• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      小偃麥衍生品系的赤霉病抗性評價

      2020-12-11 02:59:28張曉軍王海燕喬麟軼郭慧娟常利芳張樹偉閻曉濤暢志堅武宗信
      作物學(xué)報 2020年1期
      關(guān)鍵詞:麥草赤霉病抗病

      張曉軍 肖 進(jìn) 王海燕 喬麟軼 李 欣 郭慧娟 常利芳 張樹偉 閻曉濤 暢志堅,* 武宗信

      小偃麥衍生品系的赤霉病抗性評價

      張曉軍1,2肖 進(jìn)3王海燕3喬麟軼1李 欣1郭慧娟1常利芳1張樹偉1閻曉濤1暢志堅1,2,*武宗信4,*

      1山西省農(nóng)業(yè)科學(xué)院作物科學(xué)研究所 / 作物遺傳與分子改良山西省重點(diǎn)實(shí)驗(yàn)室, 山西太原 030031;2農(nóng)業(yè)部黃土高原作物基因資源與種質(zhì)創(chuàng)制重點(diǎn)實(shí)驗(yàn)室, 山西太原 030031;3南京農(nóng)業(yè)大學(xué)作物遺傳與種質(zhì)創(chuàng)新國家重點(diǎn)實(shí)驗(yàn)室, 江蘇南京 210095;4山西省農(nóng)業(yè)科學(xué)院棉花研究所, 山西運(yùn)城 044000

      由鐮孢屬()真菌侵染引起的赤霉病是嚴(yán)重威脅小麥生產(chǎn)的重要病害之一, 但小麥育種中可直接利用的抗源非常有限。采用單花滴注法接種赤霉菌株F0609, 對來源于中間偃麥草或長穗偃麥草的119份小偃麥衍生品系進(jìn)行3年6個環(huán)境的抗病鑒定, 發(fā)現(xiàn)平均病小穗率<10%的材料有13份, 抗性評價為抗病(R); 平均病小穗率介于10%~25%之間的材料有61份, 抗性評價為中抗(MR); 其余45份材料的平均病小穗率介于25%~50%或>50%, 抗性評價為中感或高感(MS和S)。在13份高抗赤霉病材料中, CH16387的抗性顯著優(yōu)于蘇麥3號和望水白, CH16371和CH16379的抗性顯著優(yōu)于望水白, 其余10個品系與抗病對照蘇麥3號和望水白的抗性水平相當(dāng)。這13份材料分別來自小麥?中間偃麥草部分雙二倍體TAI8045和小麥?長穗偃麥草部分雙二倍體TAP8430與普通小麥的雜交組合, TAI8045抗性顯著優(yōu)于對照品種望水白, TAP8430與蘇麥3號和望水白的抗性相當(dāng), 而雜交組合中的小麥親本對赤霉病表現(xiàn)感病, 推測這些材料的抗性可能來自TAI8045和TAP8430。這些抗病材料為小麥抗赤霉病育種提供了新的種質(zhì)資源。

      小麥; 赤霉病; 偃麥草; 遺傳改良; 種質(zhì)資源

      由鐮孢屬()真菌侵染引起的小麥赤霉病不僅會導(dǎo)致小麥大幅減產(chǎn), 而且, 病原菌產(chǎn)生的脫氧雪腐鐮孢菌烯醇(deoxynivalenol, DON)等多種毒素污染還會危害人畜健康[1]。近些年隨著全球氣候變暖加劇, 以及輪作倒茬、秸稈還田等耕作制度的改變, 小麥赤霉病的高發(fā)區(qū)已由長江中下游、淮河流域冬麥區(qū)和東北春麥區(qū)向西南冬麥區(qū)、黃淮冬麥區(qū)迅速擴(kuò)展, 直接威脅小麥主產(chǎn)區(qū)的安全生產(chǎn)[2]。因此, 開展抗赤霉病育種, 從根本上控制赤霉病的流行與危害對確保國家糧食安全具有重大意義。

      小麥赤霉病的研究和防治一直備受關(guān)注[3-5]。但由于抗源嚴(yán)重匱乏, 加之抗性表現(xiàn)形式的多樣性和遺傳方式的復(fù)雜性, 使得抗赤霉病育種進(jìn)展緩慢。我國黃淮、西南、北部冬麥區(qū)及東北春麥區(qū)的主栽品種對赤霉病的抗性普遍較弱, 可利用的抗源也非常有限。迄今為止, 已從普通小麥及其近緣種屬中鑒定出200多個抗赤霉病QTL[6], 分布于小麥各染色體上, 但僅有7個主效抗病基因得到精確定位, 分別是來自“蘇麥3號”3BS上的[7]和6BS上的[8]、“望水白”4B上的[9]和5A上的[10], 以及分別從大賴草7Lr#1S、披堿草1Ets#1S和長穗偃麥草7E上轉(zhuǎn)移的[11]、[12]和[13]。因此, 廣泛發(fā)掘并篩選新的抗赤霉病種質(zhì)資源, 特別是主效基因控制的抗病材料, 對提高栽培品種的赤霉病抗性, 拓展抗源的遺傳基礎(chǔ), 滿足小麥育種及生產(chǎn)需求十分必要。

      2014—2015年度我們在山西省運(yùn)城市播種了1100余份小偃麥衍生品系, 恰逢赤霉病嚴(yán)重發(fā)生, 從中篩選出119份未感病或感病較輕的品系。2016— 2018年分別在江蘇南京、山西太原和四川成都通過單花滴注法對119份小偃麥衍生品系進(jìn)行了赤霉病抗性鑒定與評價, 以期發(fā)掘小麥抗赤霉病優(yōu)異種質(zhì)資源。

      1 材料與方法

      1.1 供試材料

      供試的119份小偃麥衍生品系(附表1)分別由TAI8045、TAI8335、TAI8505和TAP8430與普通小麥品種冀麥26、中8701、晉春5號、太原768、晉麥33和京繁309雜交1~2次后自交選育而來。TAI8045、TAI8335和TAI8505是普通小麥與中間偃麥草雜交選育的部分雙二倍體小偃麥, TAP8430是普通小麥與十倍體長穗偃麥草雜交選育的部分雙二倍體小偃麥。TAI8045、TAI8505、TAI8335、TAP8430以及普通小麥品種太原768、晉春5號和冀麥26均來自山西省農(nóng)業(yè)科學(xué)院作物科學(xué)研究所; 普通小麥中8701來自中國農(nóng)業(yè)科學(xué)院種質(zhì)資源庫(編號為ZM20831)。蘇麥3號和望水白為抗病對照品種, 周麥27和Alondra’s為感病對照品種。其中, 蘇麥3號、望水白和Alondra’s由南京農(nóng)業(yè)大學(xué)作物遺傳與種質(zhì)創(chuàng)新國家重點(diǎn)實(shí)驗(yàn)室提供, 周麥27由河南省農(nóng)業(yè)科學(xué)院小麥研究所提供。

      1.2 赤霉病鑒定地點(diǎn)及接種方法

      2016、2017和2018年在江蘇省南京市南京農(nóng)業(yè)大學(xué)江浦基地日光溫室, 2017年和2018年在山西省太原市山西省農(nóng)業(yè)科學(xué)院東陽基地日光溫室, 2018年在四川省成都市四川省農(nóng)業(yè)科學(xué)院新都基地田間分別進(jìn)行接種鑒定。接種赤霉菌菌株為F0609, 由南京農(nóng)業(yè)大學(xué)作物遺傳與種質(zhì)創(chuàng)新國家重點(diǎn)實(shí)驗(yàn)室王秀娥博士惠贈。

      播種鑒定材料于溫室或田間, 行長1.5~2.0 m, 每行播種30粒, 行距0.25 m。在小麥完全抽穗后開始揚(yáng)花時選取中部小穗采用單花滴注法[14]接種赤霉病, 接種劑量為10 μL (約50~80個孢子 μL–1), 每行材料接種10個穗子, 接種后用保鮮膜包裹保濕3~5 d以使發(fā)病, 穎殼變褐色時揭開保鮮膜, 每日噴霧保濕4次以上, 以保證發(fā)病環(huán)境的濕度。

      1.3 赤霉病抗性調(diào)查與記載

      接種后27 d開始調(diào)查發(fā)病小穗數(shù), 調(diào)查每個材料10個單穗, 抗病調(diào)查和記載標(biāo)準(zhǔn)按照《中華人民共和國農(nóng)業(yè)行業(yè)標(biāo)準(zhǔn)NY/T 1443.4-2007: 小麥抗赤霉病評價技術(shù)規(guī)范》[15]。小麥赤霉病嚴(yán)重度按病小穗率(percentage of diseased spikelet, PDS)分5級: 免疫(I), 平均嚴(yán)重度為0, 接種小穗無可見發(fā)病癥狀; 高抗(R), 0<平均嚴(yán)重度<2.0, 僅接種小穗發(fā)病, 或相鄰的個別小穗發(fā)病, 但病斑不擴(kuò)展到穗軸; 中抗(MR), 2.0≤平均嚴(yán)重度<3.0, 穗軸發(fā)病, 發(fā)病小穗占總小穗數(shù)的1/4以下; 中感(MS), 3.0≤平均嚴(yán)重度<3.5, 穗軸發(fā)病, 發(fā)病小穗占總小穗數(shù)的1/4~1/2; 高感(S), 平均嚴(yán)重度≥3.5, 穗軸發(fā)病, 發(fā)病小穗占總小穗數(shù)的1/2以上。

      1.4 染色體數(shù)目鑒定

      采用Han等[16]描述的方法鑒定染色體數(shù)目, 滴片后在Olympus BX53相差顯微鏡下觀察, 每個材料5~10個根尖, 選擇分裂相完整的細(xì)胞進(jìn)行染色體計數(shù)。

      1.5 統(tǒng)計分析

      利用SAS (Statistical Analysis System) v9.2對不同環(huán)境小麥赤霉病病小穗率進(jìn)行基本數(shù)據(jù)統(tǒng)計和相關(guān)分析。利用Microsoft Excel 2013進(jìn)行測驗(yàn)分析。

      2 結(jié)果與分析

      2.1 親本材料抗赤霉病鑒定與評價

      來源于中間偃麥草的TAI8045表現(xiàn)抗病, 病小穗率顯著低于抗病對照望水白(<0.05); TAI8505表現(xiàn)中抗, 病小穗率與望水白無顯著差異, 但與蘇麥3號有顯著差異; TAI8335表現(xiàn)中感, 病小穗率與2個抗病對照存在極顯著差異(<0.01); 來源于長穗偃麥草的TAP8430表現(xiàn)抗病, 病小穗率與蘇麥3號和望水白均無顯著差異; 其他普通小麥親本冀麥26、中8701、晉春5號和太原768均表現(xiàn)感病, 嚴(yán)重度3~4級(表1)。未鑒定普通小麥親本晉麥33和京繁309。

      表1 小偃麥衍生品系親本的病小穗率及抗性評價

      R: 抗病; MR: 中抗; MS: 中感; S: 感病。*、**分別表示在< 0.05,< 0.01水平上與抗病對照有顯著差異;a: 僅與望水白在< 0.05水平上顯著, 與蘇麥3號不顯著;b: 僅與蘇麥3號在< 0.01水平上差異顯著, 與望水白差異不顯著。

      R: resistant; MR: moderately resistant; MS: moderately susceptible; S: susceptible.*,**: significantly different from the resistant control at< 0.05,< 0.01, respectively.a: significantly different from Wangshuibai at< 0.05, but not from Sumai 3;b: significantly different from Sumai 3 at< 0.01, but not from Wangshuibai.

      圖1 小偃麥衍生品系親本對赤霉病的抗性反應(yīng)(山西太原, 2018)

      2.2 119份小偃麥衍生品系赤霉病抗性鑒定

      2016—2018年3年6點(diǎn)的抗病鑒定中, 抗病對照蘇麥3號和望水白的病害嚴(yán)重度均為1級, 表現(xiàn)高抗或中抗, 二者病小穗率無顯著差異。感病對照Alondra’s和周麥27的病害嚴(yán)重度均為4級, 都表現(xiàn)高感。119份小偃麥衍生系接種后均有侵染反應(yīng), 未發(fā)現(xiàn)病小穗率為0、赤霉病抗性免疫(I)的品系(附表1)。平均病小穗率<10%的材料有13份, 抗性分級為抗病(R), 占鑒定材料的10.9%; 平均病小穗率介于10%~25%之間的材料有61份, 抗性評價為中抗(MR), 占51.3%; 平均病小穗率介于25%~50%之間的材料有41份, 表現(xiàn)中感(MS), 占34.5%; 平均病小穗率大于50%的材料有4份, 表現(xiàn)感病(S)(表2和表3)。鑒定材料分別來自9個雜交組合(表2), 其中以小麥–長穗偃麥草部分雙二倍體TAP8430為親本的3個組合共有73份材料, 4份表現(xiàn)抗病(R), 36份表現(xiàn)中抗(MR), 占組合材料總數(shù)的54.8%; 以小麥–中間偃麥草部分雙二倍體TAI8045為親本的3個組合共有37份材料, 9份表現(xiàn)抗病(R), 21份表現(xiàn)中抗(MR), 占組合材料總數(shù)的81.1%; 以小麥–中間偃麥草部分雙二倍體TAI8335為親本的2個組合共6份材料, 1份表現(xiàn)中抗(MR), 其余5份為中感(MS); 以小麥–中間偃麥草部分雙二倍體TAI8505為親本的3份材料均表現(xiàn)中抗(MR)。

      表2 119份小偃麥衍生品系的赤霉病抗性評價

      R: 抗病; MR: 中抗; MS: 中感; S: 感病。

      R: resistant; MR: moderately resistant; MS: moderately susceptible; S: susceptible.

      2.3 13份優(yōu)良品系的抗赤霉病分析

      來源于部分雙二倍體TAP8430和TAI8045的5個組合中, 分別有4份和9份材料在6個環(huán)境下均表現(xiàn)出優(yōu)良的赤霉病抗性, 平均病小穗率均小于10.0%, 病害嚴(yán)重度均為1級, 均表現(xiàn)抗病(R)(表2、表3和圖2)。測驗(yàn)表明, CH16387的病小穗率顯著低于蘇麥3號和望水白(<0.05), CH16371和CH16379的病小穗率分別顯著低于望水白(<0.05、<0.01), 其余10個品系的病小穗率與蘇麥3號和望水白無顯著差異(表3)。

      從不同環(huán)境病小穗率的變化幅度來看, 除CH16371和CH16388的極差分別為13.1%和12.5%外, 其他11份材料的極差均低于蘇麥3號的13.2%, 在試驗(yàn)的各個年度及地點(diǎn)間表現(xiàn)較為穩(wěn)定的抗病性。尤其是CH16387, 在6個點(diǎn)的試驗(yàn)中, 病小穗率最高僅為8.7%, 最低為1.3%, 極差為7.4%, 低于望水白的7.8%。此外, 不同環(huán)境間相關(guān)分析表明2018年成都與2018年太原、2017年太原與2017年和2016年南京、2016年與2017年南京之間分別存在一定的相關(guān)性, 但相關(guān)性均較弱(<0.5), 其余環(huán)境間并無顯著相關(guān)性(表4)。其原因可能是赤霉病發(fā)病易受溫、濕度等氣候因素影響, 病小穗率在不同環(huán)境間變異較大, 但在相同環(huán)境下與抗、感病對照相比, 仍具有顯著抗病性, 品種抗病性鑒定結(jié)果相對穩(wěn)定, 篩選的抗源材料可用于抗赤霉病的遺傳和育種研究。

      表3 13份小偃麥衍生品系不同環(huán)境下的抗病性

      *和**分別表示在< 0.05,< 0.01水平上與抗病對照有顯著差異。a: 與抗病對照蘇麥3號有顯著差異(< 0.05),與望水白極顯著差異(< 0.01);b: 僅與抗病對照望水白在< 0.01水平上差異顯著, 與蘇麥3號無顯著差異。R: 抗病; MR: 中抗; MS: 中感; S: 感病; -: 未調(diào)查或數(shù)據(jù)缺失。

      *,**: significantly different from the resistant control at< 0.05,< 0.01, respectively.a: significantly different from Sumai 3 at< 0.05, and from Wangshuibai at< 0.01;b: significantly different from Wangshuibai at< 0.01, but not from Sumai 3. R: resistant; MR: moderately resistant; MS: moderately susceptible; S: susceptible; -: no results or missing data. PDS: percentage of diseased spikelet.

      圖2 抗病材料和感病材料對赤霉病的反應(yīng)類型(山西太原, 2018)

      a: 13個抗病反應(yīng)為R的材料; b: 抗病反應(yīng)為S的部分材料。

      a: resistant wheat lines; b: susceptible wheat lines.

      表4 13個抗病品系在不同環(huán)境條件下赤霉病病小穗率的相關(guān)系數(shù)

      *和**分別表示在< 0.05和< 0.01水平上差異顯著。

      *,**: significant difference at< 0.05 and< 0.01, respectively.

      3 討論

      近年來, 小麥赤霉病呈爆發(fā)速度快、流行范圍廣、發(fā)生面積大和危害損失重的嚴(yán)重態(tài)勢, 直接威脅著小麥的安全生產(chǎn)[2]??共》N質(zhì)資源篩選是抗病育種的基礎(chǔ), 許多小麥近緣種對赤霉病具有較高抗病性, 是小麥抗赤霉病基因的重要來源。從這些近緣種中發(fā)掘抗病基因, 對于提高小麥抗赤霉病能力具有重要意義[17]。20世紀(jì)80年代以來, 一些研究利用近緣種屬創(chuàng)造小麥抗赤霉病新材料, 將纖毛鵝觀草[18]、大賴草[19]、鵝觀草[20]、華山新麥草[21]、黑麥草、長穗偃麥草[22]、簇毛麥等物種的抗赤霉病基因通過外源染色體附加、代換、易位和雙二倍體的方式導(dǎo)入小麥背景中, 育成了許多含有外源染色體或染色體片段的抗赤霉病種質(zhì)[23]。

      偃麥草屬植物對赤霉病具有很強(qiáng)的抗性[24], 通過遠(yuǎn)緣雜交將其抗病基因?qū)肫胀ㄐ←? 是改良小麥赤霉病抗性的重要途徑。經(jīng)過研究已從中間偃麥草和長穗偃麥草中鑒定出多個抗赤霉病雙二倍體[25-27]、附加系[28]、代換系[27]以及易位系[22, 29-30]。其中易位系在導(dǎo)入抗赤霉病基因的同時, 盡量地減少了不利基因的影響, 而且能夠保證小麥染色體構(gòu)成的穩(wěn)定性, 因而是利用外源基因的最佳材料。本研究通過多個環(huán)境鑒定篩選出的13份高抗赤霉病材料, 有9份來源于小麥–中間偃麥草部分雙二倍體TAI8045與普通小麥的雜交組合, 4份來源于小麥–十倍體長穗偃麥草部分雙二倍體TAP8430與普通小麥的雜交組合(表2), 其普通小麥親本對赤霉病都表現(xiàn)中感或感病(表1和圖1), 而八倍體親本TAI8045和TAP8430則高抗赤霉病。因此推測這些材料的赤霉病抗性可能來源于部分雙二倍體TAI8045和TAP8430。利用細(xì)胞學(xué)和分子標(biāo)記技術(shù)可以進(jìn)一步確定這些材料的赤霉病抗性是否來自偃麥草。根據(jù)多年的田間表現(xiàn), 這些材料的穗型(圖2)、株高、株型、籽粒、結(jié)實(shí)性等農(nóng)藝性狀以及染色體數(shù)目都與普通小麥完全一致,根據(jù)系譜及抗病性分析, 推測它們不含或僅含很小的外源片段, 可直接用于小麥抗病育種和QTL/基因定位。

      小麥赤霉病是由鐮孢屬真菌侵染引起的一種土傳真菌病害, 引起小麥赤霉病的鐮孢菌至少有20種, 發(fā)病機(jī)制復(fù)雜, 不同菌株間的致病力存在顯著差異[31-32], 因此致病菌株的選擇是否恰當(dāng)直接影響著抗病鑒定結(jié)果的準(zhǔn)確性。本研究使用赤霉菌菌株F0609進(jìn)行接種鑒定, 經(jīng)過抗感對照的發(fā)病情況對比, 發(fā)現(xiàn)蘇麥3號和望水白對F0609菌株均表現(xiàn)抗病, 周麥27和Alondra’s則表現(xiàn)感病(表2和圖2)。在3年6個環(huán)境的接種鑒定中, F0609對周麥27和Alondra’s的致病性表現(xiàn)一致。在鑒定的119份材料中, 表現(xiàn)抗或中抗的品系占總數(shù)的62.2%, 感病品系相對較少, 其原因可能是這些材料是經(jīng)過2015年赤霉病高發(fā)期的田間抗病鑒定篩選出的抗病品系, 但由于田間自然發(fā)病不均勻, 因而仍有45份材料人工接種鑒定時表現(xiàn)中感或感病(MS或S)。

      本研究篩選出的13份抗病品系在測試的6個環(huán)境中, 病小穗率變化幅度不大, 在不同環(huán)境條件下表現(xiàn)出較好的抗病性。但部分材料在不同年度和地點(diǎn)間表現(xiàn)出較大的差異, 如CH16376的最高病小穗率為42.7%, 最低僅為3.0%, CH16379最高為50.0%, 最低3.0% (附表1)。究其原因, 既有可能是人為接種造成的差異, 也有可能是赤霉病發(fā)病易受環(huán)境影響所致[33-34]。因此, 要獲得具有良好、穩(wěn)定抗性的抗赤霉病材料, 需要連續(xù)多年在不同環(huán)境下進(jìn)行抗病性鑒定[35], 并且設(shè)置適宜的抗感病對照來評價材料的抗性, 以保證獲得的抗病材料具有可靠抗性。13份抗病品系中CH16387、CH16371和CH16379的抗性顯著優(yōu)于蘇麥3號或望水白, 其余10份與抗病對照蘇麥3號和望水白的抗性水平相當(dāng); CH16352、CH16388、CH16427和CH16432則表現(xiàn)出矮稈、早熟、結(jié)實(shí)性好、籽粒飽滿、株型緊湊等優(yōu)良農(nóng)藝性狀, 可為小麥抗病遺傳育種提供有價值的親本材料。

      4 結(jié)論

      采用單花滴注法對來源于中間偃麥草和長穗偃麥草的119份小偃麥衍生品系進(jìn)行多年多點(diǎn)表型鑒定, 發(fā)現(xiàn)有13份材料在多個環(huán)境下與高抗對照品種蘇麥3號和望水白抗性水平相當(dāng), 在不同環(huán)境條件下均表現(xiàn)出較好的抗病性; 61份材料表現(xiàn)中抗, 41份材料表現(xiàn)中感, 4份材料表現(xiàn)高感。這些抗赤霉病材料為小麥抗病遺傳育種提供有效抗源。

      致謝: 對南京農(nóng)業(yè)大學(xué)作物遺傳與種質(zhì)創(chuàng)新國家重點(diǎn)實(shí)驗(yàn)室王秀娥博士、劉玉博士, 四川農(nóng)業(yè)大學(xué)羅培高博士、黃強(qiáng)蘭博士, 四川省農(nóng)業(yè)科學(xué)院作物所楊恩年博士在種質(zhì)抗病鑒定方面給予的幫助; 電子科技大學(xué)楊足君博士、李光蓉博士, 江蘇里下河地區(qū)農(nóng)業(yè)科學(xué)研究所臧淑江老師在接種與鑒定方法給予的寶貴指導(dǎo)與幫助, 謹(jǐn)致謝忱。

      附表1 119份小偃麥衍生品系不同環(huán)境下的赤霉病抗性

      Supplementary table 1 Responses of the 119 wheat lines derived fromtohead blight under different environments

      編號No.材料名稱Lines6個環(huán)境病小穗率PDS in six environments (%)6個環(huán)境病小穗率分布PDS distribution in six environments嚴(yán)重度分級Severity degree抗性評價FHB resistance 2018太原Taiyuan2018成都Chengdu2018南京Nanjing2017太原Taiyuan2017南京Nanjing2016南京Nanjing最小Min最大Max極差Range平均Average 1蘇麥3號Sumai 316.83.67.95.14.05.13.616.813.27.11R 2望水白Wangshuibai13.96.112.39.67.56.86.113.97.89.41R 3CH163878.74.94.44.51.31.31.38.77.44.2**a1R 4CH1637115.17.34.64.62.03.02.015.113.15.0**b1R 5CH163797.010.27.25.12.04.22.010.28.26.0*b1R 6CH1637310.54.25.14.810.04.04.010.56.56.71R 7CH163527.311.65.54.2-6.04.211.67.36.71R 8CH163886.57.814.54.04.62.02.014.512.56.71R 9CH164196.511.46.64.8-4.04.011.47.46.71R 10CH1636712.59.29.34.62.83.02.812.59.77.01R 11CH1637811.05.1-4.9--4.911.06.17.11R 12CH163749.49.88.35.49.23.03.09.86.87.51R 13CH1637512.410.47.15.38.62.02.012.410.47.61R 14CH164278.410.5-5.9-6.75.910.54.67.71R 15CH164325.812.1-12.7-4.64.612.78.18.41R 16CH163906.717.220.03.79.04.03.720.016.310.12MR 17CH16424-17.6-6.8-6.16.117.611.510.22MR 18CH163997.110.6-7.3-17.07.117.09.810.52MR 19CH1643111.99.5-6.5-15.06.515.08.610.72MR 20CH1636911.311.514.016.010.03.03.016.013.011.02MR 21CH1638911.414.117.615.75.03.03.017.614.611.12MR 22CH135711.213.3-10.0-11.010.013.33.311.42MR

      (續(xù)附表1)

      編號No.材料名稱Lines6個環(huán)境病小穗率PDS in six environments (%)6個環(huán)境病小穗率分布PDS distribution in six environments嚴(yán)重度分級Severity degree抗性評價FHB resistance 2018太原Taiyuan2018成都Chengdu2018南京Nanjing2017太原Taiyuan2017南京Nanjing2016南京Nanjing最小Min最大Max極差Range平均Average 23CH164235.012.312.011.123.06.05.023.018.011.62MR 24CH1639216.914.9-10.0-4.64.616.912.211.62MR 25CH1634624.38.1-4.1-10.04.124.320.211.62MR 26CH1638115.810.224.08.68.05.05.024.019.011.92MR 27CH161188.520.4-8.1-12.18.120.412.312.32MR 28CH1637223.719.314.09.15.03.03.023.720.712.32MR 29CH1636827.411.020.04.812.02.02.027.425.412.92MR 30CH1642624.012.0-7.1-8.87.124.016.912.92MR 31CH1636013.47.1-4.7-27.04.727.022.313.02MR 32CH1638010.815.829.018.41.04.01.029.028.013.22MR 33CH1640917.610.2-19.5-6.06.019.513.513.32MR 34CH1635922.618.58.019.112.02.02.022.620.613.72MR 35CH1641710.812.3-12.0-20.410.820.49.613.92MR 36CH164085.028.5-13.3-8.85.028.523.513.92MR 37CH1637642.76.211.05.615.03.03.042.739.713.92MR 38CH134924.57.5-6.8-17.06.824.517.714.02MR 39CH155624.513.3-6.3-12.16.324.518.214.02MR 40CH1636611.48.08.023.928.06.06.028.022.014.22MR 41CH163828.718.226.022.811.05.05.026.021.015.32MR 42CH1639111.313.129.06.829.03.03.029.026.015.42MR 43CH1640323.120.9-7.1-11.07.123.116.115.52MR 44CH1637714.016.9-6.2-26.06.226.019.815.82MR 45CH1644023.612.6-11.0-17.611.023.612.616.2*2MR 46CH1643927.815.4-13.1-9.59.527.818.316.52MR 47CH1640420.213.714.925.421.04.04.025.421.416.5*2MR 48CH1634229.723.711.09.617.010.09.629.720.116.8*c2MR 49CH1639317.56.7-30.8-13.36.730.824.117.12MR 50CH1642521.820.5-6.5-20.26.521.815.317.2*2MR 51CH1638613.319.521.926.415.08.08.026.418.417.3*2MR 52CH163978.817.450.08.718.03.03.050.047.017.72MR 53CH1640620.433.8-4.6-12.04.633.829.217.72MR 54CH1638423.910.413.019.630.010.010.030.020.017.8*2MR 55CH1641823.031.0-6.1-12.06.131.024.918.02MR 56CH1639431.914.7-13.1-12.512.531.919.518.12MR 57CH1610429.718.7-18.4-10.010.029.719.719.2*2MR 58CH16365-26.214.04.046.07.04.046.042.019.42MR 59CH1642218.831.926.06.030.05.05.031.926.919.6*c2MR 60CH1641214.437.3-14.9-14.014.037.323.320.1*c2MR 61CH1643027.117.6-28.4-11.011.028.417.421.0*2MR 62CH1644230.914.5-21.4-19.514.530.916.421.6**2MR 63CH1637037.535.37.036.911.03.03.037.534.521.8*2MR

      (續(xù)附表1)

      編號No.材料名稱Lines6個環(huán)境病小穗率PDS in six environments (%)6個環(huán)境病小穗率分布PDS distribution in six environments嚴(yán)重度分級Severity degree抗性評價FHB resistance 2018太原Taiyuan2018成都Chengdu2018南京Nanjing2017太原Taiyuan2017南京Nanjing2016南京Nanjing最小Min最大Max極差Range平均Average 64CH1641649.98.3-7.9--7.949.942.022.0*2MR 65CH1644526.026.2-18.8-17.617.626.28.622.2**2MR 66CH1642113.451.1-12.1-12.012.051.139.122.2*2MR 67CH1642011.140.6-26.1-11.011.040.629.622.2*c2MR 68CH1635132.012.1-35.9-9.49.435.926.622.4*2MR 69CH1634123.916.0-18.4-32.016.032.016.022.6**2MR 70CH1644327.916.3-23.9--16.327.911.622.7**2MR 71CH16449-25.3-20.2-23.620.225.35.123.0**2MR 72CH1611230.120.3-15.0-27.015.030.115.123.1**2MR 73CH1638330.614.0-15.7-33.014.033.019.023.3**a2MR 74CH1641440.220.3-6.7-27.16.740.233.423.6*2MR 75CH1640117.18.385.011.417.03.03.085.082.023.6*2MR 76CH1641521.56.7-21.4-49.06.749.042.324.6*2MR 77CH1641015.038.6-21.8--15.038.623.625.1*3MS 78CH1643525.3--19.5-31.019.531.011.525.2**3MS 79CH1636238.133.9-13.0-18.013.038.125.025.8*3MS 80CH1643816.931.9-15.4-39.715.439.724.326.0**3MS 81CH1634832.141.4-18.8-13.013.041.428.426.3*3MS 82CH1636418.853.613.08.159.06.06.059.053.026.4*3MS 83CH136436.521.5-31.1-17.017.036.519.526.6**3MS 84CH1640233.321.5-27.4-25.021.533.311.926.8**3MS 85CH1639612.234.135.340.0-13.012.240.027.926.9**3MS 86CH1638530.034.2-23.7-20.220.234.214.027.0**3MS 87CH1634331.160.69.028.2-8.08.060.652.627.4*3MS 88CH1643318.647.4-18.8-26.218.647.428.927.8*3MS 89CH1634028.832.3-31.1-19.119.132.313.227.8**3MS 90CH1643739.720.5-21.8-31.920.539.719.128.5**3MS 91CH1640738.243.3-18.9-14.114.143.329.228.6*3MS 92CH1640526.411.485.09.531.09.09.085.076.028.7*3MS 93CH1635452.712.9-30.5-19.312.952.739.828.8*3MS 94CH1644438.123.1-31.0-29.023.138.115.030.3**3MS 95CH1639516.852.391.06.014.02.02.091.089.030.4*3MS 96CH1642833.440.2-11.3-38.411.340.228.930.8**3MS 97CH1642931.831.8-27.8-31.927.831.94.130.8**3MS 98CH1641323.244.4-24.4-31.823.244.421.231.0**3MS 99CH1634438.623.1-36.0-30.023.138.615.531.9**3MS 100CH1635835.646.8-14.0-34.214.046.832.932.6**3MS 101CH1644152.219.2-31.0-30.019.252.233.033.1**3MS 102CH1639830.149.8-16.5-37.516.549.833.333.5**3MS 103CH164486.157.5-38.5-31.86.157.551.533.5*3MS 104CH1644731.737.7-40.2-27.127.140.213.034.2**3MS

      (續(xù)附表1)

      編號No.材料名稱Lines6個環(huán)境病小穗率PDS in six environments (%)6個環(huán)境病小穗率分布PDS distribution in six environments嚴(yán)重度分級Severity degree抗性評價FHB resistance 2018太原Taiyuan2018成都Chengdu2018南京Nanjing2017太原Taiyuan2017南京Nanjing2016南京Nanjing最小Min最大Max極差Range平均Average 105CH1636351.779.729.024.620.02.02.079.777.734.5*3MS 106CH1634753.937.2-30.1-24.424.453.929.536.4**3MS 107CH1644646.041.0-28.2-34.128.246.017.837.3**3MS 108CH1636162.742.8-9.0--9.062.753.738.2*3MS 109CH167350.8-57.032.1-16.016.057.041.039.0**3MS 110CH1643640.846.2-23.1-51.123.151.128.040.3**3MS 111CH1641117.075.451.124.8-39.717.075.458.441.6**3MS 112CH1635547.964.0-23.2-34.123.264.040.842.3**3MS 113CH1634533.473.8-21.5-46.021.573.852.243.7**3MS 114CH1640047.480.274.920.6-15.015.080.265.247.6**3MS 115CH1635740.254.562.727.8-55.027.862.734.948.0**3MS 116CH1635636.358.6-37.5-60.736.360.724.548.3**3MS 117CH1635353.282.1-43.1-21.121.182.161.049.9**3MS 118CH1643438.496.3-31.0-35.331.096.365.250.2**4S 119CH1610678.461.4-40.2-41.440.278.438.355.3**4S 120CH1635063.893.9-53.6-55.653.693.940.466.7**4S 121CH1634995.0100.0-33.6-46.033.6100.066.468.6**4S 122周麥27Zhoumai 2764.357.063.058.638.653.938.664.325.855.9**4S 123Alondra’s53.165.563.851.748.161.448.165.517.457.3**4S

      R: 抗病; MR: 中抗; MS: 中感; S: 感病; “-”: 未調(diào)查或數(shù)據(jù)缺失。蘇麥3號, 望水白: 抗病對照; 周麥27, Alondra’s: 感病對照。a: 與抗病對照蘇麥3號有顯著差異(< 0.05), 與望水白極顯著差異(< 0.01);b: 僅與抗病對照望水白差異顯著(< 0.05), 與蘇麥3號無顯著差異;c: 僅與蘇麥3號有顯著差異(< 0.05), 與望水白無顯著差異。*、**分別表示在< 0.05、< 0.01水平上與抗病對照有顯著差異。

      R: resistant; MR: moderately resistant; MS: moderately susceptible; S: susceptible;“-”: no results or missing data. PDS: percentage of diseased spikelet. Sumai 3, Wangshuibai: resistant control; Zhoumai 27, Alondra’s: susceptible control.a: significantly different from Sumai 3 at< 0.05, and from Wangshuibai at< 0.01.b: significantly different from Wangshuibai at< 0.05, but not from Sumai 3.c: significantly different from Sumai 3 at< 0.05, but not from Wangshuibai.*,**: significantly different from the resistant control at< 0.05,< 0.01, respectively.

      [1] 程順和, 張勇, 別同德, 高德榮, 張伯橋. 中國小麥赤霉病的危害及抗性遺傳改良. 江蘇農(nóng)業(yè)學(xué)報, 2012, 28: 938–942.Cheng S H, Zhang Y, Bie T D, Gao D R, Zhang B Q. Damage of wheathead blight (FHB) epidemics and genetic improvement of wheat for scab resistance in China., 2012, 28: 938–942 (in Chinese with English abstract).

      [2] 曾娟, 姜玉英. 2012年我國小麥赤霉病暴發(fā)原因分析及持續(xù)監(jiān)控與治理對策. 中國植保導(dǎo)刊, 2013, 33(4): 37–41. Zeng J, Jiang Y Y. Analysis and continuous monitoring and control countermeasures of wheat FHB disease outbreak in China in 2012., 2013, 33(4): 37–41 (in Chinese with English abstract).

      [3] Bai G H, Shaner G. Management and resistance in wheat and barley tohead blight., 2004, 42: 135–161.

      [4] Stepient L, Chelkowski J.head blight of wheat: pathogenic species and their mycotoxins., 2010, 3: 107–119.

      [5] Gilbert J, Haber S. Overview of some recent research developments inhead blight of wheat., 2013, 35: 149–174.

      [6] 張愛民, 陽文龍, 李欣, 孫家柱. 小麥抗赤霉病研究現(xiàn)狀與展望. 遺傳, 2018, 40: 858–873. Zhang A M, Yang W L, Li X, Sun J Z. Current status and perspective on research againsthead blight in wheat.(Beijing), 2018, 40: 858–873 (in Chinese with English abstract).

      [7] Cuthbert P A, Somers D J, Thomas J, Cloutier S, Brule-Babel A. Fine mapping, a major gene controllinghead blight resistance in bread wheat (L.)., 2006, 112: 1465–147.

      [8] Cuthbert P A, Somers D J, Brule-Babel A. Mapping ofon chromosome 6BS: a gene controllinghead blight field resistance in bread wheat (L.)., 2007, 114: 429–437.

      [9] Xue S L, Li G Q, Jia H Y, Xu F, Lin F, Tang M Z, Wang Y, An X, Xu H B, Zhang L X, Kong Z X, Ma Z Q. Fine mapping, a major QTLs conditioning resistance toinfection in bread wheat (L.)., 2010, 121: 147–156.

      [10] Xue S L, Xu F, Tang M Z, Zhou Y, Li G Q, An X, Lin F, Xu H B, Jia H Y, Zhang L X, Kong Z X, Ma Z Q. Precise mapping, a major QTLs conditioning resistance toinfection in bread wheat (L.)., 123: 1055–1063.

      [11] Qi L L, Pumphrey M O, Friebe B, Chen P D, Gill B S. Molecular cytogenetic characterization of alien introgressions with genefor resistance tohead blight disease of wheat., 2008, 117: 1155–1166.

      [12] Cainong J C, Bockus W W, Feng Y G, Chen P D, Qi L L, Sehgal S K, Danilova T V, Koo D H, Friebe B, Gill B S. Chromosome engineering, mapping, and transferring of resistance tohead blight disease frominto wheat., 2015, 128: 1019–1027.

      [13] Guo J, Zhang X L, Hou Y L, Cai J J, Shen X R, Zhou T T, Xu H H, Ohm H W, Wang H W, Li A F, Han F P, Wang H G, Kong L R. High-density mapping of the major FHB resistance genederived fromand its pyramiding withby marker-assisted selection., 2015, 128: 2301–2316.

      [14] Bai G H, Kolb F L, Shaner G, Domier L L. Amplified fragment length polymorphism markers linked to a major quantitative trait locus controlling scab resistance in wheat., 1999, 89: 343–348.

      [15] 中華人民共和國農(nóng)業(yè)行業(yè)標(biāo)準(zhǔn)NY/T 1443.4-2007, 小麥病蟲性評價技術(shù)規(guī)范, 第4部分: 小麥抗赤霉病評價技術(shù)規(guī)范.Agricultural Standard of the People’s Republic of China, NY/T 1443.4-2007. Rules for Resistance Evaluation of Wheat to Diseases and Insect Pests, Part 4. Rule for Resistance Evaluation to Wheat Scab (in Chinese).

      [16] Han F P, Fedak G, Benabdelmouna A, Armstrong K C, Ouellet T. Characterization of six wheat ×derivativesby GISH, RFLP and multicolor GISH., 2003, 46:490–495.

      [17] Zhang L, Luo P G, Ren Z L, Zhang H Y. Controlling fusarium head blight of wheat (L.) with genetics., 2011, 2: 263–270.

      [18] Wang X E, Chen P D, Liu D J, Zhang P, Zhou B, Friebe B, Gill B S. Molecular cytogenetic characterization ofchromosome additions in common wheat., 2001, 102: 651–657.

      [19] 王林生, 張雅莉, 南廣慧. 普通小麥–大賴草易位系T5AS-7Lr.7LrS分子細(xì)胞遺傳學(xué)鑒定. 作物學(xué)報, 2018, 44: 1442–1447. Wang L S, Zhang Y L, Nan G H. Molecular and cytogenetic identification of–translocation line T5AS-7Lr.7LrS., 2018, 44: 1442–1447 (in Chinese with English abstract).

      [20] 丁春邦, 周永紅. 小麥族擬鵝觀草屬研究進(jìn)展. 四川農(nóng)業(yè)大學(xué)學(xué)報, 2004, 22: 269–273. Ding C B, Zhou Y H. Advances in research onin the tribe Triticeae., 2004, 22: 269–273 (in Chinese with English abstract).

      [21] 王益, 康厚揚(yáng), 原紅軍, 蔣云, 張海琴, 周永紅. 普通小麥與華山新麥草衍生后代的農(nóng)藝性狀和細(xì)胞遺傳學(xué)研究. 四川農(nóng)業(yè)大學(xué)學(xué)報, 2008, 26: 405–410. Wang Y, Kang H Y, Yuan H J, Jiang Y, Zhang H Q, Zhou Y H. Cytogenetic and morphological studies on the derivative progenies of×., 2008, 26: 405–410 (in Chinese with English abstract).

      [22] 張璐璐, 陳士強(qiáng), 李海鳳, 劉慧萍, 戴毅, 高勇, 陳建民. 小麥–長穗偃麥草7E抗赤霉病易位系培育. 中國農(nóng)業(yè)科學(xué), 2016, 49: 3477–3488. Zhang L L, Chen S Q, Li H F, Liu H P, Dai Y, Gao Y, Chen J M. Development of wheat–translocation lines resistant tohead blight., 2016, 49: 3477–3488 (in Chinese with English abstract).

      [23] 叢雯雯, 郭長虹. 小麥近緣野生植物的赤霉病抗源篩選及其利用. 分子植物育種, 2010, 8: 1043–1049. Cong W W, Guo C H. Selection and utilization of resistance sources tohead blight in wheat wild relatives., 2010, 8: 1043–1049 (in Chinese with English abstract).

      [24] Li H J, Wang X M.and: the promising source of resistance to fungal and viral diseases of wheat., 2009, 36: 557–565.

      [25] Oliver R E, Cai X, Xu S S, Chen X, Stack R W. Wheat-alien species derivatives: a novel source of resistance tohead blight in wheat., 2005, 45: 1353–1360.

      [26] Zeng J, Cao W, Fedak G, Sun S, Mccallum B, Fetch T, Xue A, Zhou Y. Molecular cytological characterization of two novel durum–partial amphiploids with resistance to leaf rust, stem rust andhead blight., 2013, 150: 10–16.

      [27] Turner M K, De Haan L R, Jin Y, Anderson J. Wheatgrass–wheat partial amphiploids as a novel source of stem rust andhead blight resistance., 2013, 53: 1994–2005.

      [28] Fu S, Lv Z, Qi B, Guo X, Li J, Liu B, Han F. Molecular cytogenetic characterization of wheat–addition, substitution and translocation lines with a novel source of resistance to wheathead blight., 2013, 39: 103–110.

      [29] Liu Z H, Xu M, Xian Z P, Li X, Chen W Q, Luo P G. Registration of the novel wheat lines L658, L693, L696, and L699, with resistance tohead blight, stripe rust, and powdery mildew., 2015, 9: 121–124.

      [30] Zhang X L, Shen X R, Hao Y F, Cai J J, Ohm H W, Kong LR. A genetic map ofchromosome 7E, harboring resistance genes tohead blight and leaf rust., 2011, 122: 263–270.

      [31] 史文琦, 楊立軍, 馮潔, 張旭, 曾凡松, 向禮波, 汪華, 喻大昭. 小麥赤霉病流行區(qū)鐮刀菌致病種及毒素化學(xué)型分析. 植物病理學(xué)報, 2011, 41: 486–494. Shi W Q, Yang L J, Feng J, Zhang X, Zeng F S, Xiang L B, Wang H, Yu D Z. Analysis on the population structure ofspp. and its mycotoxin chemotypes inhead blight epidemic region., 2011, 41: 486–494 (in Chinese with English abstract).

      [32] 俞剛, 陳利鋒, 謝衛(wèi)平, 柴一秋. 禾谷鐮孢的產(chǎn)毒與致病性. 南京農(nóng)業(yè)大學(xué)學(xué)報, 2001, 24(4): 19–23. Yu G, Chen L F, Xie W P, Chai Y Q. Correlation of trichothecene producing potential to pathogenicity ofon wheat., 2001, 24(4): 19–23 (in Chinese with English abstract).

      [33] 劉易科, 佟漢文, 朱展望, 陳泠, 鄒娟, 張宇慶, 焦春海, 高春保. 小麥赤霉病抗性改良研究進(jìn)展. 麥類作物學(xué)報, 2016, 36: 51–57. Liu Y K, Tong H W, Zhu Z W, Chen L, Zou J, Zhang Y Q, Jiao C H, Gao C B. Review on improvement ofhead blight resistance in wheat., 2016, 36: 51–57 (in Chinese with English abstract).

      [34] 唐洪, 彭恒, 劉明龍, 楊建華, 吳吉林. 小麥赤霉病田間病情與抽穗揚(yáng)花期氣象條件和病粒率關(guān)系. 中國植保導(dǎo)刊, 2012, 32(7): 10–12.Tang H, Peng H, Liu M L, Yang J H, Wu J L. Relationships among field condition of wheat scab and climate and percentage ofinfected kernels at the heading and flowering stage., 2012, 32: 10–12 (in Chinese with English abstract).

      [35] Mesterhazy A. Types and components of resistance tohead blight of wheat., 1995, 114: 377–386.

      Evaluation of resistance tohead blight in-derived wheat lines

      ZHANG Xiao-Jun1,2, XIAO Jin3, WANG Hai-Yan3, QIAO Lin-Yi1, LI Xin1, GUO Hui-juan1, CHANG Li-Fang1, ZHANG Shu-Wei1, YAN Xiao-Tao1, CHANG Zhi-Jian1,2,*, and WU Zong-Xin4,*

      1Institute of Crop Science, Shanxi Academy of Agricultural Sciences / Shanxi Key Laboratory of Crop Genetics and Molecular Improvement, Taiyuan 030006, Shanxi, China;2Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau of Ministry of Agriculture, Taiyuan 030006, Shanxi, China;3State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China;4Institute of Cotton, Shanxi Academy of Agricultural Sciences, Yuncheng 044000, Shanxi, China

      head blight (FHB) caused byis one of the most destructive fungal diseases in wheat production; however, only limited sources of resistance are available in wheat. In this study, we evaluated 119 lines derived from the crosses between wheat and wheat?partial amphiploids for their resistance toisolate F0609 over six environments during 2016 to 2018 cropping seasons using single floret inoculation method. Among the wheat–lines tested, 45 were moderately or highly susceptible, with 25%–50% or >50% of the average percentage of diseased spikelets (PDS), 61 were moderately resistant (MR) with 10%–25% of the average PDS, and 13 lines were identified as resistant (R), with the average PDS less than 10%. For the FHB resistance of the 13 resistant lines, CH16387 was superior to ‘Sumai 3’ and ‘Wangshuibai’, the most widely used source of resistance to FHB, CH16371 and CH16379 were superior to ‘Wangshuibai’, and the remaining ten lines were comparable to ‘Wangshuibai’ or ‘Sumai 3’, in terms of number of infected spikelets per spike and percentage of infected spikelets. Furthermore, the average PDS in these resistant lines over the six environments showed a similar distribution, suggesting a relatively stable FHB resistance. The donor parents, wheat-alien partial amphiploids, involved in development of these resistant derivatives, included wheat–partial amphiploid TAI8045 and wheat–partial amphiploid TAP8430. As both TAI8045 and TAP8430 were resistant, but all the wheat parents were susceptible, it was likely that the resistance to FHB in these lines identified originated from TAI8045 and TAP8430. These derivatives can serve as novel sources to enhance resistance of wheat to FHB.

      wheat;head blight;; genetic improvement; germplasm resources

      2019-02-16;

      2019-08-09;

      (網(wǎng)絡(luò)出版日期): 2019-09-03.

      10.3724/SP.J.1006.2020.91015

      Corresponding authors): 暢志堅, E-mail: wrczj@126.com; 武宗信, E-mail: mhdwzx@126.com

      聯(lián)系方式: E-mail: zxjemail@163.com

      本研究由國家重點(diǎn)研發(fā)計劃項(xiàng)目(2017YFD0100600), 山西省重點(diǎn)研發(fā)計劃項(xiàng)目(201803D221018-5, 201703D211007, 201803D421020), 山西省農(nóng)業(yè)科學(xué)院項(xiàng)目(YGG17123, YCX2018D2YS01)和山西省重點(diǎn)科技創(chuàng)新平臺(201605D151002)資助。

      This study was supported by the National Key R&D Program of China (2017YFD0100600), the Key R&D Program of Shanxi Province (201803D221018-5, 201703D211007, 201803D421020), Shanxi Academy of Agricultural Sciences (YGG17123, YCX2018D2YS01), and Shanxi Key Scientific and Technological Innovation Platform (201605D151002)

      URL: http://kns.cnki.net/kcms/detail/11.1809.S.20190902.1719.008.html

      猜你喜歡
      麥草赤霉病抗病
      小麥-中間偃麥草2A/6St代換系014-459的分子細(xì)胞遺傳學(xué)鑒定
      我國小麥基因組編輯抗病育種取得突破
      小麥赤霉病研究進(jìn)展
      芮城縣:科學(xué)預(yù)防小麥赤霉病
      一根麥草
      快樂語文(2020年14期)2020-07-04 00:02:00
      防治小麥赤霉病的殺菌劑應(yīng)用情況分析
      bZIP轉(zhuǎn)錄因子在植物激素介導(dǎo)的抗病抗逆途徑中的作用
      葡萄新品種 優(yōu)質(zhì)又抗病
      閃爍
      西部(2016年6期)2016-05-14 19:09:59
      小麥赤霉病的控制處理方法探析
      食品界(2016年4期)2016-02-27 07:36:41
      汪清县| 常山县| 大埔区| 博客| 正宁县| 柯坪县| 苏尼特右旗| 桂阳县| 兰州市| 河间市| 方正县| 滁州市| 平果县| 米易县| 区。| 伊通| 治多县| 民丰县| 乐东| 双柏县| 什邡市| 灵山县| 都昌县| 砀山县| 洪洞县| 贺兰县| 南陵县| 镶黄旗| 西安市| 剑河县| 阳新县| 商都县| 石泉县| 富锦市| 巨鹿县| 南岸区| 宿迁市| 开远市| 九江县| 阆中市| 广灵县|