摘? ?要:為了指導(dǎo)本構(gòu)建模工作,需要建立飽和孔隙-裂隙介質(zhì)的一般本構(gòu)理論框架. 首先,從混合物理論和嵌套思路出發(fā),獲得飽和孔隙-裂隙介質(zhì)的能量平衡方程. 其次,根據(jù)熱力學(xué)功共軛特性確定了飽和孔隙-裂隙介質(zhì)本構(gòu)方程的應(yīng)變狀態(tài)變量和應(yīng)力狀態(tài)變量. 再次,根據(jù)熱力學(xué)局部平衡假定,獲得飽和孔隙-裂隙介質(zhì)的自由能勢(shì)函數(shù)一般本構(gòu)方程. 最后,從一般自由能勢(shì)函數(shù)本構(gòu)方程出發(fā),獲得孔隙骨架和裂隙骨架變形相互耦合的各向同性線彈性方程. 當(dāng)孔隙骨架和裂隙骨架變形解耦時(shí),該方程能夠退化到Khalili線彈性方程. 研究表明,在小應(yīng)變情況下固相應(yīng)變可分解為裂隙骨架應(yīng)變、孔隙骨架應(yīng)變與固相材料體應(yīng)變之和;當(dāng)混合物均勻化響應(yīng)原理成立和流相材料本構(gòu)模型與單相一致時(shí),裂隙骨架應(yīng)變、孔隙骨架應(yīng)變、固相材料體應(yīng)變、裂隙流相材料體應(yīng)變和孔隙流相材料體應(yīng)變分別唯一決定裂隙介質(zhì)有效應(yīng)力、孔隙介質(zhì)有效應(yīng)力、固相材料真實(shí)壓力、裂隙孔壓和孔隙孔壓;當(dāng)自由能函數(shù)是狀態(tài)變量的二次函數(shù)時(shí),可獲得線彈性本構(gòu)模型.
關(guān)鍵詞:混合物理論;飽和孔隙-裂隙介質(zhì);狀態(tài)變量;能量平衡方程;本構(gòu)方程
中圖分類號(hào):TU47 ? ? ? ? ? ? ? ? ? ? ? ? ? 文獻(xiàn)標(biāo)志碼:A
文章編號(hào):1674—2974(2021)01—0019—11
Abstract:A general constitutive theoretical framework of saturated pore-fracture media need be formulated to guide constitutive modeling. Firstly,based on the mixture theory and nested way,the energy balance equation of saturated pore-fracture media is obtained. Secondly,according to the thermodynamic work conjugation behaviors,the strain and stress state variables of the constitutive equation for saturated pore-fracture media are determined. Thirdly, based on the assumption of local equilibrium of thermodynamics, the general free energy potential constitutive equations are obtained for saturated pore-fracture media. Finally,deriving from the general free energy potential constitutive equations,an isotropic linear elastic equation is obtained taking into account the coupling of pore and fracture skeleton deformations. When the pore and fracture skeleton deformations are uncoupled, the equation is degenerated into Khalilis linear elastic equation. The researches show that,the solid phase strain can be decomposed into the sum of fracture skeleton strain, pore skeleton strain and volumetric strain of solid material in the case of small strain;When the mixture homogenous response principle is valid and the fluid material constitutive model is the same as the single fluid one, the fracture skeleton strain,pore skeleton strain,volumetric strain of solid material,volumetric strain of fluid material in fractures and volumetric strain of fluid material in pores uniquely determine the effective stress of fractured media, effective stress of pore media,real pressure of solid material,fracture pressure and pore pressure,respectively. A linear elastic constitutive relation can be achieved when the free energy function is a quadratic function of state variables.
Key words:mixture theory;saturated pore-fracture media;state variables;energy balance equation;constitutive equations
自然界中,許多巖土材料具有兩種不同尺度的孔隙,如裂隙黏土和巖體等. 一種孔隙尺度比較小,通常仍稱為孔隙,另一種孔隙尺度比較大,通常呈裂縫或扁平狀,被稱為裂隙. 當(dāng)孔隙和裂隙同時(shí)被一種流體占有時(shí),就形成飽和孔隙-裂隙介質(zhì). 近年來,隨著水利水電、海底隧道、核廢料儲(chǔ)存以及海洋能源開發(fā)等工程大量建設(shè),為了分析滲流和變形的流固耦合特性,飽和孔隙-裂隙介質(zhì)的本構(gòu)模型研究愈來愈受到工程力學(xué)界重視. Barenblatt等[1]首先研究飽和孔隙-裂隙雙重孔隙介質(zhì)的本構(gòu)特性. Khalili等[2]、劉耀儒等[3]建立了各向同性飽和孔隙-裂隙介質(zhì)的線彈性模型. 蔡國(guó)慶等[4]和Zhao等[5]建立了各向異性飽和孔隙-裂隙黏土的本構(gòu)理論. 張玉軍等[6]創(chuàng)建了考慮裂隙產(chǎn)狀等幾何特性的孔隙-裂隙巖體的彈塑性模型. 這些開創(chuàng)性成果有力地促進(jìn)了飽和孔隙-裂隙介質(zhì)力學(xué)本構(gòu)理論的發(fā)展和應(yīng)用.
在當(dāng)前飽和孔隙-裂隙介質(zhì)本構(gòu)建模的研究文獻(xiàn)中,針對(duì)同一個(gè)工程問題往往會(huì)創(chuàng)建出多種差異懸殊的本構(gòu)模型. 如何在各種模型中選擇適合的飽和孔隙-裂隙介質(zhì)本構(gòu)模型成為工程師和學(xué)者首先遇到的難題. 混合物理論從普適性的力學(xué)守恒定理出發(fā)研究孔隙-裂隙本構(gòu)理論的普遍規(guī)律,具有嚴(yán)密的邏輯結(jié)構(gòu)和明確的物理內(nèi)涵,許多學(xué)者建議把混合物理論作為判定其他本構(gòu)模型合理性的理論依據(jù)之一[7-11]. Borja等[7]和Zhang等[8]根據(jù)混合物理論推導(dǎo)了飽和及非飽和孔隙-裂隙介質(zhì)的能量平衡方程,并建立了飽和孔隙-裂隙介質(zhì)線彈性本構(gòu)模型,但該模型無法考慮裂隙與孔隙流相壓力之差所導(dǎo)致的固相體積變化. Li等[9-10]基于混合物理論推導(dǎo)了非飽和雙孔隙膨脹土的外力功表達(dá)式,建立了非飽和雙孔隙膨脹土的彈塑性本構(gòu)模型;Guo等[11]采用混合物理論建立了飽和及非飽和孔隙-裂隙介質(zhì)的雙有效應(yīng)力彈塑性模型. 然而,這些模型沒有考慮固相和流相的材料變形,只適用于土體松散介質(zhì),無法適用于巖石和混凝土等非松散孔隙-裂隙介質(zhì)[12-16].? 為了彌補(bǔ)上述缺陷,深刻揭示孔隙骨架應(yīng)變和裂隙骨架應(yīng)變?cè)诙嗫捉橘|(zhì)流固耦合機(jī)制中的關(guān)鍵作用,便于利用均勻化響應(yīng)原理相來建立相對(duì)簡(jiǎn)單實(shí)用的本構(gòu)模型[14],有必要對(duì)飽和孔隙-裂隙介質(zhì)混合物理論作進(jìn)一步深入研究.
鑒于此,筆者發(fā)現(xiàn)孔隙-裂隙介質(zhì)可視為兩個(gè)單重孔隙介質(zhì)的嵌套疊加,即孔隙-裂隙介質(zhì)可視為在單重裂隙介質(zhì)的固相基質(zhì)中嵌套了一個(gè)單重孔隙介質(zhì). 本文從這一嵌套思路出發(fā)來研究飽和孔隙-裂隙介質(zhì)的能量守恒方程和一般本構(gòu)模型理論框架,從一般本構(gòu)模型理論出發(fā)可推導(dǎo)飽和雙重孔隙介質(zhì)的線彈性方程,指導(dǎo)和校正當(dāng)前飽和孔隙-裂隙介質(zhì)的本構(gòu)建模工作.
1? ?體積分?jǐn)?shù)和密度
1.1? ?飽和孔隙-裂隙介質(zhì)各組分體積分?jǐn)?shù)和密度
飽和孔隙-裂隙介質(zhì)是由固相、裂隙流相與孔隙流相組成的混合物. 固相由S表示,裂隙流相由F表示,孔隙流相由P表示. 令α∈{S,F(xiàn),P}為組分指征變量. φα為第α組分的體積分?jǐn)?shù),ρα為第α組分的平均密度,ρα為第α組分的真實(shí)密度(或稱材料密度),滿足ρα = φα ρα,則飽和孔隙-裂隙介質(zhì)的總密度為ρ = ρS + ρF + ρP. 根據(jù)體積分?jǐn)?shù)的定義有:
1.2? ?基于嵌套思路的各組分體積分?jǐn)?shù)和密度
本文把固相材料與孔隙流相組成的飽和單重孔隙介質(zhì)稱為飽和孔隙介質(zhì). 當(dāng)把飽和孔隙-裂隙介質(zhì)中的固相材料和孔隙流相所構(gòu)成的飽和孔隙介質(zhì)視為一個(gè)整體時(shí),此時(shí)只有裂隙被視為孔隙,本文把這種視角下的廣義飽和單重孔隙介質(zhì)稱為飽和裂隙介質(zhì). 這樣,飽和孔隙-裂隙介質(zhì)可看作在飽和裂隙介質(zhì)的基質(zhì)中嵌入飽和孔隙介質(zhì)而成,而飽和孔隙-裂隙介質(zhì)可視為兩個(gè)單重孔隙介質(zhì)的嵌套疊加.
根據(jù)上述嵌套思路,首先考慮飽和裂隙介質(zhì). 飽和孔隙介質(zhì)作為飽和裂隙介質(zhì)的一個(gè)組分用SP表示,它的體積分?jǐn)?shù)為固相和孔隙流相體積分?jǐn)?shù)之和φSP = φS + φP. 根據(jù)式(1),在飽和裂隙介質(zhì)中有:
3.2? ?混合物均勻化響應(yīng)原理
為了適應(yīng)工程應(yīng)用,工程界常常利用混合物均勻化響應(yīng)原理來簡(jiǎn)化混合物的本構(gòu)關(guān)系. 混合物均勻化響應(yīng)原理的內(nèi)容為[14]:當(dāng)混合物單元體承受外荷載時(shí),若混合物單元體中每一點(diǎn)的真實(shí)應(yīng)變?cè)隽浚ɑ蛩俾剩┫嗟龋瑒t該混合物單元體等效于單相均勻單元體,即單元體內(nèi)每一點(diǎn)處的真實(shí)應(yīng)力增量(或加荷速率)也相等;反之也然. 在Khalili等[2]、陳正漢[17]、陳勉和陳至達(dá)[18]推導(dǎo)各種飽和和非飽和混合物本構(gòu)關(guān)系時(shí),混合物均勻化響應(yīng)原理曾發(fā)揮了至關(guān)重要的作用.
顯然,當(dāng)1/KHD = 0時(shí),式(84)、式(88)和(89)與式(93)、式(96)和(97)完全一致,說明從本文的自由能勢(shì)函數(shù)一般本構(gòu)方程出發(fā)可以獲得與Khalili等相同的線彈性本構(gòu)模型. Khalili等把他們的線彈性本構(gòu)模型用于裂隙黏土的固結(jié)分析,獲得了與試驗(yàn)數(shù)據(jù)相一致的理論分析結(jié)果[2,15]. 這說明從本文的一般本構(gòu)方程出發(fā)可獲得經(jīng)過試驗(yàn)驗(yàn)證的本構(gòu)模型.
5? ?結(jié)? ?論
1)在考慮固相和流相材料變形的條件下,以嵌套思路推導(dǎo)了飽和孔隙-裂隙介質(zhì)的能量平衡方程. 確定了飽和孔隙-裂隙介質(zhì)本構(gòu)方程的應(yīng)變狀態(tài)變量是裂隙骨架應(yīng)變、孔隙骨架應(yīng)變、固相材料體應(yīng)變、裂隙流相材料體應(yīng)變和孔隙流相材料體應(yīng)變;應(yīng)力狀態(tài)變量是單位密度上的裂隙介質(zhì)有效應(yīng)力、孔隙介質(zhì)有效應(yīng)力、固相材料真實(shí)壓力、裂隙孔壓和孔隙孔壓.
2)在小應(yīng)變情況下,固相應(yīng)變可分解為裂隙骨架應(yīng)變、孔隙骨架應(yīng)變和固相材料體應(yīng)變之和. 獲得有限應(yīng)變和小應(yīng)變條件下的飽和孔隙-裂隙介質(zhì)的自由能勢(shì)函數(shù)一般本構(gòu)方程.
3)當(dāng)混合物均勻化響應(yīng)原理成立時(shí),裂隙骨架、孔隙骨架和固相材料的本構(gòu)模型相互解耦;當(dāng)裂隙與孔隙中流相材料的本構(gòu)關(guān)系與純流相本構(gòu)關(guān)系相同時(shí),固相與流相材料變形相互解耦. 當(dāng)上述兩個(gè)性質(zhì)均成立時(shí),裂隙骨架應(yīng)變唯一決定裂隙介質(zhì)有效應(yīng)力、孔隙骨架應(yīng)變唯一決定孔隙介質(zhì)有效應(yīng)力、固相材料體應(yīng)變唯一決定固相材料真實(shí)壓力、裂隙流相材料體應(yīng)變唯一決定裂隙孔壓和孔隙流相材料體應(yīng)變唯一決定孔隙孔壓. 運(yùn)用這些本構(gòu)性質(zhì)可以簡(jiǎn)化本構(gòu)關(guān)系的復(fù)雜程度,有利于工程應(yīng)用.
4)當(dāng)自由能勢(shì)函數(shù)取為狀態(tài)變量的二次多項(xiàng)式時(shí),獲得孔隙骨架和裂隙骨架相互耦合的各相同性線彈性本構(gòu)方程,當(dāng)孔隙骨架和裂隙骨架變形解耦時(shí),該線彈性方程退化為飽和孔隙-裂隙介質(zhì)Khalili線彈性方程. Khalili等利用他們提出的線彈性本構(gòu)方程獲得與試驗(yàn)數(shù)據(jù)相一致的理論分析結(jié)果[2,15], 這說明本文基于一般勢(shì)函數(shù)的本構(gòu)方程理論框架可以指導(dǎo)飽和孔隙-裂隙介質(zhì)的具體本構(gòu)建模工作.
參考文獻(xiàn)
[1]? ? BARENBLATT G I,ZHELTOV I P,KOCHINA I N. Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks[J]. Journal of Applied Mathematics and Mechanics,1960,24(5):1286—1303.
[2]? ? KHALILI N,VALLIAPPAN S,WAN C F. Consolidation of fissured clays[J]. Geotechnique,1999,49(1):75—89.
[3]? ? 劉耀儒,楊強(qiáng),黃巖松,等. 基于雙重孔隙介質(zhì)模型的滲流-應(yīng)力耦合并行數(shù)值分析[J]. 巖石力學(xué)與工程學(xué)報(bào),2007,26(4):705—711.
LIU Y R,YANG Q,HUANG Y S,et al. Parallel numerical analysis of coupled fluid flow and stress based on dual porosity media model[J]. Chinese Journal of Rock Mechanics and Engineering,2007,26(4):705—711. (In Chinese)
[4]? ? 蔡國(guó)慶,尤金寶,趙成剛,等. 雙孔結(jié)構(gòu)非飽和壓實(shí)黏土的滲流-變形耦合微觀機(jī)理[J]. 水利學(xué)報(bào),2015,46(S1):135—141.
CAI G Q,YOU J B,ZHAO C G,et al. Microcosmic mechanism for flow-deformation coupling of unsaturated compacted clay with double porosity[J]. Journal of Hydraulic Engineering,2015,46(S1):135—141. (In Chinese)
[5]? ? ZHAO Y,CHEN M. Fully coupled dual-porosity model for anisotropic formations[J]. International Journal of Rock Mechanics and Mining Sciences,2006,43(7):1128—1133.
[6]? ? 張玉軍,張維慶. 一種雙重孔隙介質(zhì)水-應(yīng)力耦合模型及其有限元分析[J]. 巖土工程學(xué)報(bào),2010,32(3):325—329.
ZHANG Y J,ZHANG W Q. Coupled hydro-mechanical model and FEM analyses for dual-porosity media[J]. Chinese Journal of Geotechnical Engineering,2010,32(3):325—329. (In Chinese)
[7]? ? BORJA R I,KOLIJI A. On the effective stress in unsaturated porous continua with double porosity[J]. Journal of the Mechanics and Physics of Solids,2009,57(8):1182—1193.
[8]? ? ZHANG Q,CHOO J,BORJA R I. On the preferential flow patterns induced by transverse isotropy and non-Darcy flow in double porosity media[J]. Computer Methods in Applied Mechanics and Engineering,2019,353:570—592.
[9]? ? LI J,ZHAO C G,CAI G Q,et al. The input work expression and the thermodynamics-based modelling framework for unsaturated expansive soils with double porosity[J]. Chinese Science Bulletin,2013,58(27):3422—3429.
[10]? LI J,YIN Z Y,CUI Y J,et al. Work input analysis for soils with double porosity and application to the hydromechanical modeling of unsaturated expansive clays[J]. Canadian Geotechnical Journal,2017,54(2):173—187.
[11]? GUO G L,F(xiàn)ALL M. Modelling of dilatancy-controlled gas flow in saturated bentonite with double porosity and double effective stress concepts[J]. Engineering Geology,2018,243:253—271.
[12]? XIE N,ZHU Q Z,SHAO J F,et al. Micromechanical analysis of damage in saturated quasi brittle materials[J]. International Journal of Solids and Structures,2012,49(6):919—928.
[13]? 張國(guó)新. 多孔連續(xù)介質(zhì)滲透壓力對(duì)變形應(yīng)力影響的數(shù)值模擬方法探討[J]. 水利學(xué)報(bào),2017,48(6):640—650.
ZHANG G X. Study on numerical simulation method used in analyzing the effect of seepage pressure in continuous medium with pores on deformation and stress[J]. Journal of Hydraulic Engineering,2017,48(6):640—650. (In Chinese)
[14]? 胡亞元. 飽和多孔介質(zhì)的超粘彈性本構(gòu)理論研究[J]. 應(yīng)用數(shù)學(xué)和力學(xué),2016,37(6):584—598.
HU Y Y. Study on the super viscoelastic constitutive theory for saturated porous media[J]. Applied Mathematics and Mechanics,2016,37(6):584—598. (In Chinese)
[15]? KHALILI N. Coupling effects in double porosity media with deformable matrix[J]. Geophysical Research Letters,2003,30(22):2153—2155.
[16]? 嚴(yán)俊,魏迎奇,蔡紅,等. 多場(chǎng)耦合下大體積混凝土初次蓄水的溫度應(yīng)力問題研究[J]. 湖南大學(xué)學(xué)報(bào)(自然科學(xué)版),2016,43(5):30—38.
YAN J,WEI Y Q,CAI H,et al. Research on thermal stress of mass concrete under hydro-thermo-mechanical coupling during initial impoundment[J]. Journal of Hunan University (Natural Sciences),2016,43(5):30—38. (In Chinese)
[17]? 陳正漢. 非飽和土與特殊土力學(xué)的基本理論研究[J]. 巖土工程學(xué)報(bào),2014,36(2):201—272.
CHEN Z H. On basic theories of unsaturated soils and special soils[J]. Chinese Journal of Geotechnical Engineering,2014,36(2):201—272. (In Chinese)
[18]? 陳勉,陳至達(dá). 多重孔隙介質(zhì)的有效應(yīng)力定律[J]. 應(yīng)用數(shù)學(xué)和力學(xué),1999,20(11):1121—1127.
CHEN M,CHEN Z D. Effective stress laws for multi-porosity media[J]. Applied Mathematics and Mechanics,1999,20(11):1121—1127. (In Chinese)
[19]? 黃筑平. 連續(xù)介質(zhì)力學(xué)基礎(chǔ)[M]. 2版. 北京:高等教育出版社,2012:83—121.
HUANG Z P. Fundamentals of continuum mechanics[M]. 2nd ed. Beijing:Higher Education Press,2012:83—121. (In Chinese)
[20]? 胡亞元. 雙變量耦合作用對(duì)非飽和巖土波動(dòng)特性的影響研究[J]. 振動(dòng)與沖擊,2018,37(10):208—217.
HU Y Y. Effect of double-variable coupling on the fluctuating characteristics of unsaturated rock and soil[J]. Journal of Vibration and Shock,2018,37(10):208—217. (In Chinese)