任書慧 孟廣偉 王吉賢 周立明?
摘? ?要:為提高磁電彈結構分析的精度,提出穩(wěn)定Node-based光滑徑向基點插值法(SNS-RPIM). 基于傳統(tǒng)Node-based光滑徑向基點插值法(NS-RPIM),引入與場變量梯度方差有關的穩(wěn)定項,消除不確定參數,推導了多場耦合問題的SNS-RPIM方程,求解了磁電彈結構靜力響應問題,并與有限元法計算結果進行比較. 數值算例結果表明,SNS-RPIM能夠得到更加接近真實解的結果,有效解決了有限元系統(tǒng)剛度偏硬的問題;在精度與收斂性方面,SNS-RPIM比有限元法表現(xiàn)得更加出色,從而為磁電彈材料的進一步應用提供了有效的分析方法.
關鍵詞:穩(wěn)定光滑徑向基點插值法;磁電彈材料;復合材料;梯度光滑技術;數值方法
中圖分類號:TB115? ? ? ? ? ? ? ? ? ? ? ? ? ? ?文獻標志碼:A
Stabilized Node-based Smoothed Radial Point Interpolation Method
for Multi-field Coupling Analysis of Magneto-electro-elastic Structures
REN Shuhui,MENG Guangwei,WANG Jixian,ZHOU Liming?
(School of Mechanical and Aerospace Engineering,Jilin University,Changchun 130025,China)
Abstract: In order to improve the accuracy in analyzing magneto-electro-elastic (MEE) structures, a stabilized node-based smoothed radial point interpolation method (SNS-RPIM) was proposed. Based on the traditional node-based smoothed radial point interpolation method, the stable item related to the gradient variance of the field variables was introduced to eliminate the uncertain parameter. The SNS-RPIM equations for multi-field coupling problems were derived, and the static responses of MEE structures were also solved. The results of SNS-RPIM were compared with those of finite element method. Numerical examples showed that SNS-RPIM can provide the result closer to the real solution and effectively solve the problem of 'overly-stiff' of finite element method. SNS-RPIM is better than FEM in terms of accuracy and convergence, which provides an effective analysis method for further application of MEE materials.
Key words: stabilized smoothed radial point interpolation method; magneto-electro-elastic(MEE) material;composite material;gradient smoothing technique;numerical methods
磁電彈材料是一種由壓電相(BaTiO3)與壓磁相(CoFe2O4)復合而成的智能材料,能夠將機械能、電能與磁能相互轉化[1-2]. 磁電彈材料因其具有力電、力磁、磁電效應而被廣泛應用于智能結構中,引起了國內外學者的廣泛關注[3-4]. Jiang等[5]推導了在均布載荷作用下磁電彈懸臂梁響應的解析解,為未來磁電彈結構的設計與分析奠定了基礎. Wang等[6]求解了三維磁電彈圓柱板的自由振動問題,得出了頻率方程. Ebrahimi等[7-8]利用Hamilton原理推導了磁電彈納米板的非局部控制方程,研究了納米板的屈曲行為.
由于傳統(tǒng)有限元法(FEM)在求解中存在“過剛”、體積自鎖等問題,導致結果不準確. 近年來,Liu等[9]提出了廣義梯度光滑技術,并基于該方法構造出了一系列光滑有限元法(S-FEM)[10]和光滑徑向基點插值法(S-RPIM)[11]. 何智成等[12-13]和陳澤聰等[14]將光滑有限元應用到聲學模擬中. 周立明等[15-16]將光滑有限元擴展到了求解裂紋問題和多場耦合問題中,驗證了光滑方法的準確性. 在S-RPIM中,Node-based光滑徑向基點插值法(NS-RPIM)能夠消除FEM中“過剛”的問題,為所求解問題提供能量范數的上界解[9].該方法使用徑向基函數對場函數進行近似,其形函數具有Kronecker Delta函數屬性,邊界條件可以如FEM一樣直接施加. 基于伽遼金弱形式與節(jié)點積分技術,推導出系統(tǒng)方程. 基于這些優(yōu)點,NS-RPIM在求解靜力學以及多場耦合問題中得到了廣泛的應用. Li等[17]采用NS-RPIM分析了二維、三維固體力學問題,驗證了此算法的準確性與優(yōu)越性. Zhou等[18]將NS-RPIM引入多場耦合問題的研究中,結果表明,NS-RPIM對于求解磁電彈結構的響應問題是有效且可靠的.
盡管NS-RPIM在求解許多問題時表現(xiàn)良好,但研究表明[11,19],由于NS-RPIM的模型過于柔軟,會令其在求解動態(tài)問題時產生偽非零能量模式,導致算法存在時間不穩(wěn)定性. 為增強系統(tǒng)剛度,解決時間不穩(wěn)定性,Wang等[20]提出了一種穩(wěn)定算法,解決了Node-based光滑有限元方法中的缺陷并且減少了求解聲學問題中的色散誤差. Feng等[21]提出了一種穩(wěn)定的節(jié)點積分方法,分析了電磁問題. Yang等[22]解決了Node-based光滑有限元方法中的時間不穩(wěn)定性,更準確的求解了金屬成型問題.
本文提出了穩(wěn)定NS-RPIM (SNS-RPIM),基于傳統(tǒng)NS-RPIM方法,引入與場變量梯度方差相關的穩(wěn)定項,消除了不確定參數,推導了求解多場耦合問題的SNS-RPIM方程,分析了磁電彈結構在靜力作用下的響應,并將所得結果與有限元法計算結果進行了對比.
1? ?基本方程
磁電彈材料平衡方程如下:
σij,j = 0,(i,j = 1,2,3)? ? ? (1)
Dl,l = 0,(l = 1,2,3)? ? ? (2)
Bl,l = 0,(l = 1,2,3)? ? ? (3)
式中:σij、Dl、Bl分別為應力分量、電位移分量、磁感應強度分量.
磁電彈材料的幾何方程如下:
Sij = (ui,j + uj,i),(i,j = 1,2,3)? ? ? (4)
Ek = -Φ,k,(k = 1,2,3)? ? ? (5)
Hk = -Ψ,k,(k = 1,2,3)? ? ? (6)
式中:Sij為應變分量;Ek為電場強度分量;Hk為磁場強度分量;Φ與Ψ為電勢與磁勢.
磁電彈材料的本構方程如下:
σi = Cij Sj - eki Ek - qki Hk? ? ? ? (7)
Dl = elj Sj + εlk Ek + mlk Hk? ? ? ? (8)
Bl = qlj Sj + mlk Ek + μlk Hk? ? ? ? (9)
式中:Cij、eki、qki 分別為彈性常數、壓電系數與壓磁系數;εlk、mlk、 μlk 分別為介電常數、磁電耦合系數與磁導率. i,j = 1,2,… ,6; l = 1,2,3; k = 1,2,3.
邊界條件為:
ui = [u][~]i,在Γd上? ? ? ?(10)
σij nj = [β][~]i,在Γs上,Γ = Γd ∪Γs? ? (11)
Φ = [Φ][~],在Γe上? ? ? ?(12)
Dl nl = [Q][~]i,在Γt上,Γ = Γe ∪Γt? ? (13)
Ψ = [Ψ][~],在Γm上? ? ? ?(14)
Bl nl = [R][~],在Γi上,Γ = Γm ∪Γi? ? (15)
式中:Γd與Γs分別為位移邊界與力邊界;Γe與Γt分別為電勢邊界與電位移邊界;Γm與Γi分別為磁勢邊界與磁通量邊界;[u][~]為Γd上給定的位移;[β][~]為Γe上給定的面力;[Φ][~]為Γe上給定的電勢;[Q][~]為Γt上給定的電位移;[Ψ][~]為Γm上給定的磁勢;[R][~]為Γi上給定的磁通量.
2? ?穩(wěn)定Node-based光滑徑向基點插值法
2.1? ?Cell-based T2L方案
Cell-based T2L方案[9]為計算xQ的形函數值選擇合適的局部支持節(jié)點. 該方案選擇xQ周圍的兩層節(jié)點作為局部支持節(jié)點. 第一層節(jié)點為xQ所在三角形單元的頂點;第二層節(jié)點為與第一層節(jié)點直接連接的那些節(jié)點,如圖1所示.
2.2? ?Node-based光滑徑向基點插值法
二維問題域Ω被離散為ne個三角形單元,包含nn個節(jié)點. 通過將節(jié)點xi = [xi,zi]T周圍三角形的邊中點與質心依次相連,構造以xi為中心的光滑域Ωi,如圖2所示.
問題域內任一點xi處的近似位移u、近似電勢Φ與近似磁勢Ψ可表示為:
式中:Nu(xi)、NΦ(xi)與NΨ(xi)分別為NS-RPIM的位移形函數、電勢形函數與磁勢形函數;ns為局部支持節(jié)點的數量;u、Φ和Ψ分別表示位移向量、電勢向量和磁勢向量.
通過引入梯度光滑技術,根據式(16)~(18),節(jié)點xi處的光滑應變S、光滑電場強度E與光滑磁場強度H分別為:
式中:Bu(xi)、BΦ(xi)與BΨ(xi)分別為節(jié)點光滑應變矩陣、節(jié)點光滑電場強度矩陣和節(jié)點光滑磁場強度矩陣,其表達式為:
式中:nG為高斯點的數量;nseg為光滑域邊界的數量; n t
l,p為光滑域第p段邊界中單位法向量矩陣的分量; N t
l,p,q為第p段邊界上第q個高斯點處的形函數值; WG
q為第q個高斯點處的權值;Ai為光滑域的面積.
二維磁電彈的NS-RPIM靜力學方程可表示為:
式中:等效力向量Feq、等效剛度矩陣Keq以及電勢Φ和磁勢Ψ的求解公式見參考文獻[18].
2.3? ?穩(wěn)定Node-based光滑徑向基點插值法
為了在提高NS-RPIM計算精度的同時消除時間不穩(wěn)定性,在該算法中引入與場變量梯度方差相關的穩(wěn)定項來提高模型的剛度,令其更接近真實情況.
以二維問題為例,如圖3所示,光滑域Ωi被近似為具有相同面積的圓,將近似域進一步劃分為4個子光滑域. 局部坐標系與光滑域的交點Gk
i(k = 1,2,3,4; i = 1,2,3,…,nn)作為補充積分點,nn為結構包含節(jié)點數. 積分點與節(jié)點xi之間的距離lc相等,大小為近似域的半徑. lc的計算公式為:
假設場變量的梯度在光滑域Ωi中連續(xù)且一階可導,其在4個積分點處的泰勒展開式分別為:
3? ?數值算例
3.1? ?算例1
磁電彈材料(BaTiO3-CoFe2O4)板在邊AD受100 N/m2的均布載荷作用,為平面應變問題,如圖4所示,邊長a = 2.0 m. 表1給出了磁電彈板的材料參數,質量密度為5 730 kg/m3,邊界條件為:ux = 0(邊CD),uz = Ф = Ψ = 0(邊BC),每個邊界的表面電荷與表面磁感應強度均為零.
采用不同節(jié)點數量(121、441和1 681個)求解磁電彈板的廣義位移(位移ux、uz,電勢Φ,磁勢Ψ),驗證SNS-RPIM的正確性以及收斂性. 表2給出了文獻[23]中A點處位移、電勢與磁勢的解析解,以及SNS-RPIM在不同節(jié)點數量下的計算結果. 可見,SNS-RPIM的結果與解析解誤差很小,隨著節(jié)點數量的增加,誤差減小,驗證了SNS-RPIM求解磁電彈結構多場耦合問題的正確性、有效性.
3.2? ?算例2
磁電彈材料懸臂梁如圖5所示,長度L=0.030 m,寬度h=0.002 m,在B點承受200 N的靜力,為平面應力問題. 懸臂梁在固定端處滿足ux=uz=Φ=Ψ =0. 懸臂梁材料屬性見表1,質量密度為5 730 kg/m3.
在證明了SNS-RPIM正確性的基礎上,對磁電彈懸臂梁在靜力作用下的響應進行研究. 圖6給出了邊AB處的廣義位移,SNS-RPIM與FEM采用三角形單元,節(jié)點數量為305個. 其中,參考解為FEM采用180×12個四邊形單元的結果. 圖7給出了靜力作用下懸臂梁的云圖. 由結果可知,在所用節(jié)點數量相同的情況下,SNS-RPIM的計算結果比FEM的結果更加接近參考解. 算例結果驗證了SNS-RPIM的高精度、正確性和有效性.
在節(jié)點數為305? 、637和1 089個時,對比了SNS-RPIM與FEM的能量誤差[24],如圖8所示. 可知在節(jié)點數相同的情況下,SNS-RPIM的能量誤差遠遠低于FEM,并且隨著所用節(jié)點數的增加,能量誤差逐漸降低. 從而進一步驗證了SNS-RPIM的精確性,高收斂性與有效性.
4? ?結? ?論
本文基于場變量梯度方差構造了穩(wěn)定項,并將其引入了傳統(tǒng)Node-based光滑徑向基點插值法,提出了穩(wěn)定Node-based光滑徑向基點插值法. 隨后求解了磁電彈結構在靜力作用下的響應,得出以下結論:
1)將SNS-RPIM的結果與解析解進行對比,
二者吻合良好,說明了本方法的正確性及有效性.
2)計算了SNS-RPIM與FEM在不同節(jié)點數量
下的能量誤差,結果顯示SNS-RPIM具有良好的收斂性與準確性.
3)SNS-RPIM利用較少的節(jié)點能夠達到更高的精度,消除了FEM模型剛度過硬的問題.
4)通過考慮SNS-RPIM與FEM對不同模型的
求解結果,表明SNS-RPIM在求解磁電彈結構多場耦合問題時的可靠性和適用性.
參考文獻
[1]? ? BOOMGAARD J V D,VAN RUN A M J,SUCHTELEN J V. Magnetoelectricity in piezoelectric-magnetostrictive composites [J]. Ferroelectrics ,1976,10(1): 295—298.
[2]? ? LU X Y,LI H,WANG B. Theoretical analysis of electric,magnetic and magnetoelectric properties of nano-structured multiferroic composites [J]. Journal of the Mechanics and Physics of Solids,2011,59(10):1966—1977.
[3]? ? FETISOV L Y,SEROV V N,CHASHIN D V,et al. A magnetoelectric sensor of threshold DC magnetic fields [J]. Journal of Applied Physics,2017,121(15):154503.
[4]? ? 李帛書,鐘軼峰,羅丹,等. 涂層-纖維增強磁電彈性材料的變分漸近細觀力學模型 [J]. 復合材料學報,2018,35(10): 2823—2831.
LI B S,ZHONG Y F,LUO D,et al. Variational asymptotic micromechanics model of coating-fiber reinforced magneto-electro-elastic materials [J].Acta Materiae Compositae Sinica,2018,35(10): 2823—2831. (In Chinese)
[5]? ? JIANG A M,DING H J. Analytical solutions to magneto-electro-elastic beams [J]. Structural Engineering and Mechanics,2004,18(2):195—209.
[6]? ? WANG Y,XU R Q,DING H J,et al. Three-dimensional exact solutions for free vibrations of simply supported magneto-electro-elastic cylindrical panels[J]. International Journal of Engineering Science,2010,48(12):1778—1796.
[7]? ? EBRAHIMI F,BARATI M R. An exact solution for buckling analysis of embedded piezoelectro-magnetically actuated nanoscale beams [J]. Advances in Nano Research,2016,4(2):65—84.
[8]? ? EBRAHIMI F,BARATI M R. Static stability analysis of smart magneto-electro-elastic heterogeneous nanoplates embedded in an elastic medium based on a four-variable refined plate theory [J]. Smart Materials and Structures,2016,25(10):105014.
[9]? ? LIU G R,ZHANG G Y. Smoothed point interpolation methods G space theory and weakened weak forms[M]. Singapore: World Scientific,2013: 403—578.
[10]? 崔向陽,李光耀. 基于邊光滑有限元法的剪切變形板幾何非線性分析 [J]. 計算機輔助工程,2011,20(1): 155—162.
CUI X Y,LI G Y.Geometric nonlinear analysis on shear deformation plates using edge-based smoothed finite element method [J].Computer Aided Engineering,2011,20(1): 155—162. (In Chinese)
[11]? LIU G R,LI Y,DAI K Y,et al. A linearly con-forming radial point interpolation method for solid mechanics problems[J]. International Journal of Computational Methods,2006,3(4):401—428.
[12]? 何智成,李光耀,成艾國,等. 光滑有限元的聲學研究:時域和頻域分析 [J]. 振動與沖擊,2012,31(16):122—127.
HE Z C,LI G Y,CHENG A G,et al.Acoustic analysis using edge-based smoothed finite element method: time and frequency domain analysis[J]. Journal of Vibration and Shock,2012,31(16): 122—127. (In Chinese)
[13]? 何智成,李光耀,成艾國,等. 基于邊光滑有限元的聲固耦合研究 [J]. 機械工程學報,2014,50(4): 113—119.
HE Z C,LI G Y,CHENG A G,et al.Coupled edge-based smoothing finite element method for structural acoustic problems [J]. Journal of Mechanical Engineering,2014,50(4): 113—119. (In Chinese)
[14]? 陳澤聰,陳毓珍,何智成,等. 應用混合單元基光滑點插值法的聲固耦合分析 [J]. 振動與沖擊,2019,38(8): 238—245.
CHEN Z C,CHEN Y Z,HE Z C,et al.A hybrid cell-based smoothing point interpolation method for solving structural-acoustic problems [J]. Journal of Vibration and Shock,2019,38(8): 238—245. (In Chinese)
[15]? 周立明,孟廣偉,李鋒. 界面裂紋的Cell-Based光滑有限元法研究 [J]. 湖南大學學報(自然科學版),2016,43(6): 34—39.
ZHOU L M,MENG G W,LI F.Research on cell-based smoothed finite element method of interface cracks [J].Journal of Hunan University (Natural Sciences),2016,43(6): 34—39. (In Chinese)
[16]? 周立明,蔡斌,孟廣偉,等. 含裂紋壓電材料的Cell-Based光滑擴展有限元法 [J]. 復合材料學報,2016,33(4): 929—938.
ZHOU L M,CAI B,MENG G W,et al.Cell-based smoothed extended finite element method for piezoelectric materials with cracks [J].Acta Materiae Compositae Sinica,2016,33(4): 929—938. (In Chinese)
[17]? LI Y,LIU G R,YUE J H. A novel node-based smoothed radial point interpolation method for 2D and 3D solid mechanics problems [J]. Computers & Structures,2018,196:157—172.
[18]? ZHOU L M,REN S H,MENG G W,et al. A multi-physics node-based smoothed radial point interpolation method for transient responses of magneto-electro-elastic structures [J]. Engineering Analysis with Boundary Elements,2019,101:371—384.
[19]? FENG H,CUI X Y,LI G Y,et al. A temporal stable node-based smoothed finite element method for three-dimensional elasticity problems [J]. Computational Mechanics,2014,53(5):859—876.
[20]? WANG G,CUI X Y,F(xiàn)ENG H,et al. A stable node-based smoothed finite element method for acoustic problems [J]. Computational Methods in Applied Mechanics and Engineering,2015,297:348—370.
[21]? FENG H,CUI X Y,LI G Y. A stable nodal integration method for static and quasi-static electromagnetic field computation [J]. Journal of Computational Physics,2017,336:580:594.
[22]? YANG H,CUI X Y,LI S,et al. A stable node-based smoothed finite element method for metal forming analysis [J]. Computational Mechanics,2019,63(6):1147—1164.
[23]? ZHU X Y,HUANG Z Y,JIANG A M,et al. Fast multipole boundary element analysis for 2D problems of magneto-electro-elastic media [J]. Engineering Analysis with Boundary Elements,2010,34: 927—933.
[24]? ZHOU L M,REN S H,LIU C Y,et al. A valid inhomogeneous cell-based smoothed finite element model for the transient characteristics of functionally graded magneto-electro-elastic structures [J]. Composite Structures,2019,208:298—313.