對(duì)土壤DOM的影響十分復(fù)雜,其影響機(jī)制還不甚清楚,仍需要更多的探索。尤其是鮮有研究從DOM的結(jié)構(gòu)入手分析DOM的來(lái)源和分解狀態(tài),并以此來(lái)解釋DOM的含量。
我國(guó)亞熱帶被稱為“回歸帶上的綠洲”,森林生物資源豐富,自然條件優(yōu)越。由于南方山地開(kāi)發(fā)和商品林基地建設(shè),大面積的常綠闊葉林被改造成杉木人工林,約占我國(guó)南方森林面積的1/3[17]。現(xiàn)有的增溫和氮沉降開(kāi)展的相關(guān)控制試驗(yàn)多集中于中高緯度溫帶地區(qū)[18-20],亞熱帶地區(qū)高溫高濕,有機(jī)質(zhì)周轉(zhuǎn)速度快,增大了DOM淋溶和損失的風(fēng)險(xiǎn),亞熱帶森林對(duì)氣候的響應(yīng)可能比溫帶森林更加脆弱。因此,在亞熱帶森林開(kāi)展增溫和施氮對(duì)了解全球氣候變化背景下該地區(qū)森林生態(tài)系統(tǒng)結(jié)構(gòu)和功能的變化具有極大的理論和現(xiàn)實(shí)意義。本研究在杉木幼林設(shè)置增溫和施氮多因子試驗(yàn)平臺(tái),利用紫外-可見(jiàn)光譜(UV-Vis)、熒光光譜(FS)等技術(shù)探討DOM的含量及化學(xué)結(jié)構(gòu)對(duì)增溫和施氮的響應(yīng),以期深入了解全球氣候變化對(duì)森林生態(tài)系統(tǒng)碳、氮循環(huán)的影響。
研究區(qū)位于福建三明森林生態(tài)系統(tǒng)與全球變化野外觀測(cè)研究站陳大觀測(cè)點(diǎn)(26°19″ N,117°36″ E)。該地平均海拔300 m,屬中亞熱帶季風(fēng)氣候,年均溫17~19.4℃,年均降水量1 749 mm,年均蒸發(fā)量1 585 mm,相對(duì)濕度81%。土壤為黑云母花崗巖發(fā)育的紅壤。
試驗(yàn)所選樣地為杉木幼林地。設(shè)對(duì)照(CT)、增溫(W,+5℃)、高氮(HN,80 kg·hm–2·a–1)、低氮(LN,40 kg·hm–2·a–1)、增溫×高氮(WHN)、增溫×低氮(WLN)6種處理,每個(gè)處理3個(gè)小區(qū)(重復(fù)),共18個(gè)2 m×2 m的小區(qū)。小區(qū)土壤取自附近成熟杉木林,按0~10、10~20、20~70 cm將土壤分層取回,剔除粗根、石塊和其他雜物,再分層混合均勻,按20~70、10~20、0~10 cm的順序重填回試驗(yàn)小區(qū),同時(shí)采用壓實(shí)法調(diào)整土壤容重與原位土壤容重接近,以消除土壤異質(zhì)性。小區(qū)四周隔入焊接的4塊PVC板(200 cm×70 cm),防止小區(qū)之間相互干擾。
于2013年10月在所有小區(qū)內(nèi)平行布設(shè)加熱電纜,深度為10 cm,間距為20 cm,且在小區(qū)最外圍環(huán)繞一周,保證樣地增溫的均勻性。2013年11月,每個(gè)2 m×2 m小區(qū)種植4棵1年生杉木幼苗,所選幼苗地徑為3 cm左右,高度25 cm左右,杉木位置均處于兩條電纜線之間。2014年3月同時(shí)開(kāi)展增溫和施氮試驗(yàn):在W、WHN和WLN三種處理下的9個(gè)小區(qū)電纜通電增溫(始終較對(duì)照高5℃);在HN、LN、WHN和WLN小區(qū)內(nèi),按照氮水平要求,每月將每個(gè)小區(qū)所需要噴灑的NH4NO3溶解在800 mL去離子水中,用手提式噴霧器從幼苗林冠上方對(duì)小區(qū)均勻噴灑,全年分12次模擬氮沉降。對(duì)照小區(qū)噴灑等量的去離子水,以減少因外加水而造成的影響。
于2015年1月(干季)和2015年4月(雨季)采集土壤樣品,每次采樣均在各個(gè)小區(qū)按S型布設(shè)5個(gè)土壤取樣點(diǎn),采集0~10 cm的土壤。樣品帶回室內(nèi)后,去除碎屑、砂礫以及植物根系,再將每塊小區(qū)中的5個(gè)取樣點(diǎn)土樣混合成一個(gè)樣品,過(guò)2 mm篩。一部分用于測(cè)定土壤基本理化性質(zhì),另一部分用于提取DOM。
土壤DOM的提取采用水浸提法。稱取15 g鮮土于50 mL離心管中,加入30 mL去離子水(水土比為2︰1,V︰W),振蕩30 min后4 000 r·min–1離心10 min,再用0.45 μm濾膜過(guò)濾,濾液中的有機(jī)物即為土壤DOM。
土壤pH用CHN868型pH計(jì)測(cè)定,水土比為2.5︰1。土壤含水量采用烘干法測(cè)定。土壤總有機(jī)碳及土壤全氮用碳氮元素分析儀(Elementar Vario EL III,Elementar,German)測(cè)定。DOM中DOC和DON(可溶性有機(jī)氮,Dissolved organic nitrogen)含量分別采用有機(jī)碳分析儀(TOC-VCPH,Shimadzu,Kyoto,Japan)和連續(xù)流動(dòng)分析儀(Skalar San++,Netherlands)測(cè)定。DOM溶液在254 nm處的吸光度值用紫外-可見(jiàn)光分光度計(jì)(UV-2450,Shimadzu,Kyoto,Japan)測(cè)定,利用254 nm處吸收值和DOC含量計(jì)算芳香性指數(shù)(Aromaticity Index,AI),AI =(UV254/DOC)× 100[21]。熒光光譜采用日立熒光光譜儀(F7000,Hitachi,Tokyo,Japan)測(cè)定,激發(fā)和發(fā)射光柵狹縫寬度為5 nm,掃描速度為1 200 nm·min–1,熒光同步波長(zhǎng)范圍為250~500 nm。為提高靈敏度,熒光光譜測(cè)定前使用2 mol·L–1鹽酸將所有待測(cè)液的pH調(diào)成2。熒光同步光譜腐殖化指數(shù)(Humification index,synchronous mode,HIXsyn)為熒光同步光譜中波長(zhǎng)460 nm與345 nm處熒光強(qiáng)度的比值[22-23]。
用Excel 2013和SPSS 22.0軟件進(jìn)行數(shù)據(jù)處理。采用單因素方差分析和獨(dú)立樣本t檢驗(yàn)比較同一取樣時(shí)間下不同處理間或不同取樣時(shí)間下同一處理間的土壤理化性質(zhì)、DOM含量及其光譜學(xué)特征值的差異性;采用雙因素方差分析檢驗(yàn)增溫、施氮對(duì)各指標(biāo)的影響;采用Canoco Software 5.0 軟件以土壤DOM為響應(yīng)變量,同時(shí)以土壤理化性質(zhì)為解釋變量做冗余分析(RDA)。圖表由Excel和Origin完成。
1月時(shí),與CT相比,HN和LN處理的含水量分別顯著下降了15.5%、14.7%(表1);其他5種處理的土壤pH顯著小于CT;各處理間C/N無(wú)顯著差異。4月時(shí),土壤經(jīng)W、HN、LN、WHN和WLN處理后,土壤含水量均顯著降低;W、WHN和WLN處理的pH顯著低于CT。1月時(shí)同種處理的土壤含水量總體高于4月;同時(shí)HN、LN和WLN三種處理的pH值低于4月。方差分析表明,1月時(shí)增溫和施氮對(duì)土壤含水量無(wú)顯著影響(表2);但增溫和施氮對(duì)土壤pH的作用顯著。4月時(shí)增溫、施氮對(duì)土壤含水量和pH均有顯著影響。
1月時(shí),WHN和WLN處理顯著增加土壤DOC含量;HN、LN、WHN和WLN處理顯著提高DON含量(圖1)。4月時(shí),與CT相比,其他5種處理的DOC含量顯著升高,其中WHN處理的DOC最高;除WLN外其他處理的DON顯著高于CT。4月同種處理的DOC含量與1月相比呈增加趨勢(shì);4月W處理的DON含量相比1月呈增加趨勢(shì),但HN、LN、WHN和WLN處理的DON含量呈下降趨勢(shì)。方差分析表明,1月和4月時(shí),增溫、施氮、增溫和施氮的交互作用對(duì)土壤DOC、DON含量的作用顯著(表2)。
1月時(shí),W處理的AI顯著低于CT;而HN和LN處理的AI顯著升高,分別為CT處理的2.6倍、2.1倍。4月時(shí),HN、LN、WHN和WLN的AI顯著低于CT。與1月相比,4月W的AI呈增加趨勢(shì),但HN、LN、WHN和WLN的AI呈下降趨勢(shì)(圖2)。方差分析表明,1月時(shí)增溫、施氮、增溫和施氮的交互作用對(duì)芳香性指數(shù)作用顯著,4月時(shí)僅施氮對(duì)芳香性指數(shù)有顯著影響(表2)。
1月時(shí),與CT相比,其他5種處理的HIXsyn顯著降低。4月時(shí),僅LN處理的HIXsyn值顯著低于對(duì)照。從1月到4月,各處理的HIXsyn值總體呈下降趨勢(shì)(圖3)。方差分析表明,1月時(shí)增溫、施氮、增溫和施氮的交互作用對(duì)HIXsyn作用顯著(表2)。
以土壤DOM為被解釋變量,以土壤理化性質(zhì)為解釋變量,分別對(duì)2015年1月(圖4A)和2015年4月(圖4B)的土壤DOM進(jìn)行冗余分析(RDA)。圖4A中,第一軸和第二軸共解釋了土壤DOM變異的64.37%;其中pH、含水量分別解釋了55.6%和8.7%,說(shuō)明二者對(duì)1月的土壤DOM含量和結(jié)構(gòu)起重要作用。圖4B中,兩軸共同解釋4月土壤DOM變化的55.33%;含水量、pH分別解釋了變異的37.6%和17.8%。
表1 各取樣時(shí)間下不同處理的土壤性質(zhì)
注:CT,對(duì)照;W,增溫;HN,高氮;LN,低氮;WHN,增溫×高氮;WLN,增溫×低氮。下同。不同大寫(xiě)字母表示不同時(shí)間下同一處理間差異顯著,不同小寫(xiě)字母表示同一時(shí)間下不同處理間差異顯著(<0.05);結(jié)果表示為平均值±標(biāo)準(zhǔn)差(=3)。Note:CT,Control;W,Warming;HN,High nitrogen-addition;LN,Low nitrogen-addition;WHN,Warming and high nitrogen-addition;WLN,Warming and low nitrogen-addition. The same below. Different capital letters indicate significant difference between sampling times,and different lowercase letters indicate significant difference between treatments(<0.05);data are means±SD(=3).
表2 增溫、施氮對(duì)土壤性質(zhì)、DOM含量及結(jié)構(gòu)的影響的方差分析
注:W,增溫;N,施氮;W×N,增溫和施氮的交互作用;SOC,土壤有機(jī)碳;STN,土壤全氮;DOC,可溶性有機(jī)碳;DON,可溶性有機(jī)氮;AI,芳香性指數(shù);HIXsyn,熒光同步光譜腐殖化指數(shù)。Note:W stands for warming;N for nitrogen addition;W×N for interactive effect of warming and nitrogen addition;SOC for soil organic carbon;STN for soil total nitrogen;DOC for dissolved organic carbon;DON for dissolved organic nitrogen;AI for aromaticity index;HIXsynfor humification index of synchronous mode;ns,0.05;*,<0.05;**,<0.01;***,<0.001.
注:圖中誤差線為標(biāo)準(zhǔn)差(n=3)。不同大寫(xiě)字母表示不同時(shí)間下同一處理間差異顯著,不同小寫(xiě)字母同一時(shí)間下不同處理間差異顯著(P<0.05)。下同。Note:Error bars stand for standard deviations(n=3). Different capital letters indicate significant difference between sampling times,different lowercase letters indicate significant difference between treatments(P<0.05). The same below.
圖2 各取樣時(shí)間下不同處理間土壤DOM的芳香性指數(shù)
增溫和施氮對(duì)土壤理化性質(zhì)的影響主要體現(xiàn)在土壤含水量和pH兩方面。
增溫提高土壤溫度,加速土壤水分蒸發(fā);施氮促進(jìn)植物生長(zhǎng),使植物從土壤中汲取更多的水分;二者均能使土壤含水量降低。增溫和施氮在4月對(duì)土壤含水量的影響似乎比1月更明顯,具體表現(xiàn)為:雖然4月是雨季而1月是干季,但整體上4月的土壤含水量低于1月。很可能是因?yàn)?月氣溫較低,增溫后仍不足以明顯促進(jìn)水分蒸發(fā),且不是植物的生長(zhǎng)季,植物所吸收的土壤水分很少;而4月氣溫較高,增溫后水分蒸發(fā)明顯加快,且此時(shí)正是生長(zhǎng)季,施氮促進(jìn)了植物生長(zhǎng)從土壤中獲取水分的速度。此外,4月時(shí)其他5種處理的土壤含水量均顯著低于CT,也證明此時(shí)增溫和施氮對(duì)土壤含水量影響顯著。
圖3 各取樣時(shí)間下不同處理間土壤DOM的熒光同步光譜特征
注:A,2015年1月;B,2015年4月;CT1,2,3,對(duì)照;W1,2,3,增溫;HN1,2,3,高氮;LN1,2,3,低氮;WHN1,2,3,增溫×高氮;WLN1,2,3,增溫×低氮;M,土壤含水量;DOC,可溶性有機(jī)碳;DON,可溶性有機(jī)氮;AI,芳香性指數(shù);HIXsyn,熒光同步光譜腐殖化指數(shù)。Note:CT1,2,3,Control;W1,2,3,Warming;HN1,2,3,High nitrogen-addition;LN1,2,3,Low nitrogen-addition;WHN1,2,3,Warming and high nitrogen-addition;WLN1,2,3,Warming and low nitrogen-addition;M,Moisture;DOC,Dissolved organic carbon;DON,Dissolved organic nitrogen;AI,Aromaticity index;HIXsyn,Humification index of synchronous mode.
增溫后土壤pH下降,導(dǎo)致土壤顆粒表面電荷減少,SOM和土壤顆粒的結(jié)合力下降,SOM受到的物理保護(hù)減弱,更容易被微生物利用或者被土壤水溶液所溶解[28];同時(shí),由于有機(jī)質(zhì)的溶解過(guò)程往往是吸熱過(guò)程,所以溫度升高會(huì)直接促進(jìn)植物殘?bào)w和SOM向DOM的溶解轉(zhuǎn)化過(guò)程[29]。同一時(shí)間點(diǎn),W處理DOM的AI和HIXsyn低于CT,說(shuō)明結(jié)構(gòu)相對(duì)簡(jiǎn)單的小分子量物質(zhì)在DOM中的比例上升,且微生物分解產(chǎn)物的比例相對(duì)較小,這些均證明了增溫會(huì)促進(jìn)植物殘?bào)w和SOM向DOM的轉(zhuǎn)化(圖5的過(guò)程III)。由于DOM是微生物最容易利用的能量和養(yǎng)分源,增溫后微生物的活性增加,所以增溫后微生物對(duì)SOM的分解速率亦加快[30],SOC、STN有減少的趨勢(shì)(表1)。4月W處理的DOM含量與CT相比顯著增加(圖1),且W處理在4月的DOC/SOC顯著高于1月(表1);可能因?yàn)?月平均溫度(10℃)較低,增溫對(duì)植物殘?bào)w和SOM的活化作用不明顯,而4月平均溫度為18℃,增溫后效果更顯著[31]。
圖5 DOM產(chǎn)生和消耗的主要途徑
1月,增溫和施氮對(duì)DOM的含量和結(jié)構(gòu)有顯著的交互作用。而在4月,雖然增溫和施氮的交互作用對(duì)DOM的含量有顯著影響,但對(duì)DOM的結(jié)構(gòu)并無(wú)顯著影響;事實(shí)上只有施氮顯著影響了4月DOM的AI(表2)。這說(shuō)明在溫度較高的生長(zhǎng)季,施氮后土壤DOM大多都來(lái)自植物體,而增溫會(huì)加速植物有機(jī)質(zhì)向DOM的轉(zhuǎn)化。
冗余分析顯示,pH和土壤含水量均是顯著影響土壤DOM含量和結(jié)構(gòu)的因子(圖4,圖5的過(guò)程III),但是其背后的影響機(jī)理并不相同。pH對(duì)DOM的影響是直接的,即:土壤pH下降,導(dǎo)致土壤顆粒表面電荷減少,SOM和土壤顆粒的結(jié)合力下降,SOM受到的物理保護(hù)減弱[23],更加容易轉(zhuǎn)化為DOM,所以pH與DOC、DON的含量呈負(fù)相關(guān)的關(guān)系(DOC、DON與pH的夾角大于90°,圖4)。然而土壤含水量對(duì)DOM的影響似乎只是“表觀”上的,這一點(diǎn)可由以下幾方面看出。第一,理論上土壤含水量越多越有利于SOM的溶解,DOC的含量應(yīng)該與土壤含水量成正比;但是本研究發(fā)現(xiàn),同種處理4月的土壤含水量低于1月的含水量,同時(shí)4月DOC的含量要高于1月(圖1),即整體上土壤含水量與DOC的含量呈負(fù)相關(guān)關(guān)系(圖4)。由此推斷,增溫對(duì)植物殘?bào)w和SOM的活化以及施氮對(duì)植物生長(zhǎng)的促進(jìn)才是DOC增加的真正原因。第二,在1月,pH的作用大于土壤含水量(圖4A),而在4月土壤含水量的作用大于pH(圖4B)。之所以表觀上4月土壤含水量的作用更大,恰恰是因?yàn)榇藭r(shí)氣溫較高,增溫的效果較1月顯著,水分蒸發(fā)加快,對(duì)有機(jī)質(zhì)的活化作用更強(qiáng),并且4月是植物的生長(zhǎng)季,施氮通過(guò)調(diào)節(jié)植物生長(zhǎng)提高了新鮮有機(jī)質(zhì)向土壤的輸入速度并使植物吸收更多的土壤水分;表觀上使得土壤含水量和DOM含量的負(fù)相關(guān)關(guān)系更明顯。
增溫和施氮均可以降低土壤pH,使得SOM更容易向DOM轉(zhuǎn)化。由于有機(jī)質(zhì)在土壤溶液中溶解大都是吸熱的,所以增溫還會(huì)加速植物殘?bào)w和SOM向DOM的溶解過(guò)程;而施氮?jiǎng)t還能通過(guò)促進(jìn)植物生長(zhǎng)增加土壤DOM的含量。增溫和施氮對(duì)土壤DOM的影響表現(xiàn)出明顯的季節(jié)差異,說(shuō)明未來(lái)全球變暖和氮沉降加劇所帶來(lái)的影響會(huì)因不同地區(qū)本底條件的差異而有所不同。增溫和施氮及其交互作用對(duì)土壤DOM的含量及結(jié)構(gòu)的影響還有待深入研究,未來(lái)應(yīng)將其他因素的影響機(jī)制考慮進(jìn)來(lái),才能更好地揭示氣候變化對(duì)土壤碳氮循環(huán)的影響。
[ 1 ] Batjes N H. Total carbon and nitrogen in the soils of the world[J]. European Journal of Soil Science,1996,47(2):151—163.
[ 2 ] Wang L,Ying R R,Shi J Q,et al. Advancement in study on adsorption of organic matter on soil minerals and its mechanism[J]. Acta Pedologica Sinica,2017,54(4):805—818. [王磊,應(yīng)蓉蓉,石佳奇,等. 土壤礦物對(duì)有機(jī)質(zhì)的吸附與固定機(jī)制研究進(jìn)展[J]. 土壤學(xué)報(bào),2017,54(4):805—818.]
[ 3 ] IPCC. Summary for policymakers//Climate change 2013:The physical science basis. Contribution of working Group I to the fifth assessment report of the Intergovernmental Panel on Climate Change[M]. Cambridge:Cambridge University Press,2013.
[ 4 ] Liu X J,Zhang Y,Han W X,et al. Enhanced nitrogen deposition over China[J]. Nature,2013,494(7438):459—462.
[ 5 ] Scott E E,Rothstein D E. The dynamic exchange of dissolved organic matter percolating through six diverse soils[J]. Soil Biology & Biochemistry,2014,69:83—92.
[ 6 ] Liechty H O,Kuuseoks E,Mroz G D. Dissolved organic carbon in northern hardwood stands with differing acidic inputs and temperature regimes[J]. Journal of Environmental Quality,1995,24(5):927—933.
[ 7 ] Zhang J S,Tao S,Cao J. Spatial distribution pattern of water soluble organic carbon in Eastern China[J]. Acta Pedologica Sinica,2001,38(3):308—314. [張甲珅,陶澍,曹軍. 中國(guó)東部土壤水溶性有機(jī)物含量與地域分異[J]. 土壤學(xué)報(bào),2001,38(3):308—314.]
[ 8 ] MacDonald N W,Randlett D L,Zak D R. Soil warming and carbon loss from a Lake States Spodosol[J]. Soil Science Society of America Journal,1999,63(1):211—218.
[ 9 ] Camino-Serrano M,Gielen B,Luyssaert S,et al. Linking variability in soil solution dissolved organic carbon to climate,soil type,and vegetation type[J]. Global Biogeochemical Cycles,2014,28(5):497—509.
[ 10 ] Fr?berg M,Grip H,Tipping E,et al. Long-term effects of experimental fertilization and soil warming on dissolved organic matter leaching from a spruce forest in Northern Sweden[J]. Geoderma,2013,200/201:172—179.
[ 11 ] Rappe-George M,Gardenas A I,Kleja D B. The impact of four decades of annual nitrogen addition on dissolved organic matter in a boreal forest soil[J]. Biogeosciences,2012,10(3):1365—1377.
[ 12 ] Zak D R,Pregitzer K S,Burton A J,et al. Microbial responses to a changing environment:Implications for the future functioning of terrestrial ecosystems[J]. Fungal Ecology,2011,4(6):386—395.
[ 13 ] Kalbitz K,Schmerwitz J,Schwesig D,et al. Biodegradation of soil-derived dissolved organic matter as related to its properties[J]. Geoderma,2003,113(3/4):273—291.
[ 14 ] Nguyen H V M,Choi J H. Changes in the dissolved organic matter leaching from soil under severe temperature and N-deposition[J]. Environmental Monitoring and Assessment,2015,187(6):1—15.
[ 15 ] Chang D N,Cao W D,Bao X G,et al. Long-term different fertilizations changed the chemical and spectrum characteristics of DOM of the irrigation-desert soil in north-western China[J]. Spectroscopy and Spectral Analysis,2016,36(1):220—225. [常單娜,曹衛(wèi)東,包興國(guó),等. 西北灌漠土長(zhǎng)期不同施肥改變土壤可溶性有機(jī)質(zhì)的化學(xué)及光譜學(xué)特性[J]. 光譜學(xué)與光譜分析,2016,36(1):220—225.]
[ 16 ] Hagedorn F,Blaser P,Siegwolf R. Elevated atmospheric CO2and increased N deposition effects on dissolved organic carbon—clues from δ13C signature[J]. Soil Biology & Biochemistry,2002,34(3):355—366.
[ 17 ] Piao S L,F(xiàn)ang J Y,Ciais P,et al. The carbon balance of terrestrial ecosystems in China[J]. Nature,2009,458(7241):1009—1013.
[ 18 ] Xu X K,Han L,Luo X B,et al. Effects of nitrogen addition on dissolved N2O and CO2,dissolved organic matter,and inorganic nitrogen in soil solution under a temperate old-growth forest[J]. Geoderma,2009,151(3/4):370—377.
[ 19 ] Li Q,Bai H H,Liang W J,et al. Nitrogen addition and warming independently influence the belowground micro-food web in a temperate steppe[J]. PLoS One,2013,8(3):e60441. DOI:10.1371/journal.pone.0060441.
[ 20 ] Gill R A. The influence of 3-years of warming and N-deposition on ecosystem dynamics is small compared to past land use in subalpine meadows[J]. Plant and Soil,2014,374(1/2):197—210.
[ 21 ] Weishaar J L,Aiken G R,Bergamaschi B A,et al. Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon[J]. Environmental Science & Technology,2003,37(20):4702—4708.
[ 22 ] Zsolnay A,Baigar E,Jimenez M,et al. Differentiating with fluorescence spectroscopy the sources of dissolved organic matter in soils subjected to drying[J]. Chemosphere,1999,38(1):45—50.
[ 23 ] Fissore C,Giardina C P,Kolka R K,et al. Temperature and vegetation effects on soil organic carbon quality along a forested mean annual temperature gradient in North America[J]. Global Change Biology,2008,14(1):193—205.
[ 24 ] Sun D D,Li Y J,Zhao W Q,et al. Effects of experimental warming on soil microbial communities in two contrasting subalpine forest ecosystems,eastern Tibetan Plateau,China[J]. Journal of Mountain Science,2016,13(8):1442—1452.
[ 25 ] Li D D,Li Y J,Liang J,et al. Responses of soil micronutrient availability to experimental warming in two contrasting forest ecosystems in the Eastern Tibetan Plateau,China[J]. Journal of Soils and Sediments,2014,14(6):1050—1060.
[ 26 ] Ren F,Zhou H K,Zhao X Q,et al. Influence of simulated warming using OTC on physiological–biochemical characteristics ofin alpine meadow on Qinghai-Tibetan Plateau[J]. Acta Ecologica Sinica,2010,30(3):166—171.
[ 27 ] Chen D M,Li J J,Lan Z C,et al. Soil acidification exerts a greater control on soil respiration than soil nitrogen availability in grasslands subjected to long-term nitrogen enrichment[J]. Functional Ecology,2016,30(4):658—669.
[ 28 ] Oades J M. The retention of organic matter in soils[J]. Biogeochemistry,1988,5(1):35—70.
[ 29 ] Li H,Yang Y S,Si Y T,et al. Effects of experimental soil warming and precipitation reduction on the quantity and structure of soil dissolved organic matter ofplantations in subtropical China[J]. Acta Ecologica Sinica,2018,38(8):2884—2895. [李歡,楊玉盛,司友濤,等. 模擬增溫及隔離降雨對(duì)中亞熱帶杉木人工林土壤可溶性有機(jī)質(zhì)的數(shù)量及其結(jié)構(gòu)的影響[J]. 生態(tài)學(xué)報(bào),2018,38(8):2884—2895.]
[ 30 ] Rustad L,Campbell J,Marion G,et al. A meta-analysis of the response of soil respiration,net nitrogen mineralization,and aboveground plant growth to experimental ecosystem warming[J]. Oecologia,2001,126(4):543—562.
[ 31 ] Yuan S,Yang Z J,Yuan X C,et al. Effects of precipitation exclusion and warming on soil soluble carbon and nitrogen in a youngplantation[J]. Chinese Journal of Applied Ecology,2018,29(7):2217—2223. [袁碩,楊智杰,元曉春,等. 降雨隔離和溫度增加對(duì)杉木幼林土壤可溶性碳氮的影響[J]. 應(yīng)用生態(tài)學(xué)報(bào),2018,29(7):2217—2223.]
[ 32 ] Berg B,Matzner E. Effect of N deposition on decomposition of plant litter and soil organic matter in forest systems[J]. Environmental Reviews,1997,5(1):1—25.
Effects of Soil Warming and Nitrogen Addition on Soil Dissolved Organic Matter ofPlantations in Subtropical China
JIAO Hongzhe1, 2, LI Huan1, 2, CHEN Hui1, 2, BAO Yong1, 2, SUN Ying1, 2, YANG Yusheng1, 2, SI Youtao1, 2?
(1. School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China; 2. Cultivation Base of State Key Laboratory of Humid Subtropical Mountain Ecology, Fuzhou 350007, China)
As affected by anthropogenic activities, such as greenhouse agriculture that emits greenhouse gases, the global mean surface temperature rose by about 0.85 °C over the period of 1880—2012; and nitrogen deposition in China increased significantly by 0.41 kg·hm–2with each passing year over the period from 1980 to 2010. In the context of global warming, soil dissolved organic matter (DOM) attracts more and more attention due to its important role affecting global carbon and nitrogen balance, which is of great significance to the ecological environment. This study aims to investigate effects of soil warming and nitrogen addition on content and structure of soil DOM in the soil ofplantations in subtropical China.In 2014—2015, a mesocosm field experiment was carried out in aplantations in subtropical China. The experiment was designed to have six treatments, that is, (1) CT(no warming and 0 kg·hm–2·a–1); (2) W(+5℃, 0 kg·hm–2·a–1); (3) HN(no warming and 80 kg·hm–2·a–1); (4) LN(no warming and 40 kg·hm–2·a–1); (5)WHN (+5℃and 80 kg·hm–2·a–1); and (6) WLN, (+5℃and 40 kg·hm–2·a–1).Soil samples were collected in January 2015(dry season)and April 2015(rainy season), separately for analysis of DOM.Results show that soil warming increased the content of DOM, but decreased its aromaticity index and humification index, which might be attributed to the effect of high temperature promoting conversion of SOM (soil organic matter)into DOM. The impact of nitrogen addition on DOM structure showed a seasonal pattern. In the dry season, addition of nitrogen increased both the content and aromaticity index of DOM, while in the rainy season, it increased the content of DOM, but reduced its aromaticity and humification index significantly. Under the joint effect of high temperature and nitrogen addition, the DOM peaked in content and got simpler in structure. Besides the direct impacts of temperature and nitrogen content, soil moisture and pH were also key factors cotrolling DOM dynamics as revealed by RDA (redundancy analysis).Based on the findings of the experiment, it could be concluded that 1) Both warming and application of nitrogen affect soil pH, thus making it easier for SOM to convert into DOM. Since the dissolution of organic matter in soil solution is mostly endothermic, warming accelerates the dissolution of plant residues and SOM into DOM; while nitrogen addition can also increase soil DOM content by promoting plant growth. 2) The effects of warming and nitrogen addition on soil DOM show a strong seasonal pattern, indicating that the influences of future global warming and nitrogen deposition will vary with environment conditions from region to region. Hence, more experiments should be done to further explore impacts of warming, nitrogen addition and their interaction on soil DOM, and some other environmenatl variables should be taken into account to attain a more profound comprehension of carbon and nitrogen cycling under a changing global climate.
Warming; Nitrogen addition;; Dissolved organic matter
S714
A
10.11766/trxb201904160078
焦宏哲,李歡,陳惠,鮑勇,孫穎,楊玉盛,司友濤. 增溫、施氮對(duì)中亞熱帶杉木林土壤可溶性有機(jī)質(zhì)的影響[J]. 土壤學(xué)報(bào),2020,57(5):1249–1258.
JIAO Hongzhe,LI Huan,CHEN Hui,BAO Yong,SUN Ying,YANG Yusheng,SI Youtao. Effects of Soil Warming and Nitrogen Addition on Soil Dissolved Organic Matter ofPlantations in Subtropical China[J]. Acta Pedologica Sinica,2020,57(5):1249–1258.
* 國(guó)家自然基金面上項(xiàng)目(31570606)和福建省自然科學(xué)基金面上項(xiàng)目(2019J01282,2015J01120)資助Supported by the National Natural Science Foundation of China(No. 31570606)and the Natural Science Foundation of Fujian Province,China(Nos. 2019J01282,2015J01120)
,E-mail:yt.si@fjnu.edu.cn
焦宏哲(1994—),女,河南新鄉(xiāng)人,碩士研究生,主要從事森林生態(tài)研究。E-mail:928187501@qq.com
2019–04–16;
2019–06–19;
優(yōu)先數(shù)字出版日期(www.cnki.net):2019–10–15
(責(zé)任編輯:盧 萍)