• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      人臍帶間充質干細胞培養(yǎng)上清對M1型巨噬細胞的影響及作用機制

      2021-03-18 09:35廖威張昌林李田
      新醫(yī)學 2021年2期
      關鍵詞:極化高糖試劑盒

      廖威?張昌林?李田

      【摘要】目的 通過研究人臍帶間充質干細胞(hucMSCs)培養(yǎng)上清對M1型巨噬細胞的影響,探討其作用機制。方法 選擇小鼠單核巨噬細胞白血病細胞系(RAW264.7)巨噬細胞,將其種植于6孔板中,待匯合度約70%時進行處理。配制含50%hucMSCs培養(yǎng)上清的高糖DMEM條件培養(yǎng)基(CM)。巨噬細胞分成3組,blank組用2 ml高糖DMEM培養(yǎng)基培養(yǎng)24 h后更換2 ml高糖DMEM培養(yǎng)基培養(yǎng)24 h,DMEM組用2 ml含200 ng/ml脂多糖(LPS)的高糖DMEM培養(yǎng)基刺激24 h后更換2 ml高糖DMEM培養(yǎng)基培養(yǎng)24 h,CM組用2 ml含200 ng/ml LPS的高糖DMEM培養(yǎng)基刺激24 h后更換2 ml CM培養(yǎng)24 h。收集各組培養(yǎng)上清和巨噬細胞進行后續(xù)實驗。利用PKH67染色劑進行CM中含細胞膜的成分染色(綠),DAPI染色劑進行巨噬細胞胞核染色(藍),通過熒光顯微鏡觀察巨噬細胞吞噬hucMSCs-CM中含細胞膜成分的情況。應用實時熒光定量PCR(RT-qPCR)和流式細胞多因子分析技術分析促炎因子TNF-α和抗炎因子IL-10表達水平的改變。應用流式細胞術鑒定經處理后巨噬細胞表型。結果 在hucMSCs上清中,熒光顯微鏡下觀察到RAW264.7吞噬CM中膜性成分且數(shù)量隨時間增加而增加。在巨噬細胞極化實驗中,RT-qPCR結果提示CM組抗炎因子IL-10 mRNA相對表達量低于DMEM組,且促炎因子TNF-α mRNA相對表達量低于blank組和DMEM組(P均< 0.05)。流式細胞術多因子分析結果中,CM組抗炎因子IL-10水平低于DMEM組,促炎因子TNF-α水平低于blank組和DMEM組(P均< 0.05)。流式細胞術鑒定結果中,CM處理的RAW264.7中的F4/80+CD206+CD86-巨噬細胞即M2型巨噬細胞比例高于DMEM組。結論 巨噬細胞可能通過吞噬hucMSCs培養(yǎng)上清中膜性成分誘導M1型巨噬細胞向M2型巨噬細胞極化,從而促進抗炎反應。

      【關鍵詞】人臍帶間充質干細胞;巨噬細胞極化;炎癥;腫瘤壞死因子-α;白介素-10

      Effect and mechanism of human umbilical cord mesenchymal stem cell culture supernatant on M1-type macrophages Liao Wei, Zhang Changlin, Li Tian. Department of Gynecology, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China

      Corresponding author, Li Tian, E-mail: sandylitian@ 126. com

      【Abstract】Objective To evaluate the effect and investigate the mechanism of human umbilical cord mesenchymal stem cells (hucMSCs) culture supernatant on M1-type macrophages. Methods The mouse macrophage-like cell line RAW264.7 was used as the macrophage cell line, planted in the 6-well plate and treated when the confluence reached approximately 70%. Conditional DMEM medium (CM) containing 50% hucMSCs culture supernatant was prepared. Macrophages were divided into three groups. In the blank group, the cells were cultured in 2 ml DMEM medium for 24 h and then cultured in 2 ml fresh DMEM medium for 24 h. In the DMEM group, the cells were cultured in 2 ml DMEM medium containing 200 ng/ml LPS for 24 h, followed by 24-h culture in 2 ml fresh DMEM medium. In the CM group, the cells were cultured in 2 ml DMEM medium containing 200 ng/ml LPS for 24 h and subsequently cultured in 2 ml fresh CM medium for 24 h. The culture medium and macrophages from each group were gathered for subsequent experiments. Substances having cell membrane components in CM were subject to PKH67 staining (green) and RAW264 with DAPI staining (blue). The phagocytosis of cell membrane components in hucMSCs-CM by macrophages was observed under fluorescence microscope. The expression levels of pro-inflammatory factor TNF-α and anti-inflammatory factor IL-10 were analyzed by real-time fluorescence quantitative polymerase chain reaction (RT-qPCR) and flow cytometry multi-factor analysis. The phenotype of macrophages was identified by flow cytometry. Results Fluorescence microscopy revealed that RAW264.7 phagocytosis substances containing cell membrane components in the CM group were increased with time in the hucMSCs supernanant. In macrophage polarization experiment, RT-qPCR indicated that the expression level of anti-inflammatory factor interleukin-10 (IL-10) mRNA in the CM group was significantly lower than that in the DMEM group, and the expression level of tumor necrosis factor-α (TNF-α) mRNA, a proinflammatory mediator, was significantly lower compared with those in the blank and DMEM groups (all P < 0.05). Flow cytometry multi-factor analysis showed that the expression level of anti-inflammatory factor IL-10 in the CM group was remarkably lower than that in the DMEM group, and the expression level of pro-inflammatory factor TNF-α mRNA was significantly lower than those in the blank and DMEM groups (all P < 0.05). Flow cytometry analysis showed that the proportion of F4/80+CD206+CD86- type M2 macrophages in the CM group was higher compared with that in the DMEM group. Conclusion Macrophages may induce the polarization of M1-type macrophages into M2-type macrophages by phagocytosis of the membranous components in the hucMSCs culture supernanant, thereby promoting the anti-inflammatory response.

      【Key words】Human umbilical cord mesenchymal stem cells (hucMSCs);Macrophage polarization;

      Inflammation;Tumor necrosis factor-α (TNF-α);Interleukin-10(IL-10)

      巨噬細胞源于單核細胞,屬于吞噬細胞的一種,介入非特異性免疫和特異性免疫2個免疫過程。巨噬細胞因外界刺激因素的不同而發(fā)生不同表型改變或轉化。如脂多糖(LPS)和TNF-α可以刺激巨噬細胞向M1型巨噬細胞方向極化,即經典活化型;IL-4和IL-13可以誘導巨噬細胞向M2型巨噬細胞極化即替代活化型,兩者生物學功能有著完全不同的作用[1]。一般認為M1型巨噬細胞具有促炎作用,巨噬細胞過度的M1型極化將會引起過度的炎癥反應,從而導致組織愈合不良甚至惡化;但也會出現(xiàn)良好的結局,如抗腫瘤作用[2-3]。

      M2型巨噬細胞引起的抗炎作用,可促進組織修復[4]。在這些作用中,大家尤其關注M2巨噬細胞的抗炎作用,已有多項研究通過其抗炎作用達到治療疾病的目的,如肝臟病、腎臟病等[5]。間充質干細胞(MSC)因為來源簡單方便,且擁有低免疫原性和調節(jié)炎癥反應的特性,成為了以細胞為基礎的異體移植治療方法的研究熱點[6]。MSC可能主要通過其強大的免疫調節(jié)作用改善局部炎癥環(huán)境,從而促進組織修復[7]。有研究者指出,MSC通過細胞外囊泡途徑起到各種效應如炎癥環(huán)境改變等和治療各種疾病[8-10]。巨噬細胞是否可以通過吞噬人臍帶間充質干細胞(hucMSCs)培養(yǎng)上清里的某些成分如膜性成分,從而影響巨噬細胞極化趨勢和促進抗炎反應?目前仍未有定論。為此,本研究探究巨噬細胞是否通過吞噬hucMSCs培養(yǎng)上清組成的條件培養(yǎng)基(CM)中的膜性成分,誘導巨噬細胞發(fā)生M1型向M2型極化,為hucMSCs在臨床應用上提供基礎實驗證據(jù)。

      材料與方法

      一、細胞來源

      hucMSCs購自博雅(Boyalife)干細胞公司。巨噬細胞RAW264.7由中山大學附屬腫瘤醫(yī)院鄧務國課題組贈與。

      二、主要試劑

      包括DMEM培養(yǎng)基、DMEM-F12培養(yǎng)基(Gibco),MSC專用血清(BI),胎牛血清(FBS,廣州信欣生物科技公司),青鏈霉素雙抗溶液(Gibco),Trizol RNA提取試劑盒、逆轉錄試劑盒、實時熒光定量PCR(RT-qPCR)試劑盒(北京天根生物科技公司),LEGEND plexTM Multi-Analyte Flow Assay Kit流式多因子分析試劑盒和炎癥因子TNF-α、IL-10相關抗體,流式細胞術試劑盒、巨噬細胞相關抗體F4/80-PE、CD206-APC和CD86-FITC(北京達科為公司),DAPI即用型染色溶液(索萊寶),PKH67染色試劑盒、脂多糖(廣州賽國生物科技有限公司)。

      三、方 法

      1. hucMSCs-CM制備

      待第3~5代的hucMSCs匯合度約80%時,棄培養(yǎng)基,用磷酸鹽緩沖液(PBS)清洗2遍,加入無血清DMEM培養(yǎng)基饑餓培養(yǎng)48 h,收集培養(yǎng)上清經4℃、3000×g離心1 h,將離心的上清移至新離心管。配制含50%培養(yǎng)上清的CM:離心的上清和等體積DMEM培養(yǎng)基混勻,加入10%FBS和1%青鏈霉素雙抗溶液,-80℃凍存。需用時,4℃解凍。

      2. RAW264.7細胞極化實驗

      2.1 RAW264.7細胞吞噬含細胞膜成分實驗

      20 μl PKH67染色溶液加入10 ml CM(不含F(xiàn)BS)配制成工作液,4℃保存?zhèn)溆?。將RAW264.7巨噬細胞種植于培養(yǎng)皿中,待匯合度達到約70%時進行處理。更換成2 ml含100 ng/ml LPS常規(guī)培養(yǎng)基24 h后,PBS清洗2次,加入2 ml經PKH67標記的CM繼續(xù)培養(yǎng)。在第1、2、3、4 h行熒光顯微鏡觀察。

      2.2巨噬細胞RAW264.7處理

      用含10%FBS、1%青鏈霉素雙抗的DMEM培養(yǎng)基培養(yǎng)擴增。將RAW264.7巨噬細胞種植于6孔板中,待匯合度達到約60% ~ 70%時進行處理。將巨噬細胞分成3組,組別:blank組用2 ml常規(guī)配制高糖DMEM培養(yǎng)基培養(yǎng)24 h后棄培養(yǎng)基,PBS清洗2次,添加2 ml高糖DMEM培養(yǎng)基培養(yǎng)24 h,DMEM組用2 ml含200 ng/ml LPS的高糖DMEM培養(yǎng)基刺激24 h后,PSB清洗2次,添加2 ml常規(guī)配制高糖DMEM培養(yǎng)基培養(yǎng)24 h,CM組用2 ml含200 ng/ml LPS的高糖DMEM培養(yǎng)基刺激24 h后,PBS清洗2次,添加2 ml CM培養(yǎng)24 h。

      收集3組培養(yǎng)的上清和RAW264.7細胞進行后續(xù)實驗。

      2.3細胞炎癥因子mRNA表達量

      分別按Trizol RNA提取試劑盒說明書、逆轉錄試劑盒說明書、RT-qPCR試劑盒說明書提取經處理的RAW264.7細胞的總RNA,進行逆轉錄和RT-qPCR實驗。引物序列見表1。

      2.4 流式多因子分析術檢測上清炎癥因子

      按Multi-Analyte Flow Assay Kit流式多因子分析試劑盒說明書檢測上述組別的RAW264.7細胞上清抗炎因子IL-10和促炎因子TNF-α水平。

      2.5 RAW264.7細胞表型鑒定

      將RAW264.7巨噬細胞種植于6孔板中,待匯合度達到約70%時進行處理。其中LPS組更換成2 ml含200 ng/ml LPS的DMEM培養(yǎng)基培養(yǎng)24 h后,PBS清洗2次,加入2 ml含200 ng/ml LPS的DMEM培養(yǎng)基繼續(xù)培養(yǎng)24 h;CM組更換成2 ml含200 ng/ml LPS的DMEM培養(yǎng)基培養(yǎng)24 h后,PBS清洗2次,加入2 ml CM培養(yǎng)24 h。按流式細胞術試劑盒說明書將各組的RAW264.7細胞制作成樣品并上機檢測。

      四、統(tǒng)計學處理

      采用SPSS 25.0分析實驗數(shù)據(jù),正態(tài)分布的計量資料以表示,2組間的比較采用兩獨立樣本t檢驗,多個樣本均數(shù)采用單因素方差分析,兩兩比較采用Tukey法。α= 0.05。

      結果

      一、RAW264.7細胞吞噬hucMSCs條件培養(yǎng)基中膜性成分

      熒光顯微鏡下,CM處理1 h時,細胞核染色劑DAPI標記巨噬細胞RAW264.7細胞核(藍色,藍箭頭)上未黏附細胞膜染色劑PKH67標記的膜性成分(綠色,綠箭頭);2 h時,RAW264.7胞核上開始有膜性成分黏附;至3、4 h時,巨噬細胞RAW264.7胞核上膜性成分黏附數(shù)量明顯增加,見圖1。

      二、RAW264.7細胞極化

      RT-qPCR顯示,與blank組相比,CM組的IL-10 mRNA相對表達量(t = 6.230,P = 0.003)、TNF-α mRNA相對表達量(t = 12.250,P < 0.001)均較低;與blank組相比,DMEM組的IL-10 mRNA相對表達量較低(t = 10.144,P < 0.001),TNF-α的mRNA相對表達量較高(t = 14.011,P < 0.001);與DMEM組相比,CM組的IL-10 mRNA相對表達量較高(t = 16.620,P < 0.001),TNF-α mRNA相對表達量較低(t = 15.386,P < 0.001),見圖2A。流式細胞術多因子分析檢測結果顯示,3組IL-10水平比較差異有統(tǒng)計學意義(F = 104.006,P < 0.001),其中DMEM組低于CM組低(P = 0.002),CM組低于blank組(P < 0.001),DMEM組低于blank組(P < 0.001);3組TNF-α水平比較差異亦有統(tǒng)計學意義(F = 165.251,P < 0.001),其中DMEM組高于CM組(P < 0.001),CM組高于blank組(P = 0.001),DMEM組高于blank組(P < 0.001),見圖2B。流式細胞術細胞鑒定結果顯示,LPS組中F4/80+CD86+CD206-細胞(M1)占99.21%、F4/80+CD86-CD206+細胞(M2)占0.01%,CM組中F4/80+CD86+CD206-細胞(M1)占63.23%、F4/80+CD86-CD206+細胞(M2)占20.92%,見圖2C。

      討論

      MSC可以通過其強大的免疫調節(jié)作用誘導巨噬細胞形成具有抗炎作用的M2型巨噬細胞[11]。多項研究應用RAW264.7巨噬細胞成功制備炎癥模型[12-14]。因此本研究采用RAW264.7細胞作為研究對象,通過觀察RAW264.7細胞經過處理前后細胞表型和炎癥因子的改變,從而判斷巨噬細胞極性的改變。

      RT-qPCR結果中,CM組和DMEM組中IL-10 mRNA相對表達量均下降,說明200 ng/ml LPS刺激RAW264.7細胞24 h后,可以下調RAW264.7細胞表達抗炎因子IL-10,但CM組和DMEM組對比,CM組IL-10 mRNA相對表達量低于DMEM組,說明LPS可以促進炎癥反應,而hucMSCs培養(yǎng)上清可以起到抗炎作用,將炎癥環(huán)境向M2巨噬細胞的炎癥環(huán)境轉換。

      流式多因子分析技術檢測結果可見CM組和DMEM組分泌的IL-10水平趨勢和RT-qPCR相應結果的趨勢一致,IL-10分泌均減少但CM組低于DMEM組。對于TNF-α水平,CM組低于DMEM組。由此,流式多因子分析結果進一步驗證hucMSCs培養(yǎng)上清的抗炎作用。

      流式細胞術鑒定結果中,LPS組的大部分RAW264.7細胞表面抗原表達F4/80+CD86+CD206-,即M1型巨噬細胞,而極少表達F4/80+CD86-CD206+的細胞,即基本沒有M2型巨噬細胞。CM組中,細胞表面抗原為F4/80+CD86+CD206-細胞占63.23%,F(xiàn)4/80+CD86-CD206+細胞占20.92%,說明含50% hucMSCs培養(yǎng)上清的CM誘導趨于M1型的RAW264.7向M2型趨勢極化。

      李志偉等[15]應用骨髓MSCs培養(yǎng)液成功誘導RAW264.7細胞向M2型極化,但該文中IL-10 mRNA表達量是增加的,de Witte等[16]研究結果中IL-10表達量也是增加。但本研究中IL-10并未體現(xiàn)出明顯增加效果,可能與LPS處理時間、濃度和hucMSCs-CM處理時間和濃度有關,另外不同來源的間充質干細胞,其作用也有一定差異性[17]。雖然IL-10的表達稍有不同,但其趨勢最終都體現(xiàn)出M2型巨噬細胞的抗炎作用。另外,hucMSCs培養(yǎng)上清引起巨噬細胞發(fā)生極化改變的具體成分是活性生長因子或細胞外囊泡(EV)或兩者共同作用。其中EV的作用受到科研人員的關注。本研究在RAW264.7巨噬細胞吞噬CM中膜性成分實驗中,通過PKH67標記CM中的膜性成分,可見在1 h時,DAPI染的RAW264.7胞核未見PKH67標記的膜性成分黏附。隨著時間增加,RAW264.7胞核有越來越多的膜性成分黏附。說明RAW264.7吞噬了CM中的膜性成分并呈現(xiàn)時間依賴性。顯然,巨噬細胞具有吞噬功能。也有學者報道RAW264.7可以吞噬藥物[18]。因此筆者推測其也可能吞噬hucMSCs CM中的膜性成分。Kim等[19]證明了巨噬細胞可以吞噬細胞來源的外泌體,并呈時間、濃度依賴性。所以引起M1型巨噬細胞向M2型巨噬細胞極化的改變可能是因M1型巨噬細胞吞噬了hucMSCs-CM中的膜性成分,該膜性成分有可能是EV。EV按其直徑從小到大可分為外泌體、細胞微泡和凋亡小體[20]。其中外泌體最受關注。外泌體可以存在于原核生物和真核生物,具有與母系細胞相似的生物學功能[21]。而且將外泌體注射至體內,不引起溶血、過敏等不良反應,具有更低的免疫原性[22]。也有研究顯示外泌體可以改變巨噬細胞極化狀態(tài)[20]。

      綜上所述,巨噬細胞可能通過吞噬hucMSCs培養(yǎng)上清中的膜性成分從M1型狀態(tài)向M2型狀態(tài)極化,起到抗炎作用。但本研究并沒有證實膜性成分和更深一步去研究具體機制,是研究的不足,今后將開展更進一步的研究探索其作用機制。

      參 考 文 獻

      [1] Funes SC, Rios M, Escobar-Vera J, Kalergis AM. Implications of macrophage polarization in autoimmunity. Immunology, 2018, 154(2):186-195.

      [2] Seraphim PM, Leal EC, Moura J, Gon?alves P, Gon?alves JP, Carvalho E. Lack of lymphocytes impairs macrophage polarization and angiogenesis in diabetic wound healing. Life Sci, 2020, 254:117813.

      [3] Eom YW, Akter R, Li W, Lee S, Hwang S, Kim J, Cho MY. M1 macrophages promote trail expression in adipose tissue-derived stem cells, which suppresses colitis-associated colon cancer by increasing apoptosis of CD133+ cancer stem cells and decreasing m2 macrophage population. Int J Mol Sci, 2020, 21(11):3887.

      [4] Zhang S, Chuah SJ, Lai RC, Hui JHP, Lim SK, Toh WS. MSC exosomes mediate cartilage repair by enhancing proliferation, attenuating apoptosis and modulating immune reactivity. Biomaterials, 2018, 156:16-27.

      [5] Chen T, Cao Q, Wang Y, Harris DCH. M2 macrophages in kidney disease: biology, therapies, and perspectives. Kidney Int, 2019, 95(4):760-773.

      [6] Galipeau J, Sensébé L. Mesenchymal stromal cells: clinical challenges and therapeutic opportunities. Cell Stem Cell, 2018, 22(6):824-833.

      [7] Klimczak A, Kozlowska U. Mesenchymal stromal cells and tissue-specific progenitor cells: their role in tissue homeostasis. Stem Cells Int, 2016, 2016:4285215.

      [8] Fang SB, Zhang HY, Meng XC, Wang C, He BX, Peng YQ, Xu ZB, Fan XL, Wu ZJ, Wu ZC, Zheng SG, Fu QL. Small extracellular vesicles derived from human MSCs prevent allergic airway inflammation via immunomodulation on pulmonary macrophages. Cell Death Dis, 2020, 11(6):409.

      [9] Danieli P, Malpasso G, Ciuffreda MC, Cervio E, Calvillo L, Copes F, Pisano F, Mura M, Kleijn L, de Boer RA, Viarengo G, Rosti V, Spinillo A, Roccio M, Gnecchi M. Conditioned medium from human amniotic mesenchymal stromal cells limits infarct size and enhances angiogenesis. Stem Cells Transl Med, 2015, 4(5):448-458.

      [10] Guo L, Lai P, Wang Y, Huang T, Chen X, Geng S, Huang X, Luo C, Wu S, Ling W, Huang L, Du X, Weng J. Extracellular vesicles derived from mesenchymal stem cells prevent skin fibrosis in the cGVHD mouse model by suppressing the activation of macrophages and B cells immune response. Int Immunopharmacol, 2020, 84:106541.

      [11] Heo JS, Choi Y, Kim HO. Adipose-derived mesenchymal stem cells promote m2 macrophage phenotype through exosomes. Stem Cells Int, 2019, 2019:7921760.

      [12] Miao X, Leng X, Zhang Q. The current state of nanoparticle-induced macrophage polarization and reprogramming research. Int J Mol Sci, 2017, 18(2):336.

      [13] Essandoh K, Li Y, Huo J, Fan GC. Mirna-mediated macr-ophage polarization and its potential role in the regulation of inflammatory response. Shock, 2016 , 46(2):122-131.

      [14] Bardi GT, Smith MA, Hood JL. Melanoma exosomes promote mixed M1 and M2 macrophage polarization. Cytokine, 2018, 105:63-72.

      [15] 李志偉,周號悅,劉湘粵,何漪,丁小鳳,胡靈玉. 骨髓間充質干細胞培養(yǎng)液促進STAT3磷酸化誘導Raw264.7細胞向M2型極化. 激光生物學報,2020,29(2):153-160.

      [16] de Witte SFH, Luk F, Sierra Parraga JM, Gargesha M, Merino A, Korevaar SS, Shankar AS, O'Flynn L, Elliman SJ, Roy D, Betjes MGH, Newsome PN, Baan CC, Hoogduijn MJ. Immunomodulation by therapeutic mesenchymal stromal cells(MSC) is triggered through phagocytosis of msc by monocytic cells. Stem Cells, 2018, 36(4):602-615.

      [17] Yi X, Chen F, Liu F, Peng Q, Li Y, Li S, Du J, Gao Y, Wang Y. Comparative separation methods and biological characteristics of human placental and umbilical cord mesenchymal stem cells in serum-free culture conditions. Stem Cell Res Ther, 2020, 11(1):183.

      [18] 秦露平,呂杰,李建芳,謝良駿,蔣永濼,程木華. 吡格列酮對A549肺癌細胞及RAW264.7巨噬細胞18F-FDG攝取影響的實驗研究. 新醫(yī)學,2019,50(3):188-191.

      [19] Kim H, Wang SY, Kwak G, Yang Y, Kwon IC, Kim SH. Exosome-guided phenotypic switch of M1 to M2 macrophages for cutaneous wound healing. Adv Sci (Weinh), 2019, 6(20):1900513.

      [20] Tong F, Mao X, Zhang S, Xie H, Yan B, Wang B, Sun J, Wei L. HPV + HNSCC-derived exosomal miR-9 induces macrophage M1 polarization and increases tumor radiosensitivity. Cancer Lett, 2020, 478:34-44.

      [21] Yá?ez-Mó M, Siljander PR, Andreu Z, Zavec AB, Borràs FE, Buzas EI, Buzas K, Casal E, Cappello F, Carvalho J, Colás E, Cordeiro-da Silva A, Fais S, Falcon-Perez JM, Ghobrial IM, Giebel B, Gimona M, Graner M, Gursel I, Gursel M, Heegaard NH, Hendrix A, Kierulf P, Kokubun K, Kosanovic M, Kralj-Iglic V, Kr?mer-Albers EM, Laitinen S, L?sser C, Lener T, Ligeti E, Linē A, Lipps G, Llorente A, L?tvall J, Man?ek-Keber M, Marcilla A, Mittelbrunn M, Nazarenko I, Nolte-'t Hoen EN, Nyman TA, O'Driscoll L, Olivan M, Oliveira C, Pállinger ?, Del Portillo HA, Reventós J, Rigau M, Rohde E, Sammar M, Sánchez-Madrid F, Santarém N, Schallmoser K, Ostenfeld MS, Stoorvogel W, Stukelj R, Van der Grein SG, Vasconcelos MH, Wauben MH, De Wever O. Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles, 2015, 4:27066.

      [22] Sun L, Xu R, Sun X, Duan Y, Han Y, Zhao Y, Qian H, Zhu W, Xu W. Safety evaluation of exosomes derived from human umbilical cord mesenchymal stromal cell. Cytotherapy, 2016, 18(3):413-422.

      (收稿日期:2020-08-12)

      (本文編輯:林燕薇)

      猜你喜歡
      極化高糖試劑盒
      活躍在高考中的一個恒等式
      為什么確診新冠肺炎需要核酸檢測試劑盒?
      一次檢測多個基因,讓肺癌診療更精準
      極低場核磁共振成像系統(tǒng)中預極化線圈的設計
      極低場核磁共振成像系統(tǒng)中預極化線圈的設計
      18F—FDG配套試劑盒的開發(fā)
      極化恒等式在向量數(shù)量積中的運用
      孕期高脂高糖飲食與兒童多動癥有關
      葡萄籽提取物對高糖誘導系膜細胞肥大的抑制研究
      “高糖”飲食或誘發(fā)癌癥
      诸暨市| 鹿泉市| 资阳市| 海安县| 临颍县| 富民县| 车致| 星子县| 屏东市| 莱州市| 景宁| 阜康市| 衡南县| 丰都县| 大余县| 龙岩市| 沁阳市| 包头市| 大化| 隆子县| 淮安市| 天祝| 库车县| 大新县| 应城市| 德清县| 磐安县| 海丰县| 南乐县| 昔阳县| 六盘水市| 绥中县| 贡嘎县| 江山市| 西丰县| 江达县| 昭觉县| 乌鲁木齐市| 宁波市| 上虞市| 独山县|