• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Snapback-free shorted anode LIGBT with controlled anode barrier and resistance?

    2021-03-11 08:34:18ShunLi李順JinShaZhang張金沙WeiZhongChen陳偉中YaoHuang黃垚LiJunHe賀利軍andYiHuang黃義
    Chinese Physics B 2021年2期
    關(guān)鍵詞:陳偉金沙

    Shun Li(李順), Jin-Sha Zhang(張金沙), Wei-Zhong Chen(陳偉中),2,?,Yao Huang(黃垚), Li-Jun He(賀利軍), and Yi Huang(黃義)

    1College of Electronics Engineering,Chongqing University of Posts and Telecommunications,Chongqing 400065,China

    2Institute of Microelectronics,Chinese Academy of Sciences,Beijing 100029,China

    Keywords: shorted anode lateral-insulated gate bipolar transistor,snapback,barrier,trade-off

    1. Introduction

    Lateral insulated gate bipolar transistor(LIGBT)is a popular power device due to its voltage control and low power loss at forward conduction,which is widely used in the field of the power integrated circuits.[1–9]However,the excessive carriers in the N-drift lead to the large turn-off loss Eoff.[10–17]The shorted anode (SA) LIGBT can effectively accelerate the extraction of electrons by introducing the N+anode in anode.[18]However, the snapback effect is induced when the working mode of the device transforms from unipolar mode to bipolar mode. In order to solve this problem, several novel structures have been proposed. The separated shorted anode(SSA)LIGBT is adopted to suppress the snapback by controlling the distance between N+anode and P+anode.[19]The trench shorted anode(TSA)LIGBT is proposed to alleviate the snapback by inducing an oxide trench between N+ anode and P+anode, which extends the path of the electrons.[20]The segmented trench in the anode region(STA)LIGBT can avoid the snapback by inducing a deep trench in anode.[21,22]The multiple current plugs(MCP)LIGBT can eliminate the snapback by introducing three separated current plugs into N-buffer.[23]

    In this work, a novel SA LIGBT featuring a controlled anode barrier and resistance(CBR)is proposed and discussed to achieve the snapback-free and better trade-off characteristic between Vonand Eoff. The devices simulation results and validations are obtained by the TCAD MEDICI tools,and the parallel field mobility model,concentration-dependent model, perpendicular electric field mobility model, auger recombination, and Shockley–Read–Hall recombination model are adopted.[24]

    2. Device structure and mechanism

    Figure 1(a) shows the schematic views of the CBR LIGBT. An oxide trench is set to be in anode region, which divides the N-drift into two parts. The P-float is set to be on the left of the oxide trench, which forms an electron barrier Vbarrierto inhibit the electrons from flowing into the N+anode.The N-type doping polysilicon layer is located on the top of the oxide trench, while the N-float is set to be on the right of the oxide trench,which forms the anode resistance RSAin series.The key parameters for the different structures compared with each other in this paper are listed in Table 1,where t and Npolyare the thickness and doping concentration of the polysilicon layer, respectively; NP?and NN?are the doping concentrations of the P-float and N-float,respectively;LBis the distance between N+anode and P+anode of the SSA LIGBT;Ltis the length of oxide trench of the TSA LIGBT.

    Figure 1(b) shows the equivalent circuit and operating mechanism of the CBR LIGBT.The polysilicon layer and Nfloat are respectively regarded as the R1and R2in series,while the P-float is an electron barrier to block electrons flowing into the N+anode. The height of the potential barrier Vbarrieris expressed as

    where niis the intrinsic carrier concentration, Nbufferis the doping of the N-buffer, NP?and k0are the doping of the Pfloat and Boltzmann constant,respectively.

    Fig.1. (a) Schematic diagram of CBR LIGBT, Ndrift doping Nd =1.8×1014 cm?3,N-drift length Wd=30μm. (b)Equivalent circuit and operating mechanism of CBR LIGBT in unipolar mode.

    Table 1. Key parameters of different LIGBTs.

    The value of R1and R2can be obtained from

    where Lpolyand LN?are the length of the polysilicon layer and N-float,respectively,tnis the thickness of the N-float,and Z is the length of the device in the vertical direction. Thus,the proposed device obtains a larger RSAthan the SA LIGBT.At the initial forward conduction stage (IA·RSA<0.7 V),the device operates in unipolar mode with single electrons,and the P-body/N-drift/P+ anode triode is turned off. When IA·RSA≥0.7 V, the PNP transistor is turned on, and the P+ anode injects holes into the N-drift. The device works in the bipolar mode. When the device transforms from unipolar mode to bipolar mode,the turnover voltage of snapback effect VSBcan be approximated as the following expression:[25]

    where Rdand Rchare the resistance of N-drift region and channel,respectively;RSAcan be calculated from

    So, the snapback VSBcan be suppressed by increasing the Vbarrier,R1or R2in the anode.

    At turning off stage, the N-buffer/P-float/Polysilicon layer/N-float forms a low-resistance path to accelerate the extraction of electrons,which effectively reduces the Eoffof the CBR LIGBT.

    3. Results and discussion

    3.1. Forward conduction characteristics

    Figure 2(a) shows the comparison of forward conduction characteristics among the CBR LIGBT,SA LIGBT,SSA LIGBT,and TSA LIGBT.For the SA LIGBT,it switches from unipolar mode to bipolar mode with abrupt voltage due to the shorted effect of the N+ anode. Thus it exhibits the most serious snapback phenomenon in all the LIGBTs above. For the SSA LIGBT, it still suffers a tiny snapback even if the LBincreases to 20 μm, which leads to the waste of the chip length. For the TSA LIGBT, the snapback effect can be effectively suppressed when the oxide trench is deep enough(Lt≥3 μm). The CBR LIGBT achieves the snapback-free characteristic, because the RSAand the Vbarriercan be easily increased by adjusting the doping concentration of polysilicon layer and P-float. Additionally,both the CBR LIGBT and TSA LIGBT achieve the lowest voltage drop of 1.12 V at JAof 100 A/cm2.

    Figure 2(b) shows the current distributions in the anode region of the CBR LIGBT at points A and B. At point A of JA=3 A/cm2, the device operates in a unipolar mode, and the P+ anode/N-buffer junctions is turned off. The electron current flows to the N+ anode along the path of N-buffer/ Pfloat/Polysilicon layer/N-float. At point B of JA=40 A/cm2,the P+anode/N-buffer junction is turned on,and the P+anode begins to inject holes into the N-drift. The device mode transforms into bipolar mode with exponentially increased current.

    Fig.2. (a)Forward conduction characteristics of CBR LIGBT,SA LIGBT,SSA LIGBT (LB =20 μm), and TSA LIGBT (Lt =3 μm), with voltage applied to the gate Vgate being 15 V, and cathode connected to the ground Vcathode=0 V.(b)Current distributions in anode at points A and B of CBR LIGBT(points A and B are shown in(a)).

    Fig.3. Forward conduction characteristics of CBR LIGBT (a) at different values of Npoly,NN?,and(b)NP?.

    Figure 3 shows the forward conduction characteristics of CBR LIGBT at different values of NP?,NN?,and Npoly. Obviously, the decreasing of Npolyand NN?are favorable for suppressing the snapback because the R1and R2are increased as shown in Fig.3(a). In Fig.3(b), increasing NP?is helpful in suppressing the snapback because the Vbarrieris increased according to Eqs. (1) and (4). Moreover, the inhibition effect of NP?and Npolyon snapback are more obvious than that of NN?. So adjusting NP?and Npolyare a promising method to eliminate the snapback phenomenon.

    Figure 4 shows the influences of Npolyon forward voltage drop Vonat different temperatures T of CBR LIGBT.For the given T, both the Vonand ?VSBgradually increase with Npolyincreasing, and it also illustrates that reducing Npolyis beneficial to solving the snapback problem and reducing the Von. In addition, at the same Npoly, Vondecreases obviously with the increase of T, and a higher temperature is also easier to achieve the snapback-free characteristic. This is because the mobility decreases with the increase of temperature,which leads to a larger RSAfor the CBR LIGBT.At T =400 K,the device exhibits snapback effect only at Npolyof 1×1018cm?3.

    Fig.4. Influences of Npolyon forward voltage drop Von at different temperatures of CBR LIGBT, with Von calculated at anode current density of 100 A/cm2.

    3.2. Turn off characteristics

    In Fig.5 the turn-off characteristics of different LIGBTs are compared among each other. All the devices are compared mutually at the same Vonof 1.3 V.The turnoff time Toffis calculated from 90%IAto 10%IA. For the SSA LIGBT,it shows the longest Toffof 570 ns, because a long LBis designed to suppress the snapback and also reduce the Von, resulting in a long extraction path with high resistance at turn-off stage. For the TSA LIGBT,it has Toffof 160 ns, because the trench oxide in anode will prevent the electrons from being extracted.The Toffof SA LIGBT is 90 ns,which is slightly slower than that of the CBR LIGBT. This is the result of a long and high doping concentration P+ anode necessary to achieve the Vonof 1.3 V,which is not conducive to the extraction of electrons.For the CBR LIGBT,it achieves the shortest Toffof 70 ns,because the N-buffer/P-float/polysilicon layer/N-float provides a low-resistance path to accelerate the extraction of electrons in N-drift.

    Figure 6 shows the distributions of the electron concentration Neof different LIGBTs (y=4 μm) from t1to t4period, and the devices start to be turned off at t1period. At t2and t3periods,the Neof CBR LIGBT is lower obviously than that of the SSA LIGBT and TSA LIGBT.At t4period,the SA LIGBT and CBR LIGBT have completed the turn-off process,while there remain a lot of electrons in SSA LIGBT and TSA LIGBT.

    Fig.5. Turn-off characteristics of different LIGBTs at the same Von of 1.3 V,obtained in the same circuit with bus voltage (Vbus) 200 V, gate resistance(Rg)10 Ω,load inductance(LC)10μH,and stray inductance(Ls)10 nH.

    Fig.6. Distributions of electron concentration Ne along x direction(y=4μm)of different LIGBTs at(a)t1 period,(b)t2 period,(c)t3 period,and(d)t4 period. (Curves at period t1–t4 are shown in Fig.5).

    Fig.7. Turn-off characteristics of CBR LIGBT(a)at different values of Npoly and(b)different values of NP?.

    Figure 7(a) shows the turn-off characteristics of CBR LIGBT at different values of Npoly. The CBR LIGBT has a Toffof 390 ns at an Npolyof 1×1015cm?3. The Toffdecreases gradually with Npolyincreasing due to R1decreasing,thus the turn-off loss Eoffcan be further reduced. Figure 7(b) shows the turn-off characteristics of CBR LIGBT at different values of NP?. The Toffdecreases from 390 ns to 160 ns with NP?decreasing form 2.5×1016cm?3to 1×1016cm?3due to the enhanced Vbarrier. Furthermore, a reasonable Npolyor NP?is important to obtain a better trade-off between Vonand Eoff.

    3.3. Trade-off characteristic

    Figure 8 displays the influences of Npolyand L on ?VSBand Eoff. For the device with Npolyof 1×1015cm?3,it shows that the snapback-free characteristic occurs with the increase of L. However, it also results in a large Eoff. For the device with Npolyof 1×1016cm?3and 1×1017cm?3, the ?VSBincreases with L increasing,and a higher Npolywill bring a larger?VSB. On the other hand,the Eoffdecreases with the increase of L, and increasing Npolyis beneficial to obtaining a lower Eoff. Because L can be regarded as the width of the cross section of electron path from P-float to polysilicon layer,increasing L leads to a narrower path for electrons, which is helpful in reducing the value of Eoff.

    Fig.8. Influences of Npoly and L on ?VSB and Eoff of CBR LIGBT, with L shown in Fig.1(b).

    Fig.9. Trade-off characteristics between Von and Eoff, showing (a) influences of Npoly and t on Von and Eoff of CBR LIGBT, and (b) the influences of temperature T and NP?on Von and Eoff of CBR LIGBT,with t shown in Fig.1(b).

    Figure 9(a) displays the influences of Npolyand t on Vonand Eoff. It is observed that increasing the width of the cross section t or Npolywill lead the value of Vonto increase. Simultaneously, the Eoffdecreases because the R1decreases with the increase of t and doping Npoly. Figure 9(b) shows the influences of temperature T and NP?on Vonand Eoff. The Vondecreases with T increasing due to a lower mobility, while the Eoffincreases. Meanwhile,the increasing NP?can bring a higher Eoffand a lower Von.

    Figure 10 shows the trade-off characteristics between Vonand Eoffof different LIGBTs. The CBR LIGBT achieves the best trade-off characteristics in all LIGBTs. At the same Vonof 1.3 V, it realizes 85%, 73%, and 59.6% reductions in Eoffcompared with that of the SSA LIGBT, convention LIGBT,and TSA LIGBT, respectively. Additionally, at the same Eoffof 1.5 mJ/cm2, the Vonof the CBR LIGBT reduces by 26%,24%,and 6%compared with that of the SSA LIGBT,conventional LIGBT and TSA LIGBT, respectively. Thus, the proposed device not only achieves the snapback-free characteristic, but also obtains a better trade-off characteristics between Vonand Eoff.

    Fig.10. Trade-off characteristics between Von and Eoff of different LIGBTs,with Von values of different LIGBTs obtained at JA =100 A/cm2 and Eoff value calculated by varying concentration of P+anode.

    3.4. Key process of CBR LIGBT

    Figure 11 shows the key process of fabricating the CBR LIGBTs. The main process can be divided into 8 steps. The oxide trench can be formed simultaneously with the SOI structure as shown in Fig.11(a). In Figs. 11(b) and 11(c), the P-body, N-buffer, P+ anode, and N+ anode can be realized by using the multiple ion implantation. Then the oxide insulation layer and polysilicon are formed by deposition and etching process as shown in Figs. 11(d) and 11(e). Note that the secondary ion implantation is needed to reach the doping concentration of the polysilicon gate as shown in Fig.11(f).Finally,the excess polysilicon and insulating layer are etched and electrodes are placed.

    Fig.11. Key process of fabricating CBR LIGBT, showing (a) oxide trench and SOI structure formation, (b) P-body, N-buffer, P-float, and N-float formations, (c) P+ and N+ cathode formations, P+ and N+ anode formations, (d) oxide layer formation by deposition and etching, (e) doping of the polysilicon layer,(f)secondary ion implantation to form polysilicon gate,(g)etching excess polysilicon,and(h)etching the oxide layer and place the electrode.

    4. Conclusions

    The controlled barrier and resistance CBR in the anode is introduced to control the Vbarrierand RSAfor the SA LIGBT by adjusting the doping of the P-float,N-float and polisilicon layer.The results show that the CBR LIGBT not only achieves the snapback-free characteristic but also obtains better tradeoff property between Vonand Eoffthan the SSA LIGBT,conventional LIGBT,and TSA LIGBT.

    猜你喜歡
    陳偉金沙
    SiC trench MOSFET with dual shield gate and optimized JFET layer for improved dynamic performance and safe operating area capability
    《論三星堆文明與金沙文明的關(guān)系》附圖
    跨世紀(2022年5期)2022-09-24 09:10:54
    Repulsive bubble–bubble interaction in ultrasonic field?
    陳偉教授簡介
    當遠方不再遙遠
    如果……就……
    快樂語文(2019年33期)2019-03-14 05:29:08
    夢回金沙
    陳偉博士簡介
    歡樂小野人
    Recent Progress in Heavy Fuel Aviation Piston Engine
    久久久久久久精品吃奶| 国产淫片久久久久久久久 | 亚洲人成电影免费在线| 欧洲精品卡2卡3卡4卡5卡区| 亚洲最大成人中文| 又粗又爽又猛毛片免费看| 亚洲18禁久久av| 中亚洲国语对白在线视频| 午夜激情欧美在线| 成人欧美大片| 久久国产精品影院| 亚洲片人在线观看| а√天堂www在线а√下载| 一级黄片播放器| 最新美女视频免费是黄的| 可以在线观看毛片的网站| 亚洲欧美日韩高清在线视频| 午夜福利免费观看在线| 亚洲熟妇中文字幕五十中出| 男女之事视频高清在线观看| 九九热线精品视视频播放| 极品教师在线免费播放| 色吧在线观看| 宅男免费午夜| 99久久无色码亚洲精品果冻| 成年女人毛片免费观看观看9| 成人精品一区二区免费| 99久久久亚洲精品蜜臀av| 男女午夜视频在线观看| 国产精品久久久久久精品电影| 久久久国产精品麻豆| 一个人免费在线观看电影| aaaaa片日本免费| 窝窝影院91人妻| 日本黄大片高清| 18禁国产床啪视频网站| 18禁裸乳无遮挡免费网站照片| 法律面前人人平等表现在哪些方面| 亚洲va日本ⅴa欧美va伊人久久| 免费看a级黄色片| 九九热线精品视视频播放| 一进一出抽搐动态| 一级毛片女人18水好多| 国产极品精品免费视频能看的| 亚洲激情在线av| 欧美成人一区二区免费高清观看| 久久伊人香网站| 欧美不卡视频在线免费观看| 男女下面进入的视频免费午夜| 51午夜福利影视在线观看| 久久草成人影院| 国产伦在线观看视频一区| 成人国产一区最新在线观看| 久久久国产精品麻豆| 午夜激情福利司机影院| 91九色精品人成在线观看| 亚洲精品在线观看二区| 国产在视频线在精品| 欧美日韩瑟瑟在线播放| 在线观看一区二区三区| 色播亚洲综合网| 亚洲人成网站在线播| 欧美日韩国产亚洲二区| 99国产极品粉嫩在线观看| 淫秽高清视频在线观看| aaaaa片日本免费| 欧美日韩国产亚洲二区| 18禁黄网站禁片免费观看直播| 国产黄色小视频在线观看| 亚洲一区高清亚洲精品| 久久精品国产综合久久久| 黄色日韩在线| 午夜福利在线在线| 欧美一区二区国产精品久久精品| 亚洲精品影视一区二区三区av| 欧美中文日本在线观看视频| 国产伦精品一区二区三区四那| 婷婷亚洲欧美| 亚洲专区中文字幕在线| 午夜福利18| 欧美午夜高清在线| 国产精品日韩av在线免费观看| 国产精品久久久久久人妻精品电影| 麻豆国产av国片精品| 91麻豆av在线| 淫妇啪啪啪对白视频| 亚洲一区二区三区不卡视频| 免费av不卡在线播放| 国产乱人视频| 亚洲精品日韩av片在线观看 | 亚洲aⅴ乱码一区二区在线播放| 午夜激情欧美在线| 久久久久精品国产欧美久久久| 最新美女视频免费是黄的| 中文字幕av在线有码专区| 亚洲av二区三区四区| 国产爱豆传媒在线观看| 国产精品香港三级国产av潘金莲| 国产黄a三级三级三级人| 国模一区二区三区四区视频| 99久国产av精品| 一级毛片女人18水好多| 婷婷亚洲欧美| 亚洲精品在线观看二区| 五月玫瑰六月丁香| av视频在线观看入口| 国产成人av教育| 欧美大码av| 少妇熟女aⅴ在线视频| 中文字幕av成人在线电影| 久久久久久久久久黄片| 最近最新中文字幕大全免费视频| 成年人黄色毛片网站| 亚洲精品乱码久久久v下载方式 | 亚洲内射少妇av| 国产伦人伦偷精品视频| 色精品久久人妻99蜜桃| 黄色片一级片一级黄色片| 高清在线国产一区| 99久久九九国产精品国产免费| 国产乱人视频| 久久久久久久久久黄片| 亚洲国产精品成人综合色| x7x7x7水蜜桃| xxx96com| 成人高潮视频无遮挡免费网站| 好男人电影高清在线观看| 久久精品国产亚洲av香蕉五月| 日本免费a在线| 成熟少妇高潮喷水视频| 在线观看免费视频日本深夜| 亚洲国产欧美人成| 特大巨黑吊av在线直播| 亚洲专区国产一区二区| 国内揄拍国产精品人妻在线| 69人妻影院| 男插女下体视频免费在线播放| 成人鲁丝片一二三区免费| 看免费av毛片| 又紧又爽又黄一区二区| 少妇人妻一区二区三区视频| 露出奶头的视频| tocl精华| 精品久久久久久久久久久久久| 岛国在线观看网站| av天堂在线播放| 免费高清视频大片| 日韩欧美精品免费久久 | 高清在线国产一区| 欧美日韩瑟瑟在线播放| 亚洲乱码一区二区免费版| 欧美日韩中文字幕国产精品一区二区三区| 亚洲欧美精品综合久久99| 亚洲人成网站在线播放欧美日韩| 床上黄色一级片| 性欧美人与动物交配| 老司机在亚洲福利影院| 国产成人福利小说| 亚洲欧美精品综合久久99| 夜夜看夜夜爽夜夜摸| 国产一区二区亚洲精品在线观看| 色av中文字幕| 一进一出抽搐gif免费好疼| or卡值多少钱| 国产精品永久免费网站| 国产爱豆传媒在线观看| 女人十人毛片免费观看3o分钟| 亚洲天堂国产精品一区在线| 欧美+亚洲+日韩+国产| 久久久久久久精品吃奶| 免费人成在线观看视频色| 欧美av亚洲av综合av国产av| 久久九九热精品免费| 一区二区三区国产精品乱码| 在线观看一区二区三区| 成人av在线播放网站| 国产伦在线观看视频一区| 色综合亚洲欧美另类图片| 国产精品美女特级片免费视频播放器| 亚洲av五月六月丁香网| www.999成人在线观看| 国产视频内射| 99视频精品全部免费 在线| 亚洲真实伦在线观看| 久久精品综合一区二区三区| 欧美另类亚洲清纯唯美| 91久久精品电影网| av视频在线观看入口| 国产成人av激情在线播放| 日本与韩国留学比较| 午夜老司机福利剧场| 麻豆一二三区av精品| 国产一区在线观看成人免费| 在线观看日韩欧美| 天天一区二区日本电影三级| 国产免费av片在线观看野外av| 别揉我奶头~嗯~啊~动态视频| 国产精品99久久久久久久久| 天堂动漫精品| 性欧美人与动物交配| 欧美三级亚洲精品| а√天堂www在线а√下载| 亚洲在线自拍视频| 97人妻精品一区二区三区麻豆| 亚洲五月婷婷丁香| 久久精品亚洲精品国产色婷小说| 在线免费观看的www视频| 久久久久性生活片| 亚洲国产高清在线一区二区三| 19禁男女啪啪无遮挡网站| 国产麻豆成人av免费视频| 中文字幕高清在线视频| 人妻夜夜爽99麻豆av| 少妇的逼好多水| 别揉我奶头~嗯~啊~动态视频| 欧美最黄视频在线播放免费| 国产一区二区三区视频了| 国产国拍精品亚洲av在线观看 | 丁香六月欧美| 一进一出抽搐gif免费好疼| 变态另类丝袜制服| 51国产日韩欧美| 看片在线看免费视频| 亚洲精品亚洲一区二区| 国产精品日韩av在线免费观看| 精品无人区乱码1区二区| 欧美高清成人免费视频www| 女人高潮潮喷娇喘18禁视频| 亚洲av电影在线进入| 麻豆国产av国片精品| 国产av麻豆久久久久久久| 日韩欧美国产一区二区入口| 国产精品自产拍在线观看55亚洲| 亚洲成a人片在线一区二区| 韩国av一区二区三区四区| 免费看a级黄色片| 日本a在线网址| 亚洲精品乱码久久久v下载方式 | 成人无遮挡网站| 一本精品99久久精品77| 亚洲中文字幕日韩| АⅤ资源中文在线天堂| 亚洲人与动物交配视频| 天天一区二区日本电影三级| 亚洲无线在线观看| 亚洲在线自拍视频| 热99在线观看视频| 女人被狂操c到高潮| 国产免费一级a男人的天堂| 免费搜索国产男女视频| 91在线观看av| 有码 亚洲区| 国产高清videossex| 亚洲欧美日韩无卡精品| 午夜激情欧美在线| 三级国产精品欧美在线观看| 精品久久久久久久末码| 天天一区二区日本电影三级| 国产一区二区三区在线臀色熟女| 啦啦啦观看免费观看视频高清| 国产真人三级小视频在线观看| 国产麻豆成人av免费视频| 中文亚洲av片在线观看爽| 亚洲欧美一区二区三区黑人| 一区二区三区国产精品乱码| 五月玫瑰六月丁香| 国内久久婷婷六月综合欲色啪| 日本五十路高清| 日本一二三区视频观看| 亚洲av二区三区四区| 免费看美女性在线毛片视频| 波多野结衣巨乳人妻| 91麻豆精品激情在线观看国产| 国产精品久久久久久久久免 | 午夜a级毛片| 亚洲人成伊人成综合网2020| 一区二区三区高清视频在线| 18禁裸乳无遮挡免费网站照片| 成人高潮视频无遮挡免费网站| 久久久久久大精品| 可以在线观看毛片的网站| 国产91精品成人一区二区三区| 精品日产1卡2卡| 波多野结衣高清无吗| 日本一二三区视频观看| 久久国产精品影院| 女人十人毛片免费观看3o分钟| 亚洲成av人片在线播放无| 亚洲精品色激情综合| 日本三级黄在线观看| av中文乱码字幕在线| 午夜精品久久久久久毛片777| 99视频精品全部免费 在线| 欧美zozozo另类| 亚洲一区二区三区不卡视频| 国产精品爽爽va在线观看网站| 久久人妻av系列| 国产一区二区在线观看日韩 | 免费在线观看影片大全网站| 禁无遮挡网站| 中文亚洲av片在线观看爽| 国产精品久久久久久人妻精品电影| 成人永久免费在线观看视频| 淫秽高清视频在线观看| a级一级毛片免费在线观看| 色吧在线观看| 中文字幕人妻熟人妻熟丝袜美 | 99热精品在线国产| 波多野结衣高清作品| 国内久久婷婷六月综合欲色啪| 亚洲精品成人久久久久久| 午夜激情福利司机影院| 伊人久久大香线蕉亚洲五| 欧美乱妇无乱码| 国产精品1区2区在线观看.| 亚洲欧美一区二区三区黑人| 搞女人的毛片| 欧美日韩乱码在线| 搞女人的毛片| 亚洲av第一区精品v没综合| 在线国产一区二区在线| 欧美日韩中文字幕国产精品一区二区三区| 美女被艹到高潮喷水动态| 日本精品一区二区三区蜜桃| 国产又黄又爽又无遮挡在线| 免费av毛片视频| 色av中文字幕| 少妇丰满av| 国产精品久久久久久久久免 | 亚洲,欧美精品.| 日韩欧美在线二视频| 国产一区在线观看成人免费| 午夜福利成人在线免费观看| av国产免费在线观看| 日本撒尿小便嘘嘘汇集6| 久久精品人妻少妇| 中文字幕精品亚洲无线码一区| 日韩欧美 国产精品| 久久午夜亚洲精品久久| 精品国产亚洲在线| 精品欧美国产一区二区三| 久久精品91蜜桃| 午夜福利在线观看吧| 婷婷亚洲欧美| 天天躁日日操中文字幕| 色综合婷婷激情| 麻豆国产97在线/欧美| 国内精品久久久久精免费| 88av欧美| 国产探花在线观看一区二区| 床上黄色一级片| 啦啦啦韩国在线观看视频| 深夜精品福利| 免费人成在线观看视频色| 老汉色av国产亚洲站长工具| 国产欧美日韩精品一区二区| 麻豆国产97在线/欧美| 国产精品电影一区二区三区| 久久精品综合一区二区三区| 9191精品国产免费久久| 香蕉丝袜av| 夜夜躁狠狠躁天天躁| eeuss影院久久| 真人一进一出gif抽搐免费| 欧美不卡视频在线免费观看| 亚洲精华国产精华精| 波野结衣二区三区在线 | 无限看片的www在线观看| av在线天堂中文字幕| 久久久久免费精品人妻一区二区| 国产伦人伦偷精品视频| 激情在线观看视频在线高清| 狠狠狠狠99中文字幕| 国内精品一区二区在线观看| 一个人观看的视频www高清免费观看| 国产精品电影一区二区三区| 欧美bdsm另类| 少妇人妻精品综合一区二区 | 香蕉久久夜色| 日本免费a在线| 国产免费男女视频| 国产精品久久久久久人妻精品电影| 少妇高潮的动态图| 日韩欧美精品免费久久 | 亚洲国产欧洲综合997久久,| 国产av麻豆久久久久久久| 国产一区二区亚洲精品在线观看| 小蜜桃在线观看免费完整版高清| 国产精品免费一区二区三区在线| 午夜福利成人在线免费观看| 国产精品久久久人人做人人爽| 亚洲一区高清亚洲精品| 中文字幕av成人在线电影| 午夜精品在线福利| 亚洲精品亚洲一区二区| 久久久国产成人精品二区| 18禁黄网站禁片免费观看直播| 成熟少妇高潮喷水视频| 国产欧美日韩一区二区三| 久久人妻av系列| 十八禁网站免费在线| 啦啦啦观看免费观看视频高清| 亚洲精品粉嫩美女一区| 久久精品国产综合久久久| 香蕉丝袜av| www日本在线高清视频| 日韩av在线大香蕉| 小说图片视频综合网站| 午夜精品在线福利| 久久久久亚洲av毛片大全| 国产视频内射| 午夜a级毛片| 国产高清videossex| 欧美黄色片欧美黄色片| 麻豆一二三区av精品| 偷拍熟女少妇极品色| 成人高潮视频无遮挡免费网站| 啪啪无遮挡十八禁网站| 全区人妻精品视频| 久99久视频精品免费| 午夜免费成人在线视频| 欧美另类亚洲清纯唯美| 美女高潮喷水抽搐中文字幕| 国产av麻豆久久久久久久| 舔av片在线| 特级一级黄色大片| 一个人观看的视频www高清免费观看| 精品不卡国产一区二区三区| tocl精华| 午夜福利在线在线| 色av中文字幕| 美女高潮喷水抽搐中文字幕| 看黄色毛片网站| 免费大片18禁| 欧美最新免费一区二区三区 | 免费在线观看成人毛片| 久久精品国产自在天天线| 尤物成人国产欧美一区二区三区| 亚洲18禁久久av| 亚洲中文日韩欧美视频| 一夜夜www| 波野结衣二区三区在线 | 欧美最新免费一区二区三区 | 又爽又黄无遮挡网站| 3wmmmm亚洲av在线观看| 真实男女啪啪啪动态图| 成年女人永久免费观看视频| 日韩国内少妇激情av| 亚洲精华国产精华精| 日本五十路高清| 欧美黄色淫秽网站| 热99在线观看视频| 人妻丰满熟妇av一区二区三区| 亚洲无线在线观看| 婷婷亚洲欧美| 午夜精品在线福利| 日本与韩国留学比较| 精品久久久久久成人av| 波多野结衣高清作品| 欧美高清成人免费视频www| а√天堂www在线а√下载| 在线a可以看的网站| 久9热在线精品视频| 亚洲精品在线观看二区| 国产成人啪精品午夜网站| 欧美黑人欧美精品刺激| 天堂av国产一区二区熟女人妻| 在线观看美女被高潮喷水网站 | 中文字幕av成人在线电影| 国产成人欧美在线观看| 91麻豆精品激情在线观看国产| 国产激情欧美一区二区| 亚洲七黄色美女视频| 三级男女做爰猛烈吃奶摸视频| 欧美色视频一区免费| 2021天堂中文幕一二区在线观| 亚洲国产中文字幕在线视频| 国产国拍精品亚洲av在线观看 | 国产亚洲欧美在线一区二区| www日本在线高清视频| 黄片大片在线免费观看| ponron亚洲| 久久草成人影院| 国产91精品成人一区二区三区| 天堂av国产一区二区熟女人妻| 精品免费久久久久久久清纯| 久久精品91蜜桃| 免费在线观看成人毛片| 国产蜜桃级精品一区二区三区| 国产激情欧美一区二区| 欧美成人性av电影在线观看| 亚洲国产高清在线一区二区三| 99热6这里只有精品| av欧美777| 精品国内亚洲2022精品成人| 免费观看人在逋| 在线天堂最新版资源| 99热6这里只有精品| av欧美777| 啦啦啦韩国在线观看视频| 国产黄色小视频在线观看| 中文亚洲av片在线观看爽| 国产中年淑女户外野战色| 久久精品夜夜夜夜夜久久蜜豆| 免费观看精品视频网站| 亚洲七黄色美女视频| 国产99白浆流出| 国产精品亚洲av一区麻豆| 色综合亚洲欧美另类图片| 一区二区三区国产精品乱码| 欧美成人a在线观看| 国产爱豆传媒在线观看| 精品久久久久久成人av| 国产一区二区激情短视频| 757午夜福利合集在线观看| 男人和女人高潮做爰伦理| 无遮挡黄片免费观看| 九色国产91popny在线| 欧美性猛交╳xxx乱大交人| 变态另类成人亚洲欧美熟女| 非洲黑人性xxxx精品又粗又长| av欧美777| 日日摸夜夜添夜夜添小说| 日韩av在线大香蕉| 大型黄色视频在线免费观看| 国产久久久一区二区三区| 国产一区二区亚洲精品在线观看| 亚洲色图av天堂| 亚洲国产色片| av欧美777| 国产伦精品一区二区三区四那| 99国产精品一区二区蜜桃av| 老熟妇仑乱视频hdxx| 精品久久久久久成人av| 国产精品日韩av在线免费观看| 亚洲av五月六月丁香网| 国产麻豆成人av免费视频| 久久这里只有精品中国| 免费一级毛片在线播放高清视频| 母亲3免费完整高清在线观看| 欧美一区二区精品小视频在线| 熟女少妇亚洲综合色aaa.| АⅤ资源中文在线天堂| 激情在线观看视频在线高清| bbb黄色大片| 国内揄拍国产精品人妻在线| 少妇的逼水好多| 精品久久久久久久末码| 日本五十路高清| 久久精品亚洲精品国产色婷小说| 免费观看的影片在线观看| 最好的美女福利视频网| 国产成人a区在线观看| 在线观看美女被高潮喷水网站 | 亚洲精品一区av在线观看| 国内久久婷婷六月综合欲色啪| 中文字幕熟女人妻在线| 女同久久另类99精品国产91| 亚洲一区高清亚洲精品| 亚洲av成人av| 欧美激情久久久久久爽电影| 操出白浆在线播放| 国产主播在线观看一区二区| 亚洲在线自拍视频| 淫秽高清视频在线观看| 日本熟妇午夜| 亚洲精华国产精华精| 免费在线观看影片大全网站| 国产麻豆成人av免费视频| 亚洲精品在线观看二区| 成人鲁丝片一二三区免费| 男人舔女人下体高潮全视频| av黄色大香蕉| 亚洲熟妇熟女久久| 亚洲无线观看免费| 丝袜美腿在线中文| 亚洲人成网站在线播放欧美日韩| 国产精品嫩草影院av在线观看 | 精品熟女少妇八av免费久了| 国产男靠女视频免费网站| 老司机午夜福利在线观看视频| 久久婷婷人人爽人人干人人爱| 久久久精品大字幕| 国产精品自产拍在线观看55亚洲| 亚洲最大成人中文| 高清毛片免费观看视频网站| 国内少妇人妻偷人精品xxx网站| av片东京热男人的天堂| 在线观看一区二区三区| xxx96com| 男女之事视频高清在线观看| 日本免费一区二区三区高清不卡| 精品久久久久久久久久久久久| 观看美女的网站| 悠悠久久av| 久久久久精品国产欧美久久久| 日本免费a在线| 日本免费一区二区三区高清不卡| 日韩欧美国产在线观看| 91在线精品国自产拍蜜月 | 蜜桃久久精品国产亚洲av| 乱人视频在线观看| 免费在线观看影片大全网站| www.熟女人妻精品国产| 国内毛片毛片毛片毛片毛片| 每晚都被弄得嗷嗷叫到高潮| 亚洲精品乱码久久久v下载方式 | 欧美日韩国产亚洲二区| 国产精品久久视频播放| 亚洲av二区三区四区| av中文乱码字幕在线| 99久久综合精品五月天人人| 久久99热这里只有精品18| 亚洲国产精品久久男人天堂| 亚洲激情在线av|