劉成榮 劉麗香
摘 要:研究飼糧添加香菇多糖對氨氮脅迫下泥鰍消化酶、腸道菌群、肌肉成分、組織結構的影響。選取初始體重為(8.9±0.3)g的健康泥鰍,隨機分為7個處理組,對照組飼喂基礎飼料,試驗組飼喂基礎飼料附加1.0 mg·g-1香菇多糖,對照組及試驗組均分別養(yǎng)殖在相應氨氮濃度100、200、300 mg·L-1的水中;另設無氨氮脅迫組養(yǎng)殖于氨氮濃度為0 mg·L-1水中并飼喂基礎飼料。每個處理3次重復,每次重復60尾魚,養(yǎng)殖試驗為35 d,分別于第7、14、21、28和35 d采樣。結果表明:各試驗組泥鰍消化道蛋白酶、淀粉酶和脂肪酶活性均分別高于對照組(P<0.05);在第28 d,100 mg·L-1試驗組泥鰍消化道蛋白酶、淀粉酶和脂肪酶活性均達到最高,分別為(1953.8±39.31)、(21.5±3.37)、(9.64±0.32)U·mL-1。在第35 d,各試驗組泥鰍消化道乳酸桿菌和芽孢桿菌數(shù)量均顯著高于對照組(P<0.05),而大腸桿菌數(shù)量顯著低于對照組(P<0.05)。在第35 d,各試驗組泥鰍肌肉水分含量顯著低于對照組(P<0.05),而蛋白質(zhì)含量和脂肪含量顯著高于對照組(P<0.05)。100 mg·L-1氨氮脅迫下試驗組泥鰍肝胰臟和鰓組織結構比較完整,細胞結構正常,而其對照組泥鰍組織細胞壞死,組織結構崩潰,組織細胞功能受損害。綜合分析表明,香菇多糖能提高氨氮脅迫下泥鰍消化道的蛋白酶、淀粉酶和脂肪酶活性,提高消化道中乳酸桿菌、芽孢桿菌數(shù)量,降低大腸桿菌數(shù)量,提高肌肉蛋白質(zhì)和脂肪含量、降低水分含量,提高泥鰍鰓、肝胰臟抗氨氮脅迫的能力,有利于魚類的健康。
關鍵詞:香菇多糖;泥鰍;消化酶;腸道菌群;肌肉成分;組織結構
中圖分類號:S 966.4?? 文獻標志碼:A?? 文章編號:0253-2301(2021)12-0045-10
DOI: 10.13651/j.cnki.fjnykj.2021.12.008
Effects of Mushroom Polysaccharides on the Digestive Enzymes, Intestinal Flora, MuscleComposition and Tissue Structure of Loach Under the Ammonia-nitrogen Stress
LIU Cheng-rong1,2, LIU Li-xiang3
(1. College of Environment and Bioengineering, Putian University, Putian, Fujian 351100, China;
2. Fujian Key Laboratory of Eco-toxicological Effects and Control of New Pollutants, Putian, Fujian 351100, China;
3. Finance Department, Putian University, Putian, Fujian 351100, China)
Abstract: In order to study the effects of mushroom polysaccharides added into the diets on digestive enzymes, intestinal flora, muscle composition and tissue structure of loach under the ammonia-nitrogen stress, the healthy loach with initial weight of (8.9±0.3) g was selected and randomly divided into seven treatment groups. The control group was fed with basal diet, while the experimental group was fed with basal diet supplemented with 1.0 mg·g-1 mushroom polysaccharides. The control groups and experimental groups were cultured in the corresponding water with the ammonia-nitrogen concentrations of 100 mg·L
-1, 200 mg·L-1, and 300 mg·L-1, respectively. In addition, the group without the ammonia-nitrogen stress was cultured in the water with the ammonia-nitrogen concentration of 0 mg·L-1 and fed with basal diet. Each treatment was repeated for 3 times with 60 fish in each replicate. The experiment lasted for 35 days, and the samples were taken on the 7th, 14th, 21st, 28th and 35th day, respectively. The results showed that: the activities of protease, amylase and lipase in the digestive tract of loach in each experimental group were higher than those in the control group (P<0.05). On the 28th day, the activities of protease, amylase and lipase in the digestive tract of loach in the experimental group with 100 mg·L-1 ammonia nitrogen stress were the highest, which were (1953.8±39.31) U·mL-1, (21.5±3.37) U·mL-1 and (9.64±0.32) U·mL-1, respectively. On the 35th day, the number of Lactobacillus and Bacillus in the digestive tract of loach in each experimental group was significantly higher than that in the control group (P<0.05), while the number of Escherichia coli was significantly lower than that in the control group (P<0.05). On the 35th day, the muscle moisture content of loach in each experimental group was significantly lower than that in the control group (P<0.05), while the protein content and fat content were significantly higher than those in the control group (P<0.05). Under the ammonia-nitrogen stress of 100 mg·L-1, the tissue structure of hepatopancreas and gills of loach in the experimental group was relatively complete, and the cell structure was normal, while the tissue cell in the control group was necrotic, the tissue structure collapsed and the tissue cell function was impaired. The comprehensive analysis showed that mushroom polysaccharides could improve the activities of protease, amylase and lipase in the digestive tract of loach under the ammonia-nitrogen stress, increase the number of Lactobacillus and Bacillus in the digestive tract, reduce the number of Escherichia coli, increase the contents of protein and fat in muscle, reduce the water content, and improve the ability of resisting the ammonia-nitrogen stress in the gills and hepatopancreas of loach, which was beneficial to the health of fish.
Key words: Mushroom polysaccharides; Loach; Digestive enzymes; Intestinal flora; Muscle composition; Tissue structure
水產(chǎn)養(yǎng)殖業(yè)已經(jīng)成為最具前景和發(fā)展最快的行業(yè)之一,養(yǎng)殖水產(chǎn)動物能提供高質(zhì)量的動物蛋白而深受人們的喜愛[1]。隨著市場對水產(chǎn)品需求的增加,水產(chǎn)養(yǎng)殖大多為集約化高密度養(yǎng)殖,但魚類采用集約化高密度養(yǎng)殖方式池塘底部會出現(xiàn)很多殘餌糞便,極易引起氨氮增高[2]。研究表明,當氨氮濃度過高時,大多數(shù)硬骨魚體內(nèi)含氮產(chǎn)物的排泄被破壞,最終導致氨氮脅迫、氨中毒[3-4]。當魚類出現(xiàn)氨氮脅迫時,會出現(xiàn)包括生長性能下降[5-6]、鰓組織和肝臟病變[7],免疫抑制和易感染疾病[8-9]。目前,有關氨氮脅迫對魚類生理功能影響的研究已有一些報道,如許齒彈涂魚Periophthalmodon schlosseri、薄氏大彈涂魚Boleophthalmus boddaerti[10]、尼羅羅非魚Oreochromis niloticus[11]、鳙魚Hypophthalmythys nobilis[12]、草魚Ctenophynodon idellus[13]和鯽魚Carassius auratus[14]等。目前生產(chǎn)上大多使用抗生素和化學藥物治療魚病,易造成環(huán)境污染并產(chǎn)生病菌抗藥性和藥物殘留等問題[15]。有研究表明免疫增強劑可以代替抗生素或藥物來治療病害的發(fā)生[16]。
在免疫增強劑中,多糖可促進動物生長發(fā)育、提高免疫反應、提高動物腸道有益菌群數(shù)量、增加水生動物的抗病力且不污染環(huán)境,不產(chǎn)生抗藥性、無藥物殘留等[17-21]。香菇多糖是從香菇提取的一類有抗氧化、抗腫瘤、提高免疫力、抗微生物和代謝調(diào)節(jié)作用的重要生理功能的生物活性物質(zhì)[22-23]。泥鰍是我國一種重要的底棲魚類,其營養(yǎng)豐富、味道鮮美,受到人們的歡迎,其在養(yǎng)殖過程中也往往會受到氨氮脅迫的危害。前人對泥鰍在氨氮脅迫方面展開了相關研究,如郝小鳳等[24]研究氨氮對泥鰍Misgurnus anguillicaudatus的急性毒性和脅迫后對其肝鰓超微結構的影響; 劉洋等[25]研究了氨氮脅迫對泥鰍肝、鰓和肌肉組織SOD和GSH-Px的影響;張云龍等[26-27]研究了氨氮脅迫對大鱗副泥鰍Paramisgurnus dabryanus組織谷氨酰胺含量的影響以及氨基酸代謝調(diào)控的作用。但迄今未見香菇多糖對氨氮脅迫下泥鰍生理功能影響的報道,本研究探索在基礎飼料中添加香菇多糖對氨氮泥鰍泥鰍消化酶活性、腸道菌群,肌肉成分和肝胰臟、鰓等組織結構的影響,以期為泥鰍健康養(yǎng)殖提供參考依據(jù)。
1 材料與方法
1.1 供試材料及試劑
供試泥鰍購買于莆田超市,體質(zhì)量(8.9±0.3)g。
試劑:3,5二硝基水楊酸、氫氧化鈉、酒石酸鉀鈉、亞硫酸鈉、葡萄糖、碳酸鈉、硫酸銅、酒石酸鉀鈉及聚乙烯醇均為分析純試劑,麥康凱培養(yǎng)基、乳酸桿菌選擇培養(yǎng)基、芽孢桿菌選擇培養(yǎng)基為化學純試劑配制。
1.2 試驗方法
將水放在太陽光下或暗處靜置48 h,以去除水中的有害氣體,將泥鰍放養(yǎng)在裝有上述30 L的容器內(nèi)暫養(yǎng)3 d,無病害后正式開始試驗,選取初始體重為(8.9±0.3)g的健康泥鰍,隨機分為7個處理組,對照組與試驗組分別飼喂基礎飼料及在基礎飼料中添加1.0 mg·g-1香菇多糖的飼料且分別養(yǎng)在相應氨氮濃度(100、200、300 mg·L-1)(香菇多糖添加量是根據(jù)香菇多糖對泥鰍最佳生理效應的用量而定的;氨氮濃度由96 h LC50而定)的水中;另設0 mg·L-1組養(yǎng)殖于氨氮濃度為0 mg·L-1水中并飼喂基礎飼料。每個處理3次重復,每個重復60尾魚,共420尾。投喂量以30 min內(nèi)攝食完成為宜,每2 d換同濃度的氨氮水溶液,試驗周期35 d,在試驗第7、14、21、28、35 d取樣,測定各處理組泥鰍消化道蛋白酶、淀粉酶和脂肪酶活性;在試驗第35 d測定各處理組泥鰍消化道菌群數(shù)量,各組泥鰍肌肉成分和泥鰍肝胰臟、鰓組織結構的變化情況。
1.2.1 泥鰍消化酶活性的測定 (1)泥鰍消化道消化酶的酶液制備。試驗第7、14、21、28、35 d,分別從每個處理組中隨機取3尾泥鰍,并將泥鰍斷頭處死,后分離出泥鰍腸道,對各腸道組織加入10倍質(zhì)量的去離子水,勻漿,4℃,12000 r·min-1離心10 min,所得上清液即為酶液。將所得酶液于冰箱4℃儲存,24 h內(nèi)測定泥鰍淀粉酶、蛋白酶和脂肪酶活性。每個指標測定3次。(2)消化酶活性測定。消化酶活性測定參考丁茜的方法[28]。淀粉酶活性測定采用DNS法,蛋白酶活性測定采用福林酚試劑法,脂肪酶活性測定采用聚乙烯醇橄欖油乳化液水解法。
1.2.2 泥鰍消化道大腸桿菌、乳酸桿菌和芽孢桿菌數(shù)量測定 在試驗第35 d, 從處理組中分別隨機取3尾泥鰍將泥鰍斷頭處死后解剖取出腸道,將腸道外表面的附著物小心地全部去除干凈,分別用生理鹽水輕擦腸道和用75%乙醇對腸道外表面進行消毒,然后在無菌環(huán)境下研磨成漿,用無菌水稀釋成10-1至10-6稀釋梯度,將后3個稀釋濃度樣品(200 μL)接種到大腸桿菌選擇培養(yǎng)基(麥康凱培養(yǎng)基)、乳酸桿菌選擇培養(yǎng)基、芽孢桿菌選擇培養(yǎng)基,后倒置放在37℃培養(yǎng)48 h后進行消化道大腸桿菌、乳酸桿菌和芽孢桿菌的計數(shù)。
1.2.3 泥鰍肌肉成分測定 泥鰍肌肉成分測定方法參考蒲宗旺等[29]的方法。在試驗第35 d, 從處理組中,分別隨機取3尾泥鰍,將泥鰍斷頭處死,將泥鰍進行解剖后,取出泥鰍體背部的肌肉用于泥鰍肌肉蛋白質(zhì)、脂肪和水分含量測定。蛋白質(zhì)測定采用凱式定氮法,脂肪測定采用索氏抽提法,水分測定采用常壓烘干法。
1.2.4 泥鰍肝胰臟和鰓組織結構觀察 在試驗第35 d,從處理組中分別隨機取3尾泥鰍,斷頭處死后解剖取泥鰍鰓和肝胰臟,經(jīng)PBS漂洗后用固定液固定過夜, 制作石蠟切片。具體方法參考吳利敏等的方法[30]。
1.2.5 數(shù)據(jù)處理 試驗數(shù)據(jù)均采取平均值±標準差表示,采用SPSS 13.0軟件對數(shù)據(jù)進行單因素方差分析和雙因素方差分析,當P<0.05即認為有顯著性差異。
2 結果與分析
2.1 香菇多糖對氨氮脅迫下泥鰍消化道蛋白酶、脂肪酶和淀粉酶活性的影響
2.1.1 香菇多糖對氨氮脅迫下泥鰍消化道蛋白酶活性的影響 香菇多糖對氨氮泥鰍消化道蛋白酶活性的影響見圖1。從第7~14 d,各試驗組泥鰍消化道蛋白酶活性一直下降,但從第14 d之后到第28 d,試驗組泥鰍消化道蛋白酶活性不斷上升,到第28 d時,100 mg·L-1試驗組泥鰍消化道蛋白酶活性達到最高,為(1953.8±39.31)U·mL-1,顯著高于其他各組(P <0.05)。100、200、300 mg·L-1試驗組泥鰍消化道蛋白酶活性均分別顯著高于100、200、300 mg·L-1對照組(P<0.05),由此說明香菇多糖可以提高氨氮脅迫泥鰍消化道蛋白酶的活力。
2.1.2 香菇多糖對氨氮脅迫下泥鰍消化道脂肪酶活性的影響 香菇多糖對氨氮脅迫泥鰍消化道脂肪酶活性的影響見圖2。第7~28 d,100、200、300 mg·L-1試驗組泥鰍消化道脂肪酶活性均在不斷上升,到第28 d時達到最大,其中100 mg·L-1試驗組泥鰍消化道脂肪酶活性達到最高,為(9.64±0.32)U·mL-1,顯著高于其他處理組(P<0.05)。100、200、300 mg·L-1試驗組泥鰍消化道脂肪酶活性分別高于100、200、300 mg·L-1對照組,差異均達顯著水平(P<0.05)。由此說明,香菇多糖能顯著提高氨氮脅迫下泥鰍消化道的脂肪酶活性。
2.1.3 香菇多糖對氨氮脅迫下泥鰍消化道淀粉酶活性的影響 香菇多糖對氨氮脅迫泥鰍消化道淀粉酶活性的影響見圖3。200、300 mg·L-1對照組泥鰍消化道淀粉酶活性在試驗第7~35 d均呈下降趨勢。100、200 mg·L-1試驗組泥鰍消化道淀粉酶活性均高于100、200 mg·L-1對照組,且差異達顯著水平(P<0.05),在試驗第28 d,100 mg·L-1試驗組泥鰍消化道淀粉酶活性達到最高,為(21.5±3.37)U·mL-1,說明香菇多糖能明顯提高氨氮脅迫泥鰍消化道淀粉酶活性。
2.2 香菇多糖對氨氮脅迫下泥鰍消化道菌群的影響
香菇多糖對氨氮脅迫泥鰍消化道菌群的影響見圖4。在試驗第35 d,100、200、300 mg·L-1試驗組泥鰍消化道乳酸桿菌和芽孢桿菌數(shù)量均顯著高于其對照組(P<0.05),而消化道大腸桿菌數(shù)量顯著低于其對照組(P<0.05)。其中100 mg·L-1試驗組泥鰍消化道乳酸桿菌和芽孢桿菌數(shù)量均顯著高于其他試驗組(P<0.05),大腸桿菌數(shù)量顯著低于其他試驗組(P<0.05),分別為8.12±0.19、8.96±0.27、6.24±0.29 LgCFU·g-1,說明香菇多糖能提高氨氮脅迫下泥鰍消化道乳酸桿菌和芽孢桿菌數(shù)量、降低大腸桿菌數(shù)量。
2.3 香菇多糖對氨氮脅迫下泥鰍肌肉成分的影響
香菇多糖對氨氮脅迫泥鰍肌肉成分的影響見圖5。100、200、300 mg·L-1試驗組泥鰍肌肉水分含量顯著低于其對照組(P<0.05),而蛋白質(zhì)含量和脂肪含量均顯著高于其對照組(P<0.05)。100、200、300 mg·L-1試驗組水分含量和脂肪含量之間無顯著差異(P>0.05),而100 mg·L-1試驗組泥鰍肌肉蛋白質(zhì)含量顯著高于200 mg·L-1試驗組、300 mg·L-1試驗組(P<0.05),說明香菇多糖能明顯降低氨氮脅迫泥鰍肌肉水分含量,提高蛋白質(zhì)、脂肪含量和泥鰍肌肉品質(zhì),并增強口感。
2.4 香菇多糖對氨氮脅迫下泥鰍鰓、肝胰臟組織結構的影響
2.4.1 香菇多糖對氨氮脅迫下泥鰍肝胰臟組織結構的影響 香菇多糖對氨氮脅迫泥鰍肝胰臟組織結構的影響見圖6。100 mg·L-1對照組泥鰍肝細胞輪廓模糊不清,肝組織充血松散無序,肝細胞核溶解,肝細胞腫大、壞死,血竇擴張;而100 mg·L-1試驗組泥鰍肝組織細胞形態(tài)結構正常,肝細胞排列整齊,細胞輪廓清晰正常,由此可以看出,香菇多糖能使氨氮脅迫下泥鰍肝的組織結構和功能保持正常,促進泥鰍的健康成長。
2.4.2 香菇多糖對氨氮脅迫下泥鰍鰓組織結構的影響 香菇多糖對氨氮脅迫下泥鰍鰓組織結構的影響見圖7。在100? mg·L-1氨氮脅迫下飼喂基礎飼料的泥鰍鰓小片細胞腫大,出現(xiàn)點狀出血,鰓小片上皮細胞腫大壞死,毛細血管破裂;在100 mg·L-1氨氮脅迫下飼喂基礎飼料附加多糖的泥鰍鰓絲結構比較整齊,鰓小片細胞排列整齊有序,鰓絲功能正常。由此可知,香菇多糖對氨氮脅迫下泥鰍的鰓具有保護作用。
3 討論與結論
魚類為人類提供超過世界總人口所需要的蛋白質(zhì)一半以上,但魚類的自然生態(tài)環(huán)境嚴重惡化使每年全世界魚類養(yǎng)殖單位遭受最大的經(jīng)濟損失[31]。雖然人們可以利用某些疫苗和抗生素等來應對由于環(huán)境惡化而產(chǎn)生的環(huán)境脅迫,但在大規(guī)模使用方面不合適、不經(jīng)濟甚至效果不好而限制它們的使用[32-33],在飼料中添加免疫增強劑來增強魚類的免疫力以應對各種環(huán)境脅迫產(chǎn)生的疾病是另一種選擇,已經(jīng)有一些免疫增強劑應用在水產(chǎn)養(yǎng)殖中[34-36]。近10年來,高等真菌產(chǎn)生的具有如抗氧化、抗癌、抗菌、免疫增強作用等多種生物學活性的多糖受到人們的高度關注[37],許多高等真菌如灰樹花Grifola frondosa、香菇Lentinula? edodes、雜色靈芝Mottled ganoderma lucidum、平菇Oyster mushroom和猴頭菇Hericium erinaceus的子實體、發(fā)酵液可以產(chǎn)生具有生物活性功能的多糖[38],多糖可以提高動物的免疫力及對環(huán)境脅迫的能力[39]。在日糧中添加多糖可提高魚類腸道消化酶活性,促進動物生長。強俊等[40]表明,在飼料中添加低聚木糖可顯著提高奧尼羅非魚Orni tilapia腸道淀粉酶和脂肪酶活力。任國銳等[41]研究表明,在日糧中添加殼聚糖,鯉魚Cyprinus carpio腸道淀粉酶和蛋白酶比對照組都有顯著升高。Eman等[42]在尼羅羅非魚Tilapia nilotica飼料中添加黃芪多糖,發(fā)現(xiàn)尼羅羅非魚的生長性能顯著提高。Silvia等[43]研究了甘露寡糖對歐洲鱸魚European bass的影響,結果表明甘露寡糖能顯著提高腸道黏膜禪皺高度、寬度。本研究結果表明,香菇多糖能提高氨氮脅迫泥鰍消化管消化酶的活性,與其他研究者的結論一致,原因是功能性多糖能被某些有益菌如雙歧桿菌Bifido bacterium、乳酸桿菌Lacto bacillus等利用,降低腸道pH,增強動物腸道消化酶活力[44-46]。
在飼料中添加多糖能促進動物有益菌產(chǎn)生而抑制有害菌繁殖,促進動物生長發(fā)育。孫盛明等[47]研究結果表明,飼料中添加200~400 mg·kg-1甘露寡糖能提高Megalobrama amblycephala幼魚的抗氧化能力,改善腸道菌群結構。Hoseinifar等[48]研究發(fā)現(xiàn)果寡糖能明顯提高鯉魚Cyprinus carpio腸道中的異養(yǎng)好氧細菌和乳酸菌數(shù)量。本研究中,氨氮脅迫下泥鰍飼喂基礎飼料添加香菇多糖,泥鰍腸道乳酸菌和芽孢桿菌數(shù)量顯著高于僅飼喂基礎飼料,其有害菌大腸桿菌數(shù)量則顯著低于僅飼喂基礎飼料。多糖能提高動物有益菌群的原因被認為是香菇多糖可減少動物腸道大腸桿菌等有害菌的繁殖,提高乳酸菌等有益菌數(shù)量,從而維持動物腸道的健康[49]。Mao等[50]用香菇多糖治療發(fā)生腹瀉的仔豬,發(fā)現(xiàn)治療后仔豬腸道乙酸、丙酸、丁酸含量及乳酸菌雙歧桿菌數(shù)量增加,促進動物腸道健康。環(huán)境脅迫使魚類生長受到抑制,原因可能是產(chǎn)生大量自由基,使動物氧化應激和脂質(zhì)過氧化,迫使魚體消耗大量物質(zhì)來抵抗氧化應激,使魚體儲存的物質(zhì)如糖原、脂類和蛋白質(zhì)被降解,體重下降,生長受阻。魚類體成分與環(huán)境因素有關,這可能是由于環(huán)境脅迫降低魚體攝食頻率,不能從外界攝取過多的物質(zhì)轉換為自身能量,另一方面,魚類為了保證自身代謝需要而消耗大量的糖類、脂肪和蛋白質(zhì),致使自身物質(zhì)含量降低。在魚類糖代謝過程中,胰島素(insulin,INS)可促進魚體內(nèi)血糖的轉化,抑制糖異生,促進肝臟、肌肉組織糖原的合成,有降血糖功能[51]。David等[52]發(fā)現(xiàn)兩個ins基因,它們均能夠編碼產(chǎn)生能與胰島素受體的INS分子。Polakof等研究表明INS能促進虹鱒魚糖原合成并抑制糖原分解[53]。環(huán)境污染物可通過改變血糖水平、糖原含量和激素水平影響魚類糖代謝[54-55]。Tintos等[56]研究發(fā)現(xiàn)虹鱒魚在含有萘脅迫水體中時,魚體肝糖原、肌糖原含量均下降。
多糖能夠改變脅迫動物的代謝,從而影響動物的體成分。段正星[57]研究發(fā)現(xiàn)酸解氧魔芋葡甘露聚糖(AOKGM)干預后齊口裂腹魚Schizothorax prenati對Cd脅迫有耐受力,表明AOKGM對鎘脅迫引起的代謝紊亂有調(diào)節(jié)作用??赡茉蚴嵌嗵鞘刽~類肝胰臟中PPARα、PPARβ、PPARγ、GPDH和HFABP的表達量顯著下降。許多研究結果顯示,多糖飼料添加劑能促進水生動物的生長、改善體成分、促進營養(yǎng)物質(zhì)的消化吸收。黃智漩[58]研究表明,靈芝Lucid ganoderma多糖對小鼠具有明顯的降血糖作用,黑果枸杞Lycium ruthenicum多糖能明顯降低患糖尿病小鼠的血糖含量,加速體內(nèi)葡萄糖轉變?yōu)楦翁窃?。中草藥多糖添加劑對動物體成分的影響主要體現(xiàn)在調(diào)整動物機體氨基酸的組成,促進氨基酸總量、必需氨基酸及鮮味氨基酸含量的增加等方面[59-60]。多糖等免疫增強劑由于具有強大去除自由基的能力及保護處于脅迫狀態(tài)下的動物內(nèi)臟,因此,受到人們的關注。郭蘇蘭等[61]在研究由苦白蹄Fomes officinalis Ames制備的阿里紅多糖對用LPS誘導的急性肺損傷小鼠肺組織的影響時發(fā)現(xiàn),阿里紅多糖可通過作用于 TLR-4/NF-κB 通路,減少炎癥因子的產(chǎn)生,從而對小鼠肺組織起保護作用。柴艷等[62]在研究Atractylodis macrocephalae多糖對仔豬腸道的影響時發(fā)現(xiàn),白術多糖能提高仔豬小腸絨毛高度與隱窩深度的比值,提高腸道消化吸收功能。陳夢夢等[63]研究表明黃芪Astragalus spp.多糖可通過參與DNA的修復和復制過程,促進大鼠結腸黏膜細胞的增生及組織修復過程。黃玉章[64]研究結果表明,日糧中添加黃芪多糖可增加小腸絨毛表面積,提高機體對營養(yǎng)物質(zhì)的消化和吸收。本研究表明,香菇多糖能恢復由于氨氮脅迫對泥鰍鰓和肝臟的損傷,有益魚類的健康,這與上述其他研究者的結果類似。
本研究結果表明,香菇多糖能顯著提高氨氮脅迫泥鰍消化道蛋白酶、淀粉酶和脂肪酶活性,可提高泥鰍消化道乳酸菌和芽孢桿菌數(shù)量并抑制消化道大腸桿菌等有害菌的繁殖,提高泥鰍體成分中蛋白質(zhì)和脂肪含量,香菇多糖可保護氨氮脅迫下泥鰍肝胰臟、鰓等組織器官,避免組織器官受到氨氮脅迫的損傷,促進泥鰍的健康生長。
參考文獻:
[1]KANNAN M,SAMUTHIRAPANDING R,THIRUNAVUKKARASU M,et al.Application of marine-derived polysaccharides as imunostimulants in? aquaculture:A review of current knowledge and further Perspectives[J].Fish and Shellfish Immunology,2019,86(1):1177-1193.
[2]SHRIVASTAVA? J,SINHA? A K,DATTA S N,et al.Preacclimation to low ammonia improves ammonia handling in common carp(Cyprinus carpio)when exposed subsequently to high environmental ammonia[J].Aquat Toxicol,2016,18(4):334-344.
[3]CLAIBORNE J B,EVANS D H.Ammonia and acid-base balance during high ammonia exposure in a marine teleost(Myoxocephalus? octodecimspinosus)[J].Journal of Experimental Biology,1988,140(1):89-105.
[4]MEADE? G C.Microbes of the avian cecum:types present and substrates utilized[J].Journal of Experimental Zoology,1989,252(2):48-54.
[5]THRAN V R,THRANE A S,WANG F S,et al.Ammonia triggers neuronal disinhibition and seizures by impairing astrocyte potassium buffering(Article)[J].Nature Medicine,2013,19(12):1643-1648.
[6]HEGAZI M M,HASANEIN S S.Effects of chronic exposure to ammonia concentrations on brain monoamines and ATPases of Nile tilapia(Oreochromis niloticus)[J].Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology,2010,151(4):420-425.
[7]LEASE H M,HANSEN J A,BERGMAN H L.Structural changes in gills of Lost River suckers exposed to elevated pH and ammonia concentrations[J].Comparative Biochemistry and Physiology? Part C:Toxicology & Pharmacology,2003,134(4) :491-500.
[8]邱德全,周鮮嬌,邱明生.氨氮脅迫下凡納濱對蝦抗病力和副溶血弧菌噬菌體防病效果研究[J].水生生物學報,2008,32(4):455-461.
[9]HURVITZ? A,BERCOVIER? H,VAN RJV.Effect of ammonia on the survival and the immune response of rainbow trout (Oncorhynchus mykiss,Walbaum) vaccinated against Streptococcus iniae[J].Fish & Shellfish Immunology,1997,7(1):45-53.
[10]IP Y K,LEONG? MWF,SIM M Y,et al.Chronic and acute ammonia toxicity in mudskippers,Periophthalmodon schlosseri and Boleophthalmus boddaerti:brain ammonia and glutamine contents,and effects of methionine sulfoximine and MK801[J].Journal of Experimental Biology,2005,208(10):1993-2004.
[11] 陳家長,臧學磊,胡庚東,等.氨氮脅迫下羅非魚( Oreochromis niloticus)機體免疫力的變化及其對海豚鏈球菌易感性的影響[J].生態(tài)環(huán)境學報,2011,20(4):629-634.
[12]SUN H J,LU? K,MINTER? E J A,et al.Combined effects ammonia of and microcystin on survival,growth,antioxidant responses,and lipid peroxidation of bighead carp Hypophthalmythys nobilis larvae[J].Journal of Hazardous Materials,2012,221(1):213-219.
[13]XING X D,LI? M,YUAN L X,et al.The protective effects of taurine On acute ammonia toxicity in grass carp Ctenopharynodon idellus[J].Fish & shellfish immunology,2016,56(1):517-522.
[14]REN Q Y,LI M,YUAN L X,et al.Acute ammonia toxicity in crucian carp Carassius auratus and effects of taurine on hyperammonemia[J].Comparative Biochemistry and Physiology Part? C:Toxicology and Pharmacology,2016,190(1):9-14.
[15]REILLY A,KAFERSTEIN? F.Food safety hazards and the application of the principles of the Hazard Analysis and Critical Control Point (HACCP) system for their control in aquaculture production[J].Aqucult Res,1997, 28(10):735-752.
[16]SAKAI M.Current research status of fish immunostimulants[J].Aquaculture,1999,172(2):63-92.
[17]RINGO E,OLSEN R E,GIFSTAD T O,et al.Prebiotics in aquaculture:a review,Aquacult[J].Nutrition,2010,16 (1) :117-136.
[18]MOHAN H,PADMANABAN A M,UTHAYAKUMAR H,et al.Effect of dietary Ganoderma lucidum polysaccharides on biological and physiological responses of the giant freshwater prawn Macrobrachium rosenbergii[J].Aquaculture,2016,464 (1):42-49.
[19]XIU Y W,WEN J W,LONG M W,et al,Lentinan modulates intestinal microbiota and enhances barrier integrity in a piglet model challenged with lipopolysaccharide[J].Food Function,2019,10(1):479-489.
[20]TZIANABOS A O.Polysaccharide immunomodulators as therapeutic agents:structural aspects and biologic function[J].Clin Microbiol Rev,2000,13(3):523-533.
[21]HAN S B,PARK S K,AHN H J,et al.Characteriaztion of B cell membrane receptors of polysaccharide isolated from the root of Acanthopanax koreanum[J].International Immunopharm acol,2003,3(5):683-691.
[22]MING L,NA Y,JIAN G.et al.Effects of ammonia stress,dietary linseed oil and Edwardsiella ictalurid challenge on juvenile darkbarbel catfish Pelteobagrus vachelli[J].Fish & Shellfish Immunology,2014,38(1):158-165.
[23]GUANGMING R,LIMING X,TONGYAN L,et,al.Protective effects of lentinan on lipopolysaccharide induced inflammatory response in intestine of juvenile taimen(Hucho taimen,Pallas)[J].International Journal of Biological Macromolecules,2019(121) :317-325.
[24]郝小鳳,劉洋,凌去非.氨氮對泥鰍的急性毒性及對其肝、鰓組織超微結構的影響 [J].水生態(tài)學雜志,2012,33(5):101-107.
[25]劉 洋, 凌去非,于連洋,等.氨氮脅迫對泥鰍不同組織SOD和GSH-PX活性的影響[J].安徽農(nóng)業(yè)科學, 2011,39(2):1069-1072.
[26]張云龍,張海龍,王凌宇,等.氨和空氣暴露對大鱗副泥鰍組織中谷氨酰胺含量的影響 [J].中國水產(chǎn)科學,2017,24(5):1115-1122.
[27]張云龍,王光毅,金慧,等.氨基酸代謝調(diào)控在大鱗副泥鰍應對氨暴露中的作用[J].水生生物學報,2019,43(5):1013-1020.
[28]丁茜,田寶軍,耿麗娜,等.溫度對泥鰍腸道消化酶活性的影響[J].齊魯漁業(yè),2009,26(6):4-7.
[29]蒲宗旺,王永明,張運邦,等.臺灣泥鰍含肉率及肌肉營養(yǎng)成分分析與評價[J].食品工業(yè)科技,2017,38(18):300-311.
[30]吳利敏,徐瑜鳳,李永婧,等.急性氨氮脅迫對淇河鯽幼魚腦、鰓、肝、腎組織結構的影響[J].中國水產(chǎn)科學,2020,27(7):789-800.
[31]MOSTAK A,NOORLIDAH? A,ADAWIYAH? S,et al.Influence of raw polysaccharide extract from mushroom stalk waste on growth and pH perturbation induced-stress in Nile tilapia,Oreochromis niloticus[J].Aquaculture,2017,468(1):60-70.
[32]DARWISH A M.Laboratory efficacy of florfenicol against Streptococcus iniae infection? in sunshine bass[J].Journal of Aquatic Animal Health,2007,19(1):1-7.
[33]CHEN M,WANG R,LI L P.et al.Screening vaccine candidate strains against Streptococcus agalactiae of tilapia? based on PFGE genotype[J].Vaccine, 2012,30(42):6088-6092.
[34]CHEN D,AINSWORTH A J.Glucan administration potentiates immune defence mechanisms of channel catfish,Ictalurus punctatus Rafinesque[J].Journal of Fish Dis,1992,15(4):295-304.
[35]SIWIC K I,ANDERSON D P,RUMSEY G L.et al.Dietary intake of immunostimulants by rainbow trout affects non-specific immunity and protection against furunculosis[J].Veterinary Immunology? and Immunopathology,1994,41(1):125-139.
[36]SAKAI M.Current research status of fish immunostimulants[J].Aquaculture,1999,172(1):63-92.
[37]COHEN R,PERSKY? L,HADAR Y.Biotechnological applications and potential of wood-degrading mushrooms of the genus Pleurotus[J].Appl.Microbiol Biotechnol,2002(5):582-594.
[38]WASSER S P.Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides[J].Appl Microbiol? Biotechnol,2002,60(3):258-274.
[39]VETVICKA L,VANNUCCI L,SIMA? P.The effects of β-glucan on fish immunity[J].North American Journal of Medical Sciences,2013,5(10):580-588.
[40]強俊,王輝,李瑞偉,等.低聚木糖對奧尼羅非魚幼魚生長、體成分和消化酶活力的影響[J].淡水漁業(yè),2009,39(6):63-68.
[41]任國銳,李瑞金,王蘭.低分子質(zhì)量殼聚糖對鯉魚生長和消化酶活性的影響[J].食品科學,2013,34(1):8-12.
[42]EMAN Z,ENGY? R,F(xiàn)ATMA? A,et al.Effects of dietary Astragalus polysaccharides(APS)on? growth performance,immunological parameters,digestive enzymes,and intestinal morphology of Nile tilapia(Oreochromis? niloticus)[J].Fish & Shellfish Immunology,2014,38(1) :149-157.
[43]SILVIA T,ALEX M,TIBIABIN B S,et al.Reduced? gut? Bacterial? translocation in European sea bass(Dicentrarchus? Labrax)fed mannan? oligosaccharides(MOS)[J].Fish & Shellfish Immunology,2011,30(2):674-681.
[44]ZOKAEIFARA H,BALCAZARB J L,SAADA C R,et al.Effects of Bacillus subtilis on the growth performance,digestive enzymes,immune gene expression and disease resistance of white shrhnp,Litopenaeus? Vannamei[J].Fish & Shellfish Immunology,2012,33(4):683-689.
[45]CRISTINA F C,LUCIA H A ,LICIA? M L,et al.Responses of digestive? enzymes? of? tambaqui(Colossoma macwpomum)to dietary? cornstarch? changes and metabolic inferences[J].Molecular & Integrative physiology,2007,147(4):857-862.
[46]PEDERSEN B H, UGELSTAD I,HJELMELANDK K.Effects of atranshory,low food supply in the early life of larval? herring(Clupea harengus)on mortaliy,growth,and digestive capacity[J].Marine Biology,1990,107(1):61-66.
[47]孫盛明,謝駭,朱健,等.飼料中添加甘露寡糖對團頭妨幼魚生長性能、抗氧化能力和腸道菌群的影響[J].動物營養(yǎng)學報,2014,26(11):3371-3379.
[48]HOSEINIFAR S H,SOLEIMANI N,EINAR R.Effects? of dietary? fructo Oligosaccharide supplementation on the growth performance,haemato,immunological parameter,gut? microbiota? and stress resistance? of Common? Carp(Cyprinus? carpio)fry[J].British Journal of? Nutrition,2014,112(1):1296-1302.
[49]REN G,XU? L,LU T,et al.Protectiive effects of Lentinan On lipopolysaccharide induced inflammatory? response in intestine of Juvenile taimen(Hucho taimen,pallas)[J].International Journal of Biological? Macromolecules,2019,121(1):317-325.
[50]MAO X B,HU H Y,XIAO X C,et al.Lentinan administration relieves gut barrier dysfunction induced by rotavirus in a weaned? piglet model[J].Food & Function,2019,10(4):2094-2101.
[51]CARUSO? M A,SHERIDAN? M A.New insights into the signaling system? and? function of insulin? in fish[J].General and Comparative Endocrinonoly,2011,173(2):227-247.
[52]DAVID M I.A Second insulin gene in fish genomes[J].General and Comparative Endocrinonoly,2004,135(1):150-158.
[53]POLAKOF S,SKIBA-CASSY S,CHOUBERT G,et al.Insulin-induced hypoglycaemia is co-ordinately regulated by liver and muscle during acute and chronic insulin stimulation in rainbow trout (Oncorhynchus mykiss)[J].The journal of Experimental Biology,2010,213(9):1443-1452.
[54]ZHAO F,JIANG G,WEI P,et al.Bisphenol S exposure impairs glucose homeostasis in male zebrafish (Danio rerio)[J].Ecotoxicology and Environmental Safety,2018,147(1):794-802.
[55]YANG Y,LIU W,LI D,et al.Altered glycometabolism in zebrafish exposed to thifluzamide[J].Chemosphere,2017,183(1):89-96.
[56]TINTOS A,GESTO M,GUEZ J M,et al.Naphthalene treatment alters liver intermediary metabolism and levels of steroid hormones in plasma of rainbow trout (Oncorhynchus mykiss)[J].Ecotoxicology and Environmental Safety,2005,66(2):139-147.
[57]段正星.鎘致齊口裂腹魚氧化脅迫、脂質(zhì)代謝紊亂及酸解氧化魔芋葡甘露聚糖干預研究[D].成都:四川農(nóng)業(yè)大學,2019.
[58]黃智漩.靈芝多糖降血糖作用的研究[J].食用菌,2009(1):60-61.
[59]MA D Y,SHAN A S.Effects of Chinese herbal drugs on animal growth,endocrine and immunt[J].China Animal Husbandry & Veterinary Medicine,2004(31):162-169.
[60]XIE H Y.Research and application of Chinese herbs as feed? addivites[J].J Anim Vet Sci,2004(34):322-334.
[61]郭蘇蘭,李佳娜,肖水秀.阿里紅多糖對用脂多糖誘導的急性肺損傷小鼠肺組織的保護作用及相關機制[J].當代醫(yī)藥論叢,2019,17(10):127-130.
[62]柴艷,李琦華,賈俊靜,等.白術多糖對斷奶仔豬生產(chǎn)性能及腸道組織形態(tài)的影響[J].中國飼料,2020(15):49-54.
[63]陳夢夢,朱曙東.黃芪多糖對潰瘍性結腸炎大鼠結腸黏膜組織再生、 修復的影響[J].中醫(yī)臨床研究,2019,11(31):1-6.
[64]黃玉章.黃芪多糖對奧尼羅非魚生長性能和免疫功能的影響[D].福州:福建農(nóng)林大學,2009.
(責任編輯:林玲娜)
收稿日期:2021-10-25
作者簡介:劉成榮,男,1964年生,教授,主要從事動物生理方面研究。
基金項目:福建省自然科學基金高校聯(lián)合面上項目(2018J01468)。