陳家興 王小勇 林喆
空間光學(xué)相機波前探測子孔徑數(shù)量研究
陳家興 王小勇 林喆
(北京空間機電研究所,北京 100094)
根據(jù)空間相機誤差源分類,確定波前探測畸變面形為前15階Zernike多項式組成的面形函數(shù)。為實現(xiàn)較少子孔徑數(shù)量下的精確波前探測,文章建立了基于夏克-哈特曼傳感器的波前探測模型,分析了波前復(fù)原矩陣的秩與子孔徑數(shù)量之間的數(shù)學(xué)關(guān)系,針對前15階Zernike多項式構(gòu)成的畸變面形與多種子孔徑數(shù)量波前探測過程進行了仿真計算。研究結(jié)果表明,空間光學(xué)相機精確波前探測可采用的最少子孔徑數(shù)量等于使波前復(fù)原矩陣達到列滿秩條件的最小數(shù)量,通過仿真計算驗證了該結(jié)論。最后針對前15階Zernike多項式組成的面形函數(shù)給出了子孔徑數(shù)量選取范圍以及對應(yīng)的波前探測結(jié)果。
波前探測 子孔徑數(shù)量 澤尼克項數(shù) 空間相機
自適應(yīng)光學(xué)(Adaptive Optics,AO)技術(shù)作為一種實時光束波前畸變校正技術(shù),已經(jīng)在地基望遠鏡[1-4]、空間遙感成像[5-7]等領(lǐng)域廣泛應(yīng)用。AO技術(shù)的畸變校正能力與采用的波前探測技術(shù)密切相關(guān)[8],目前較為成熟的波前探測技術(shù)基于波前斜率測量技術(shù)的夏克-哈特曼(S-H)傳感器[9-10]。S-H傳感器在遙感領(lǐng)域應(yīng)用的一類限制是采用過多數(shù)量子孔徑時對光通量的衰減,從而使系統(tǒng)無法達到最佳成像分辨率。
隨著AO技術(shù)與波前探測技術(shù)在遙感成像領(lǐng)域應(yīng)用需求的增加,如何兼顧波前探測精度與子孔徑光通量成為目前一類研究熱點問題[11]。以往研究人員通常使用子孔徑條紋反演技術(shù)、設(shè)置子孔徑像素數(shù)等方法來優(yōu)化上述問題[12-13],但是沒有找到該問題的根本解決方法以及子孔徑數(shù)量的定量描述方法。本文根據(jù)波前復(fù)原矩陣的求解方法進行分析和延伸,通過分析子孔徑數(shù)量與波前復(fù)原矩陣秩之間的關(guān)系,提出了一種基于空間相機應(yīng)用背景下降低S-H傳感器子孔徑數(shù)量的新思路,這對于減少空間相機AO系統(tǒng)波前探測器的體積、質(zhì)量以及提高每個子孔徑的光通量具有重要意義。
空間相機波前測量模型包括了畸變波前的Zernike多項式擬合部分與S-H傳感器采樣部分。Zernike多項式最早由Noll提出用來定義大氣湍流造成的波前相位誤差,后來在自適應(yīng)光學(xué)系統(tǒng)波前像差的描述中廣泛使用,在單位圓內(nèi)定義Zernike多項式Z(,)為
式中為Zernike多項式的模式數(shù);為多項式的徑向頻率數(shù),反映了多項式沿著徑向的變化規(guī)律,取0到的整數(shù);為與相關(guān)的序號,是多項式的角頻率數(shù),反映了多項式沿著切向的變化規(guī)律,與同奇偶性,取0到的整數(shù);、為極坐標下的徑向自變量和切向自變量[14-18]。
根據(jù)式(1)可以描述前任意項的Zernike多項式。通常情況下,重力變形和熱變形是造成空間相機成像畸變的主要原因,圖1給出了空間相機在軌工作的4種典型工作狀態(tài)下主鏡發(fā)生熱變形引起像差的Zernike多項式成分分布[19],4種工況分別是主鏡整體沿半徑方向2°、沿組件整體向2°、沿組件整體向2°、沿組件整體向2°產(chǎn)生的溫度差變化,、、為變形鏡笛卡爾坐標系正半軸方向。圖2給出了3種天頂角下大型薄鏡因重力變形產(chǎn)生像差的Zernike多項式成分分布[11,20]??梢钥闯?,兩者在前15階Zernike多項式均占據(jù)主要部分,其余部分較少,本文的目標是對這類低階畸變進行準確探測,因此主要針對前15階Zernike多項式進行討論。
圖1 四種典型工況下熱變形引起畸變的Zernike多項式成分分布
圖2 重力變形產(chǎn)生畸變的Zernike多項式成分分布
式中a為待定的各模式系數(shù);為Zernike多項式擬合誤差。式(2)即為Zernike多項式擬合曲面的原理。
因此式(6)可以寫為
同時可由式(11)得出
將式(12)、(15)帶入式(8)、(9)中,可以得到
根據(jù)前面波前探測精度與子孔徑數(shù)量關(guān)系的理論推導(dǎo),以空間相機常見的前15階Zernike多項式為波前探測目標,可以計算波前探測的仿真結(jié)果,過程如下:
當≥4時,相對誤差量已經(jīng)逐漸收斂到0,當<4時,相對誤差含量較大,且探測波前面形與輸入波前面形相距較大。因此,實現(xiàn)前15階Zernike多項式的波前探測,至少應(yīng)采用單邊子孔徑數(shù)量=4的S-H傳感器,此時相對擬合誤差量小于1.0×10-6
圖3 L=1~20的S-H傳感器的探測波前Zernike多項式成分分布與相位圖
圖4 探測波前相對誤差量隨子孔徑數(shù)量變化關(guān)系
根據(jù)空間相機工作狀態(tài)中常見的誤差源,給出所使用的Zernike多項式范圍,然后根據(jù)Zernike多項式波前擬合原理和S-H傳感器波前采樣原理,對子孔徑數(shù)量與波前復(fù)原矩陣秩之間的數(shù)學(xué)關(guān)系進行了推導(dǎo),并證明了相關(guān)結(jié)論。最后對前15階Zernike多項式波前探測時選用的子孔徑數(shù)量進行了仿真計算,根據(jù)計算結(jié)果,針對前15階Zernike多項式帶來的波前畸變進行探測,可以得出至少應(yīng)采用子孔徑數(shù)量為4×4的S-H傳感器,才能避免較大的擬合誤差。
[1] 饒長輝, 姜文漢, 廖周, 等. 云南天文臺1.2m望遠鏡61單元自適應(yīng)光學(xué)系統(tǒng)[J]. 量子電子學(xué)報, 2006, 23(3): 295-302. RAO Changhui, JIANG Wenhan, LIAO Zhou, et al. 61-element Adaptive Optical System for 1.2m Telescope of Yunnan Observatory[J]. Chinese Journal of Quantum Electronics, 2006, 23(3): 295-302. (in Chinese)
[2] 鈕賽賽. 基于自適應(yīng)光學(xué)高分辨率微型成像系統(tǒng)關(guān)鍵技術(shù)研究[D]. 南京: 南京航空航天大學(xué), 2012. NIU Saisai. Research on Key Technology of Adaptive Optics Based High Resolution Micro-imaging System[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012. (in Chinese)
[3] 陳浩, 宣麗, 胡立發(fā), 等. 大氣相干長度的穩(wěn)定測量[J]. 光學(xué)精密工程, 2013, 21(4): 912-916. CHEN Hao, XUAN li, HU Lifa, et al. Steady Measurement of Atmospheric Turbulence Coherence Length[J]. Optics and Precision Engineering, 2013, 21(4): 912-916. (in Chinese)
[4] 許祖彥, 泊勇, 彭欽軍, 等.激光鈉導(dǎo)引星技術(shù)研究進展[J]. 紅外與激光工程, 2016, 45(1): 0101001-1-0101001-12. XU Zuyan, BO Yong, PENG Qinjun, et al, Progress on Sodium Laser Guide Star[J]. Infrared and Laser Engineering, 2016, 45(1): 0101001-1-0101001-12. (in Chinese)
[5] 張?zhí)m慶. 基于星載TDI CCD相機動態(tài)成像質(zhì)量的分析與仿真[D]. 哈爾濱: 哈爾濱工業(yè)大學(xué), 2012.ZHANG Lanqing, Analysis and Simulation of Dynamic Image Captured by Satellite-based TDICCD Camerar[D]. Harbin: Harbin Institute of Technology, 2012. (in Chinese)
[6] 劉良云, 張伯珩, 李英才. 航天TDI-CCD相機的MTF和像質(zhì)分析[J]. 光學(xué)技術(shù), 2000, 26(6): 481-487.LIU Liangyun, ZHANG Boheng, LI Yingcai. Analysis of the MTF and Image Quality of TDI-CCD Camera[J]. Optical Technique, 2000, 26(6): 481-487. (in Chinese)
[7] 俞信, 張曉芳, 胡新奇. 空間自適應(yīng)光學(xué)研究[J]. 航天返回與遙感, 2011, 32(5): 19-28. YU Xin, ZHANG Xiaofang, HU Xinqi. Study on Space Adaptive Optics[J]. Spacecraft Recovery & Remote Sensing, 2011, 32(5): 19-28. (in Chinese)
[8] 張雨東. 自適應(yīng)光學(xué)技術(shù)及激光操控[M]. 北京: 國防工業(yè)出版社, 2016. ZHANG Yudong. Adaptive Optics and Laser Control[M]. Beijing: National Defense Industry Press, 2016. (in Chinese)
[9] 江月松, 王森, 趙達遵, 等. 微型自適應(yīng)光學(xué)系統(tǒng)的波前重構(gòu)算法[J]. 光學(xué)技術(shù), 2001, 27(3): 220-222. JIANG Yuesong, WANG Sen, ZHAO Dazun, et al. Algorithm for Wavefront Reconstruction of Micromachined Adaptive Optical[J]. Optical Technique, 2001, 27(3): 220-222. (in Chinese)
[10] JAVIER A, BOREMAN G D. Zernike-based Matrix Model of Deformable Mirrors: Optimization of Aperture Size[J]. Applied Optics, 1993, 32(13): 2413-2438.
[11] 戴曉霖. 薄型主鏡面形主動控制技術(shù)研究[D]. 成都: 中科院光電技術(shù)研究所, 2018. DAI Xiaolin. Study on the Active Control Technology of a Thin Primary Mirror[D]. Chengdu: The Institute of Optics and Electronics, Chinese Academy of Sciences, 2018. (in Chinese)
[12] 羅天棟. 一種自參考波前傳感器復(fù)原算法的研究[D]. 上海: 上海交通大學(xué), 2010. LUO Tiandong. A Research for Reconstruction Arithmetic of Self-referencing Wave-front Sensor[D]. Shanghai: Shanghai Jiaotong University, 2010. (in Chinese)
[13] 張昂. 不同子孔徑像素數(shù)時的夏克-哈特曼波前傳感器探測性能研究[D]. 成都: 中科院光電技術(shù)研究所, 2006. ZHANG Ang. Research on Detection Performance of Shack-Hartmann Wavefront Sensor with Different Sub-aperture Pixels [D]. Chengdu: The Institute of Optics and Electronics, Chinese Academy of Sciences, 2006. (in Chinese)
[14] CUBALCHINI R. Modal Wave-front Estimation from Phase Derivative Measurements[J]. Journal of the Optical Society of America, 1979, 69(7): 972-977.
[15] GAVRIELIDES A. Vector Polynomials Orthogonal to the Gradient of Zernike Polynomials[J]. Optics Letters, 1982(7): 526-528.
[16] AKSENOV V P, ISAEV Y N. Analytical Representation of the Phase and Its Mode Components Reconstructed According to the Wave-front Slopes[J]. Optics Letters, 1992, 17(17): 1180-1182.
[17] ACOSTA E, BARá S, RAMA M A , et al. Determination of Phase Mode Components in Terms of Local Wave-front Slopes: An Analytical Approach[J]. Optics Letters, 1995, 20(10): 1083-1085.
[18] PRIETO P M, FERNANDO V, GOELZ S , et al. Analysis of the Performance of the Hartmann-Shack Sensor in the Human Eye[J]. Journal of the Optical Society of America. A , Optics, Image Ence, and Vision, 2000, 17(8): 1388-1398.
[19] 粘偉, 李博, 劉兆軍, 等. 大口徑空間相機波前像差擬合與校正研究[J]. 光學(xué)與光電技術(shù), 2018, 16(6): 50-55. NIAN Wei, LI Bo, LIU Zhaojun, et al. Fitting and Correction of Wavefront Aberration for Large Aperture Space Camera[J]. Optics & Optoelectronic Technology, 2018, 16(6): 50-55. (in Chinese)
[20] 董得義, 李志來, 薛棟林, 等. 重力對空間相機系統(tǒng)波像差影響的光機集成分析與驗證[J]. 光學(xué)精密工程, 2016, 24(8): 1917-1926. DONG Deyi, LI Zhilai, XUE Donglin, et al. Integrated Optomechanical Analysis and Experiments for Influence of Gravity on Wavefront Aberration of Space Camera[J]. Optics and Precision Engineering, 2016, 24(8): 1917-1926. (in Chinese)
[21] BRENT L, LUC G, CURTIS V. Numerical Simulations of Multiconjugate Adaptive Optics Wave-front Reconstruction on Giant Telescopes [J]. Applied Optics, 2003, 24(5): 4814-4816.
[22] 楊慧珍, 陳波, 耿超. 自適應(yīng)光學(xué)隨機并行優(yōu)化控制技術(shù)及其應(yīng)用[M]. 北京: 科學(xué)出版社, 2015. YANG Huizhen, CHEN Bo, GENG Chao. Adaptive Optics Stochastic Parallel Optimization Control Technology and Its Application[M]. Beijing: Science Press, 2015. (in Chinese)
[23] 林海奇. 基于模型辨識的自適應(yīng)光學(xué)系統(tǒng)控制技術(shù)研究[D]. 成都: 中國科學(xué)院光電技術(shù)研究所, 2019. LIN Haiqi. Research on Adaptive Optical System Control Technology Based on Model Identification[D]. Chengdu: The Institute of Optics and Electronics, Chinese Academy of Sciences, 2019. (in Chinese)
[24] 郭友明. 自適應(yīng)光學(xué)系統(tǒng)復(fù)原及波前控制優(yōu)化技術(shù)研究[D]. 成都: 中國科學(xué)院光電技術(shù)研究所, 2014. GUO Youming. Optimization of Wavefront Reconstruction and Wavefront Control in Adaptive Optics System[D]. Chengdu: The Institute of Optics and Electronics, Chinese Academy of Sciences, 2014. (in Chinese)
[25] VERHAEGEN M, VERDULT V. Filtering and System Identification: A Least Squares Approach[M]. Cambridge: Cambridge University Press, 2007.
Study on the Number of Subapertures for Wavefront Detection of Space Optical Cameras
CHEN Jiaxing WANG Xiaoyong LIN Zhe
(Beijing Institute of Mechanics & Electricity, Beijing 100094, China)
According to the classification of space camera error sources, the wavefront detection distortion surface is determined as the first 15 order Zernike polynomials. In order to realize accurate wavefront detection with fewer subapertures, a wavefront detection model based on Hartmann Shack sensor is established. The mathematical relationship between the rank of wavefront restoration matrix and the number of subapertures is analyzed. Simulation calculation is carried out for the distorted surface formed by the first 15 order Zernike polynomials and the wavefront detection process with multiple subaperture numbers. The results show that the minimum number of subapertures that can be used for accurate wavefront detection of space optical cameras is equal to the minimum number of subapertures that make the wavefront recovery matrix reach the full column rank condition. This conclusion is verified by simulation calculation. Finally, the selection range of the number of subapertures and the corresponding wavefront detection results are given for the surface function composed of the first 15 Zernike polynomials.
wavefront detection; number of subapertures; number of Zernike polynomial; space camera
TH751
A
1009-8518(2020)05-0064-08
10.3969/j.issn.1009-8518.2020.05.008
2020-04-27
陳家興, 王小勇, 林喆. 空間光學(xué)相機波前探測子孔徑數(shù)量研究[J]. 航天返回與遙感, 2020, 41(5): 64-71.
CHEN Jiaxing, WANG Xiaoyong, LIN Zhe. Study on the Number of Subapertures for Wavefront Detection of Space Optical Cameras[J]. Spacecraft Recovery & Remote Sensing, 2020, 41(5): 64-71. (in Chinese)
陳家興,男,1988年出生,2016年獲中國空間技術(shù)研究院光學(xué)工程專業(yè)碩士學(xué)位,現(xiàn)在中國空間技術(shù)研究院遙感器總體設(shè)計專業(yè)攻讀博士學(xué)位。研究領(lǐng)域為大口徑光學(xué)相機的波前像差探測與校正控制技術(shù)。E-mail:jxlovered@126.com。
(編輯:王麗霞)