白重九,王健波,董雯怡,劉 秀,劉恩科**
長期免耕旱作對冬小麥生長季土壤剖面有機碳含量的影響*
白重九1,王健波2,董雯怡1,劉 秀1,劉恩科1**
(1. 中國農(nóng)業(yè)科學院農(nóng)業(yè)環(huán)境與可持續(xù)發(fā)展研究所,北京 100081;2. 北京市延慶區(qū)農(nóng)業(yè)農(nóng)村局,北京 100142)
依托21a長期免耕秸稈還田定位試驗,探究長期免耕加秸稈還田的田間管理方式對冬小麥生長季0?60cm土層內(nèi)土壤有機碳(SOC)和土壤活性有機碳(MBC、POC、DOC)的影響。試驗共設(shè)長期免耕秸稈還田(NT)與常規(guī)耕作(CT)兩種耕作模式,分析0?60cm土層內(nèi)土壤總有機碳(SOC)、土壤微生物量碳(MBC)、土壤顆粒有機碳(POC)、土壤可溶性碳(DOC)含量的變化。結(jié)果表明,在0?20cm土層,NT處理SOC含量顯著高于CT處理,其中0?5cm和5?10cm土層平均SOC含量分別增加了81.2 %和52.9 %,冬小麥不同生育期內(nèi)土壤SOC含量變化不顯著;在0?30cm土層內(nèi),與CT處理相比,NT顯著改變了土壤MBC、POC及DOC在播種前、越冬前、拔節(jié)期、開花期和成熟期5個生育階段的分布情況,且顯著提高了5個生育階段內(nèi)土壤活性有機碳的含量(P<0.05),其中0?5cm土層內(nèi),土壤MBC、POC及DOC含量在各個時期相較于CT處理分別增長60.8%~161.4%、71.8%~141.1%和21.9%~104.4%。0?60cm土層內(nèi),兩種耕作方式下的SOC、MBC、POC、DOC均隨著土壤深度的增大呈下降趨勢。說明長期免耕可提高耕作層土壤有機碳含量和小麥生長季活性有機碳的水平,這為旱地土壤有機碳的高效固存提供了理論依據(jù)。
土壤有機碳;土壤活性有機碳;免耕秸稈還田;冬小麥;北方旱地
北方旱地農(nóng)田是冬小麥的主要作業(yè)區(qū),其高產(chǎn)穩(wěn)產(chǎn)對維持糧食安全及農(nóng)業(yè)可持續(xù)發(fā)展至關(guān)重要[1]。傳統(tǒng)的土壤翻耕農(nóng)田管理措施會使土壤結(jié)構(gòu)受到破壞,土壤理化性質(zhì)受到強制改變,如土壤有機碳降低,土壤酸化等[2?3]。為緩解人類活動對農(nóng)田系統(tǒng)帶來的壓力,北方旱區(qū)大力推廣保護性耕作,如免耕、少耕,以此避免土壤受到過多擾動,保護土壤肥力[4?5]。因此,研究長期免耕對土壤有機碳及其各組分在不同土壤深度和不同生長發(fā)育時期的影響有利于了解和提高旱地土壤有機碳含量,對土壤碳庫管理具有重要的生產(chǎn)指導意義。
耕作通常會通過影響土壤有機碳的形成和分解過程而導致土壤有機碳的急劇變化[6?7]。包括作物殘留、施肥、灌溉和耕作制度在內(nèi)的農(nóng)業(yè)實踐是影響農(nóng)田土壤有機碳動態(tài)的最重要因素[6,8]。Abbas等對小麥種植引起的深層土壤(0?60cm)碳分布的變化觀察10a后得出,與傳統(tǒng)的覆蓋耕作相比,免耕條件下的土壤有機碳含量高出14%,并且認為通過免耕與秸稈覆蓋結(jié)合,較低的碳損失可以減輕耕作帶來的與全球變暖有關(guān)的風險[9]。張恒恒等基于北方旱區(qū)20a保護性耕作定點試驗發(fā)現(xiàn),與傳統(tǒng)耕作相比,長期免耕秸稈還田可提高農(nóng)田土壤的固碳量10.5%,減排大氣溫室氣體5.1%,對改善北方旱區(qū)土壤碳庫儲量起到促進作用[10]。
土壤有機碳因受到土壤自身特性及環(huán)境復雜性的限制,有時不能及時并迅速地對土壤管理方式改變作出回應(yīng)[11],一般情況下,微生物量碳、顆粒有機碳及可溶性有機碳極易被微生物利用,并對土壤環(huán)境變化響應(yīng)較敏感,比如易受土壤耕作方式的影響,因此,可作為反應(yīng)土壤有機碳微小變化的指標[12]。國內(nèi)外學者多傾向于將微生物量碳作為土壤生物活性和整體質(zhì)量狀況指標[13],顆粒有機碳作為有機碳周轉(zhuǎn)情況指標[14],可溶性碳含量作為土壤肥力的指標以此綜合評價土壤養(yǎng)分和質(zhì)量狀況[15]。多項研究表明了免耕秸稈還田下土壤活性有機碳庫的變化,表現(xiàn)為免耕秸稈還田通過避免擾動土壤結(jié)構(gòu),不僅增加土壤水分、通透性、根際微生物多樣性,而且提高土壤微生物量碳、顆粒有機碳和可溶性碳的含量[16?17]。目前有關(guān)長期不同耕作方法對土壤有機碳的研究多集中于土壤碳動態(tài)及碳組分、土壤呼吸、分布特征等基礎(chǔ)研究上,而其對土壤有機碳及其組分的長期影響及各生育期變化鮮有報道。長期免耕條件下土壤有機碳及活性有機碳庫在不同生育期的變化,土壤剖面的有機碳特征變化情況,旱區(qū)免耕+秸稈還田是否提高土壤有機碳及其組分含量,繼而提升旱地土壤肥力等,目前關(guān)于這些方面的研究依然較缺乏。本研究基于1992年開始的長期免耕定位試驗,分析長期免耕條件下不同生育期及不同土層土壤有機碳及其各組分含量變化,以期為旱區(qū)農(nóng)田碳庫可持續(xù)管理提供一定依據(jù)。
長期定位試驗點位于山西省臨汾市堯都區(qū)(111°62′89″ E,36°02′96″ N,海拔550m),地處半干旱、半濕潤季風氣候區(qū),年平均氣溫10.7℃,無霜期180d,年均降水量為555.0mm,多集中在7?9月。試驗地土壤有機質(zhì)含量低,略顯堿性,易受頻繁的干濕交替氣候影響,降水少的季節(jié)會加重旱情。該長期定位試驗前(1992年)0?20cm土壤理化性質(zhì)如表1。
表1 土壤基本理化性質(zhì)(1992年)
采用冬小麥品種臨汾225,每年9月底播種,播種量為225kg·hm?2,6月中旬收獲,休閑期使用除草劑控制雜草。肥料在冬小麥播種時一次性施入,施肥量為以尿素(N)150kg·hm?2、磷酸氫二銨(P2O5)140kg·hm?2和氯化鉀(K2O)62kg·hm?2。試驗始于1992年,采用隨機區(qū)組設(shè)計,小區(qū)長×寬為50m×6.6m,共330m2。試驗田設(shè)有常規(guī)耕作(CT,Conventional tillage)和免耕秸稈還田(NT,No tillage)兩個處理,每處理3次重復,具體實施見表2。
表2 試驗處理具體實施方案
長期定位試驗20a后,于2012年和2013年分別在冬小麥播種期(9月27日和10月3日)、冬前(12月10日和12月15日)、拔節(jié)期(3月27日和4月5日)、開花期(4月28日和5月5日)和成熟期(6月6日和6月10日),每個小區(qū)內(nèi)用直徑為5cm的土鉆按照“M”五點取樣法分別在0?5、5?10、10?20、20?30、30?40、40?50、50?60cm共7個土壤層次進行取樣,每個處理3次重復。供測土樣去除根系與石塊,風干后分別測定土壤有機碳(SOC)含量、微生物量碳(MBC)含量、顆粒性有機碳(POC)含量及可溶性有機碳(DOC)含量。
SOC測定采用重鉻酸鉀外熱法;土壤MBC采用氯仿熏蒸K2SO4浸提法測定;土壤DOC測定按水土比2﹕1用去離子水震蕩浸提(高速離心20min,轉(zhuǎn)速為4000r·min?1),然后用TOC-VCPH自動分析儀測定浸提液中有機碳含量;土壤POC分離參照Cambardella(1992)的方法[18],稱取25g過100目篩的風干土樣混合75mL六偏磷酸鈉溶液(5g·L? 1)以140r·min?1的速度震蕩15h后,將混合土樣過53μm篩并用蒸餾水洗沖至滲漏液澄清,收集篩上的殘留物用45℃烘干48h后過0.25mm 篩,最后用元素分析儀測定POC含量。
數(shù)據(jù)處理和統(tǒng)計分析采用微軟Excel 2016、SPSS 22.0和OriginPro 2020軟件。多變量比較差異顯著性采用最小顯著差法(LSD)。
由圖1可知,兩種耕作方式下不同生育期的土壤有機碳(SOC)含量均表現(xiàn)為隨土層深度的增加不斷減小,隨生育期變化不大的特點。耕作方式對0?10cm 土層SOC含量影響最為顯著(P<0.05),其它土層差異均不顯著。在冬小麥各個生育期,NT處理與CT相比,0?5cm和5?10cm土層平均SOC含量分別增加了81.2%和52.9%。10?20cm土層內(nèi),CT處理中SOC含量與表層(0?5cm)差異不大,各生育期的下降范圍在6.7%%~9.9%,而NT處理SOC含量明顯下降,僅為表層(0?5cm)土壤SOC含量的1/2左右。20cm以下土層中,兩處理SOC含量均逐漸下降,但降幅不大,10?40cm土層CT處理下SOC含量均略大于NT;40?60cm土層,二者SOC含量水平基本相同。隨著冬小麥生育期的推進,雖然0?10cm土層內(nèi)NT處理SOC含量逐漸增加,CT處理SOC含量上下略微波動,但兩種耕作方式下同一土壤層次各個生育期的SOC含量差異均不顯著。可見,耕作方式顯著影響SOC在不同土層中的變化(P<0.05),長期免耕秸稈還田顯著提高了10cm以上土層的SOC含量,但對于同一土層不同生育期SOC含量的影響并不顯著。
注:小寫字母(a)、大寫字母(A)分別表示CT處理和NT處理同一土層不同生育期在0.05水平上的差異性。*、**和***分別表示CT和NT處理在0.05、0.01和0.001水平上顯著差異,ns表示無顯著差異。誤差線為標準誤。下同。
Note:Lowercase and capital letter indicate the difference significance of CT treatment and NT treatment in the same soil layer at different growth period at 0.05 level, respectively. *, ** and *** indicate the difference significance between CT and NT treatments at 0.05, 0.01 and 0.001 level, respectively. The error bar is standard error. The same as below.
由圖 2 可知,兩種耕作方式下,微生物量碳(MBC)含量均隨著土壤層次的加深而減小且速度逐漸變緩。與CT相比,各時期0?5cm土層內(nèi)NT處理的MBC含量高出了60.8%~161.4%,5?10cm土層平均高出29.2%~117.9%(P<0.05),播種前二者差異最大,開花期差異最小。與CT相比,NT處理30cm以下土壤MBC含量略低或者持平,均低于2mg·kg?1。
不論耕作方式或土壤深度如何,MBC含量在播種后增加并在越冬前達到第一個增長高峰,然后在拔節(jié)期降至最低,在開花期達到最大值,但成熟期有所下降。0?10cm土層處,采取CT管理時只有開花階段MBC含量顯著高于其它時期(P<0.05),而NT處理明顯改變了這種分布,5個時期彼此的MBC含量差異被明顯降低。在播種前、越冬期和拔節(jié)期的10?20cm土層,NT處理的MBC含量比CT處理分別高出44.3%、51.0%和48.2%。在20?30cm土層,NT處理的MBC含量比播前和越冬前CT處理分別高出79.7%和112.3%??梢姡髟囼瀸嵤?0a后,不同生育階段和一定土壤深度的MBC含量在免耕秸稈還田措施下受到一定影響。
由圖3可見,顆粒性有機碳(POC)含量在0?60cm土層隨著土壤深度的增加而下降。耕作方式對0?5cm及5?10cm土層POC含量的影響差異顯著(P<0.05),表現(xiàn)為NT>CT,各時期0?5cm土層內(nèi)NT下POC含量高出CT 71.8%~141.1%,5?10cm土層平均高出了19.8%~73.1%,NT對10?60cm POC含量的影響不顯著,相反,CT處理下的POC含量略高于NT。POC含量在兩種耕作方式下均表現(xiàn)為開花期最高,其次是成熟期和越冬前,拔節(jié)期最低。CT處理下0?20cm土層的POC含量表現(xiàn)為只有開花期顯著高于其它時期(P<0.05),且播種前、越冬前、拔節(jié)期和成熟期4個生育期彼此間均無顯著差異,而NT處理改變了這種極端不均現(xiàn)象,表現(xiàn)為0?5cm土層POC含量的生長階段差異性僅體現(xiàn)在拔節(jié)期明顯低于其它時期,5?10cm土層POC含量的生長階段差異性改變則更大,成熟期顯著低于播種前和拔節(jié)期,后兩者顯著低于越冬前和成熟期,10?20cm土層內(nèi)POC含量未體現(xiàn)出一定的生長階段差異性。土壤深度>20cm時,除開花期以外,NT處理下的POC含量略低于CT或持平。
圖4表明,總體上,土壤可溶性有機碳(DOC)含量在兩種耕作方式下均隨著土層加深而緩慢下降。各時期0?5cm土層內(nèi)NT處理下DOC平均含量高出CT處理21.9%~104.4%,5?10cm土層NT較CT高出6.1%~63.9%。從不同生育期的角度看,兩種耕作方式下0?60cm土層內(nèi)DOC含量均在播前最高,且該生育期0?5cm土層內(nèi)DOC含量表現(xiàn)為NT>CT(P<0.05);隨著冬小麥生育期推進,土壤DOC含量均逐漸下降并在拔節(jié)期達到最小值,而后在開花期有所上升,成熟期再次下降(不包括CT處理下的0?10cm土層)。此外,0?10cm土層內(nèi),CT下5個不同生長階段的DOC含量彼此間顯著差異(P<0.05),越冬前DOC含量顯著低于其它時期,而NT處理下則表現(xiàn)為拔節(jié)期顯著低于播種前、越冬前、開花期及成熟期(P<0.05),在其它土層內(nèi)(10?20cm、30?60cm)CT處理與NT相似,拔節(jié)期顯著低于其它時期(P<0.05)??梢?,免耕秸稈還田措施下0?20cm土層內(nèi)DOC含量在不同生長發(fā)育階段受到一定影響。
本研究中,耕作方式顯著影響SOC、MBC、POC和DOC在冬小麥不同生育階段的土壤剖面分布。
與常規(guī)耕作(CT)相比,長期免耕秸稈還田(NT)下表層土壤(0?20cm)SOC及其組分含量更高。長期以來,其它研究也表明長期免耕秸稈還田下表層土壤有機碳和活性碳庫有所增加,這主要歸因于在免耕秸稈還田條件下,土壤結(jié)構(gòu)得到改善,水分徑流和侵蝕減少,有機質(zhì)分解減少,秸稈覆蓋以及土壤較少受到擾動等因素[19?20],且免耕管理可以增加作物在表層土壤的根系生物量,而這部分土壤是土壤有機碳的主要來源[21]。然而也有部分研究結(jié)果相反,表明長期免耕秸稈還田不會提高SOC儲量甚至將使其降低,可能與試驗地的自然條件,如土壤類型、氣候條件、秸稈還田量與耕作方式有關(guān)[22?24]。比如濕冷氣候下的土壤通氣性差會削弱秸稈的分解速率,從而導致免耕秸稈還田對土壤有機碳截存未產(chǎn)生明顯影響[25]。本研究NT處理對20cm以下土層SOC含量影響并不顯著,CT處理下SOC含量略高于NT,這可能是因為翻耕將冬小麥留茬翻入土壤深層并隨時間分解,從而提高土壤20cm以下土層SOC含量[26?27],也有可能因為缺乏新鮮的有機物質(zhì)供應(yīng)會阻礙深層SOC的分解,因為深層土壤微生物的基本能源減少[28]。SOC在冬小麥不同生育期均無顯著差異,與CT相比,NT處理下SOC呈現(xiàn)穩(wěn)步緩慢增長趨勢,這可能是因為免耕秸稈還田下土壤表面溫度的波動較小,微生物活性較常規(guī)耕作較為穩(wěn)定[29],因此土壤SOC礦化進入緩釋過程,而常規(guī)耕作管理下的SOC含量在不同生育期存在起伏變化,這可能是因為冬小麥在進入越冬期后溫度下降,微生物活性、土壤溫濕度等受到影響,使該處理下在越冬期和拔節(jié)期SOC有略微下降。而天氣逐漸回暖后,微生物活性被激活,有機碳才有所上升[30]。相應(yīng)研究也表明,免耕改善土壤理化性質(zhì),促進土壤團聚體形成,降低SOC分解速率,從而提高土壤SOC截存量,這相應(yīng)解釋了免耕條件下土壤表層SOC在不同時期略微升高的現(xiàn)象[31]。
免耕秸稈還田所營造的溫熱、潮濕、受擾動較少的土壤條件能夠顯著提高土壤微生物活性,促進土壤中更多活性有機碳形成并增強活性[32],這可能解釋了本試驗中免耕秸稈還田處理下0?10cm土層MBC、POC、DOC均明顯高于常規(guī)處理的現(xiàn)象。
MBC作為SOC中最活躍的部分直接影響土壤有機碳的礦化分解過程。與CT相比,NT處理顯著影響了不同生育期表層土壤的MBC含量,其變化比SOC更加敏感,這一點與前人研究結(jié)果一致[33]。免耕秸稈還田條件下,土壤擾動較少有利于微生物在土壤表層繁殖、積累,并保護土壤結(jié)構(gòu)[10,34],而翻耕條件下因土壤直接暴露在空氣中,蓄水保墑效果差,加之試驗區(qū)屬旱區(qū),干燥少雨,土壤微生物量減少以及土壤呼吸下降[35],從而使得不同生育期0?10cm土層的MBC含量垂直分布均勻且明顯低于免耕處理。隨著生育期推進到開花期,氣溫回升,微生物活性被激活,因此在越冬前和開花期MBC含量都有增大[30,36]。常規(guī)耕作下,10?40cm土層在開花期的MBC均高于免耕處理,這可能是因為土壤翻耕將冬小麥根茬翻入土壤下層后,隨著作物殘體腐解促進MBC含量升高,并在開花期根際微生物活性被激發(fā),從而在冬小麥開花期達到最大值[37?38],也有學者認為這可能是因為冬小麥的旺盛生長增加了土壤微生物的生物量[39]。越冬前測得的土壤表層MBC含量較高,原因可能是在播種期施肥可能會加速植物殘渣沉積并刺激土壤微生物活動[40]。
POC易受耕作方式影響,在土壤中周轉(zhuǎn)速度較快并能敏感響應(yīng)土壤中植物殘體及根系分布的變化。與CT相比,免耕秸稈還田處理0?10cm土壤下POC在不同生育期有明顯變化。在冬小麥生長發(fā)育過程中,0?10cm土層內(nèi)POC含量先增大后減小而后在開花期達到最大值后繼續(xù)減小,這可能是因為越冬前秸稈在微生物的作用下分解導致POC含量升高,而后在拔節(jié)期作物生長旺盛,POC活性高,作物在進入拔節(jié)期后,根系分泌物增加,微生物活性增強,使得POC含量再次升高[27,41]。而常規(guī)處理下拔節(jié)期0?20cm土層內(nèi)POC含量高于免耕處理,說明免耕秸稈還田改變了POC含量在不同生育期分布不均的現(xiàn)象。
土壤可溶性碳(DOC)作為養(yǎng)分移動的載體在SOC周轉(zhuǎn)過程中扮演重要角色。本研究中,免耕秸稈還田處理下DOC均呈現(xiàn)在播種前期高,拔節(jié)期最低,這可能是因為休閑期后秸稈分解進入土壤中的有機碳未被微生物消耗完全,仍有少量殘余。DOC含量在越冬后有明顯增長可能是因為隨著逐漸進入夏季,氣溫升高,土壤微生物被激活,加速土壤有機質(zhì)礦化從而釋放土壤中DOC[42?43]。當冬小麥生長從拔節(jié)期逐漸過渡到開花期時,能被作物吸收的有機碳比例降低。前人研究也表明,溫濕度、降水、微生物活性和外界有機物質(zhì)輸入量及質(zhì)量都會引起土壤DOC含量隨著季節(jié)變化呈現(xiàn)一定規(guī)律[44?45]。
相關(guān)研究也表明,免耕秸稈還田可以增加活性有機碳庫的含量,進而改善土壤保水性,促進生物活性和養(yǎng)分儲存,從而提高土壤質(zhì)量和生產(chǎn)力,并最終減少土壤侵蝕[39]。常規(guī)耕作和免耕秸稈還田兩個處理10cm以下土壤中活性有機碳庫含量整體上無顯著差異,甚至部分土層常規(guī)耕作下的活性有機碳庫含量略高于免耕秸稈還田處理,這與陳強等的研究結(jié)果并不一致[46?47],可能與免耕秸稈還田時間或土壤類型有關(guān)[48],也可能與翻耕破壞土壤物理結(jié)構(gòu)從而加速了低活性有機碳的分解,以及作物殘留根系隨著翻耕進入土壤深層后緩慢分解,加之活性有機碳庫十分敏感,使得常規(guī)耕作處理下的活性有機碳庫略高于免耕秸稈還田處理[49]。
(1)在0?60cm土層,常規(guī)耕作和免耕秸稈還田兩種耕作方式下SOC、MBC、POC及DOC含量隨著土層深度的增加而減小。免耕秸稈還田改變了土壤SOC、MBC、POC及DOC含量的垂直分布。與常規(guī)耕作相比,免耕秸稈還田處理能夠顯著提高耕作層內(nèi)SOC、MBC、POC及DOC含量,而對耕作層以下SOC、MBC、POC及DOC含量影響不顯著。
(2)免耕秸稈還田下,土壤SOC、MBC、POC及DOC含量在冬小麥不同生育階段均受到影響。免耕秸稈還田處理顯著改變了0?30cm土層MBC、POC及DOC在播種前、越冬前、拔節(jié)期、開花期和成熟期5個生育階段的分布情況,且顯著提高了土壤有機碳及其組分在各生育階段的含量,而對不同生育期30cm以下土層土壤有機碳及其組分的影響不大。
[1] 馬小龍,佘旭,王朝輝,等.旱地冬小麥產(chǎn)量差異與栽培、施肥及主要土壤肥力因素的關(guān)系[J].中國農(nóng)業(yè)科學,2016, 49(24):4757-4771.
Ma X L,Yu X,Wang Z H,et al.Yield variation of winter wheat and its relation to cultivation, fertilization, and main soil fertility factors[J].Scientia Agricultura Sinica,2016, 49(24):4757-4771.(in Chinese)
[2] 齊華,李從鋒,趙明,等.我國北方旱作農(nóng)田保護性耕作發(fā)展與展望[J].作物雜志,2020(2):16-19.
Qi H,Li C F,Zhao M,et al.Developments and prospects of conservation tillage in the dryland of Northern China[J]. Crops,2020(2):16-19.(in Chinese)
[3] 鄭洪兵,齊華,劉武仁,等.玉米農(nóng)田耕層現(xiàn)狀、存在問題及合理耕層構(gòu)建探討[J].耕作與栽培,2014(5):39-42.
Zhneg H B,Qi H,Liu W R,et al.Present and problem of tillage layer of maize cropland and discussion of optimum tillage layer[J].Tillage and Cultivation,2014(5):39-42.(in Chinese)
[4] 魏小波,何文清,黎曉峰,等.農(nóng)田土壤有機碳固定機制及其影響因子研究進展[J].中國農(nóng)業(yè)氣象,2010,31(4): 487-494.
Wei X B,He W Q,Li X F,et al.Review on the mechanism of soil organic carbon sequestration and its influence factors in cropland soils[J].Chinese Journal of Agrometeorology, 2010,31(4):487-494.(in Chinese)
[5] 劉巽浩.泛論我國保護性耕作的現(xiàn)狀與前景[J].農(nóng)業(yè)現(xiàn)代化研究,2008(2):208-212.
Liu X H.Present situation and prospect of conservation tillage in China[J].Research of Agricultural Modernization, 2008(2):208-212.(in Chinese)
[6] Yang Y S,Xie J S,Sheng H,et al.The impact of land use/cover change on storage and quality of soil organic carbon in midsubtropical mountainous area of southern China[J].Journal of Geographical Sciences,2009,19: 49-57.
[7] Lal R,Negassa W,Lorenz K.Carbon and agriculture - carbon sequestration in soils[J].Current Opinion in Environmental Sustainability,2015,15(5423):79-86.
[8] Smith P,Martino D,Cai Z,et al.Greenhouse gas mitigation in agriculture philosophical transactions of the royal society of London[J].Biological Sciences(Series B),2008, 363:789-813.
[9] Abbas F,Hammad H M,Ishaq W,et al.A review of soil carbon dynamics resulting from agricultural practices[J]. Journal of Environmental Management,2020,268:110-319.
[10] 張恒恒,嚴昌榮,張燕卿,等.北方旱區(qū)免耕對農(nóng)田生態(tài)系統(tǒng)固碳與碳平衡的影響[J].農(nóng)業(yè)工程學報,2015,31(4): 240-247.
Zhang H H,Yan C R,Zhang Y Q,et al.Effect of no tillage on carbon sequestration and carbon balance in farming ecosystem in dryland area of northern China[J]. Transactions of the CSAE,2015,31(4):240-247.(in Chinese)
[11] Haynes R J.Labile organic matter fractions as central components of the quality of agricultural soils:an overview[J].Advances in Agronomy,2005,85:221-268.
[12] 區(qū)惠平,何明菊,朱桂玉,等.耕作方式對稻田土壤有機碳轉(zhuǎn)化的影響[J].華南農(nóng)業(yè)大學學報,2011,32(1):1-6.
Qu H P,He M J,Zhu G Y,et al.Effect of tillage on conversion of soil organic carbon in paddy soil[J].Journal of South China Agricultural University,2011,32(1):1-6.(in Chinese)
[13] 張英英,蔡立群,武均,等.不同耕作措施下隴中黃土高原旱作農(nóng)田土壤活性有機碳組分及其與酶活性間的關(guān)系[J].干旱地區(qū)農(nóng)業(yè)研究,2017,35(1):1-7.
Zhang Y Y,Cai L Q,Wu J,et al.Tlle relationship between soil labile organic carbon fractions and the enzyme activities under different tillage measures in the Loess Plateau of central Gansu province[J].Agricultural Research in the Arid Areas,2017,35(1):1-7.(in Chinese)
[14] 武均,蔡立群,張仁陟,等.耕作措施對旱作農(nóng)田土壤顆粒態(tài)有機碳的影響[J].中國生態(tài)農(nóng)業(yè)學報,2018,26(5):728- 736.
Wu J,Cai L Q,Zhang R Z.Distribution of soil particulate organic carbon fractions as affected by tillage practices in dry farmland of the Loess Plateau of central Gansu Province[J].Chinese Journal of Eco-Agriculture,2018,26(5): 728-736.(in Chinese)
[15] 徐明崗,于榮,王伯仁.長期不同施肥下紅壤活性有機質(zhì)與碳庫管理指數(shù)變化[J].土壤學報,2006(5):723-729.
Xu M G,Yu R,Wang B R.Labile organic matter and carbon management index in red soil under long-term fertilization[J].Acta Pedologica Sinica,2006(5):723-729.(in Chinese)
[16] 蔡太義,黃耀威,黃會娟,等.不同年限秸稈覆蓋對土壤活性有機碳和碳庫管理指數(shù)的影響[J].生態(tài)學雜志,2011, 30(9):1962-1968.
Cai T Y,Huang Y W,Huang H J,et al.Soil labile organic carbon and carbon pool management index as affected by different years no-tilling with straw mulching[J].Chinese Journal of Ecology,2011,30(9):1962-1968.(in Chinese)
[17] 祁劍英,馬守田,劉冰洋,等.保護性耕作對土壤有機碳穩(wěn)定化影響的研究進展[J].中國農(nóng)業(yè)大學學報,2020,25(1): 1-9.
Qi J Y,Ma S T,Liu B Y,et al.Advances in effects of conservation tillage on soil organic carbon stabilization[J]. Journal of China Agricultural University,2020,25(1):1-9.(in Chinese)
[18] Cambardella C A,Elliott E T.Particulate soil organic-matter changes across a grassland cultivation sequence[J].Soil Science Society of America Journal,1992,56:777-783.
[19] Kahlon M S,Lal R,Ann-Varughese M.Twenty two years of tillage and mulching impacts on soil physical characteristics and carbon sequestration in Central Ohio[J].Soil & Tillage Research,2013,126:151-158.
[20] Ussiri D A N,Lal R.Long-term tillage effects on soil carbon storage and carbon dioxide emissions in continuous corn cropping system from an alfisol in Ohio[J].Soil Tillage Research,2009,104:39-47.
[21] Liu E K,Chen B Q,Yan C R,et al.Seasonal changes and vertical distributions of soil organic carbon pools under conventional and no-till practices on Loess Plateau in China[J].Soil Science Society of America Journal,2015, 79:517-526.
[22] Yang X M,Drury C F,Wander M M,et al.Evaluating the effect of tillage on carbon sequestration using the minimum detectable difference concept1[J].Pedosphere,2008,18:421- 430.
[23] Hermle S,Anken T,Leifeld J,et al.The effect of the tillage system on soil organic carbon content under moist, cold-temperate conditions[J].Soil & Tillage Research,2008, 98:94-105.
[24] Deen B,Kataki P K.Carbon sequestration in a long-term versus conventional tillage experiment[J].Tillage Research, 2003,74(2): 143-150.
[25] Gregorich E G,Rochette P,Vandenbygaart A J,et al.Greenhouse gas contributions of agricultural soils and potential mitigation practices in Eastern Canada[J].Soil & Tillage Research,2005,83:53-72.
[26] Dolan M S,Clapp C E,Allmaras R R,et al.Soil organic carbon and nitrogen in a Minnesota soil as related to tillage,residue and nitrogen management[J].Soil and Tillage Research,2006,89:221-231.
[27] Blanco-Canqui H,Lal R.No-tillage and soil-profile carbon sequestration:an on-farm assessment[J].Soil Science Society of America Journal,2008,72:693-701.
[28] Fontaine S,Barot S,Barré P,et al.Stability of organic carbon in deep soil layers controlled by fresh carbon supply[J]. Nature,2007,450:277-280.
[29] Wang J Z,Wang X J,Xu M G,et al.Crop yield and soil organic matter after long-term straw return to soil in China[J].Nutr Cycl Agroecosys.,2015,102:371-381.
[30] 楊釗,尚建明,陳玉梁.長期秸稈還田對土壤理化特性及微生物數(shù)量的影響[J].甘肅農(nóng)業(yè)科技,2019(1):13-20.
Yang Z,Shang J M,Chen Y L.Effects of long-term straw return on soil physical and chemical characteristics and microbial quantity[J].Gansu Agricultural Science and Technology,2019(1):13-20.(in Chinese)
[31] Marland G,Garten C T,Post W M,et al.Studies on enhancing carbon sequestration in soils[J].Energy,2004, 29:1643-1650.
[32] Zhang B,Yao S H,Hu F.Microbial biomass dynamics and soil wettability as affected by the intensity and frequency of wetting and drying during straw decomposition[J]. European Journal of Soil Science,2010,58:1482-1492.
[33] Pandey C B,Chaudhari S K,Dagar J C,et al.Soil N mineralization and microbial biomass carbon affected by different tillage levels in a hot humid tropic[J].Soil & Tillage Research,2010,110:33-41.
[34] 陳智,蔣先軍,羅紅燕,等.土壤微生物生物量在團聚體中的分布以及耕作影響[J].生態(tài)學報,2008,28(12):5964- 5969.
Chen Z,Jiang X J,Luo H Y,et al.Distribution of soil microbial biomass within soil water -stable aggregates and the effects of tillage[J].Acta Ecologica Sinica,2008,28(12): 5964-5969.(in Chinese)
[35] 任景全,王連喜,陳書濤,等.免耕與翻耕條件下農(nóng)田土壤呼吸的比較[J].中國農(nóng)業(yè)氣象,2012, 33(3):388-393.
Ren J Q,Wang L X,Chen S T,et al.Comparison of soil respiration from farmlands under no tillage and tillage regimes[J].Chinese Journal of Agrometeorology,2012,33(3): 388-393.(in Chinese)
[36] 蘇麗麗,徐文修,李亞杰,等.耕作方式對干旱綠洲滴灌復播大豆農(nóng)田土壤有機碳的影響[J].農(nóng)業(yè)工程學報,2016, 32(4):150-156.
Su L L,Xu W X,Li Y J,et al.Effects of different tillage methods on soil organic carbon in soybean soil of drip irrigation in arid oasis[J].Transactions of the Chinese Society of Agricultural Engineering,2016,32(4):150-156. (in Chinese)
[37] Franchini J C,Crispino C C,Souza R A,et al. Microbiological parameters as indicators of soil quality under various soil management and crop rotation systems in southern[J].Brazil Soil Tillage Research,2016,92:18-29.
[38] Hungria M,Franchini J C,Brand?O-Junior O,et al.Soil microbial activity and crop sustainability in a long-term experiment with three soil-tillage and two crop-rotation systems[J].Applied Soil Ecology,2009,42:288-296.
[39] Liang B,Yang X Y,He X H,et al.Effects of 17-year fertilization on soil microbial biomass C and N and soluble organic C and N in loessial soil during maize growth[J]. Biology and Fertility of Soils,2011,47:121-128.
[40] Jiang P,Xu Q,Xu Z,et al.Seasonal changes in soil labile organic carbon pools within a phyllostachys praecox stand under high rate fertilization and winter mulch in subtropical China[J].Forest Ecol Manag,2006,236:30-36.
[41] Yoo G,Wander M M.Tillage effects on aggregate turnover and sequestration of particulate and humified soil organic carbon[J].Soil Science Society of America Journal,2008, 72:670-676.
[42] 陶曉,樊偉,楊春,等.城市不同森林土壤溶解性有機碳和微生物生物量碳特征[J].生態(tài)學雜志,2016,35(12):3191- 3196.
Tao X,Fan W,Yang C,et al.Characteristics of soil dissolved organic carbon and microbial biomass carbon in different urban forest communities[J].Chinese Journal of Ecology, 2016,35(12):3191-3196.(in Chinese)
[43] 劉帥,陳玥希,孫輝,等.西南亞高山-高山海拔梯度上森林土壤水溶性有機碳時間動態(tài)[J].西北林學院學報,2015, 30(1):33-38.
Liu S,Chen Y X,Sun H,et al.Temporal dynamics of DOC in forest soil along an elevational gradient of subalpine-alpine in the Southwestern China[J].Journal of Northwest Forestry University,2015,30(1):33-38.(in Chinese)
[44] 陳佳俐,鐘羨芳,劉煒杰,等.福州江濱公園不同植被類型土壤可溶性有機碳含量的季節(jié)動態(tài)[J].亞熱帶資源與環(huán)境學報,2016,11(3):88-94.
Chen J L,Zhong X F,Liu W J,et al.Seasonal dynamics of soil dissolved organic carbon content of urban park vegetations in Fuzhou[J].Journal of Subtropical Resources and Environment,2016,11(3):88-94.(in Chinese)
[45] Wood S A.Leveraging a new understanding of how belowground food webs stabilize soil organic matter to promote ecological intensification of agriculture(Chapter 4)[M]//Soil Carbon Stage. Elsevier,2018:117-136.
[46] 陳強,Yuriy S K,陳淵,等.少免耕土壤結(jié)構(gòu)與導水能力的季節(jié)變化及其水保效果[J].土壤學報,2014,51(1):11-21.
Chen Q,Yuriy S K,Chen Y,et al.Seasonal variations of soil structures and hydraulic conductivities and their effects on soil and water conservation under no-tillage and reduced tillage[J].Acta Pedologica Sinica,2014,51(1):11-21.(in Chinese)
[47] 楊永輝,武繼承,張潔梅,等.耕作方式對土壤水分入滲、有機碳含量及土壤結(jié)構(gòu)的影響[J].中國生態(tài)農(nóng)業(yè)學報,2017, 25(2):258-266.
Yang Y H,Wu J C,Zhang J M,et al.Effect of tillage method on soil water infiltration, organic carbon content and structure[J].Chinese Journal of Eco-Agriculture,2017,25(2): 258-266.(in Chinese)
[48] 高建華,張承中.不同保護性耕作措施對黃土高原旱作農(nóng)田土壤物理結(jié)構(gòu)的影響[J].干旱地區(qū)農(nóng)業(yè)研究,2010, 28(4):192-196.
Gao J H,Zhang C Z.The effects of different conservation tillage on soil physical structures of dry farmland in the Loess Plateau[J].Agricultural Research in the Arid Areas,2010,28(4):192-196.(in Chinese)
[49] 李玉梅,王根林,孟祥海,等.秸稈還田方式對旱地草甸土活性有機碳組分的影響[J/OL].農(nóng)業(yè)資源與環(huán)境學報,2020. https://doi.org/10.13254/j.jare.2020.0154.
Li Y M,Wang G L,Meng X H,et al.Effects on labile organic carbon distribution under different straw returning methods in dryland meadow soil[J/OL].Journal of Agricultural Resources and Environment,2020.https://doi.org/10.13254/j.jare.2020.0154.
Effects of Long-Term No-Tillage on Soil Organic Carbon Contents of Winter Wheat in Different Soil Layers and Growth Period
BAI Chong-jiu1, WANG Jian-bo2, DONG Wen-yi1, LIU Xiu1, LIU En-ke1
(1. Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; 2.Yanqing District Bureau of Agriculture and Rural Affairs of Beijing Municipality, Beijing 100142)
Based on a 21-year long-term no-tillage and straw-returning test, aimed to analyze the effects of long-term no-tillage and straw-returning on soil SOC(Soil organic carbon) and its components in the surface and subsoil(0?60cm) in the winter wheat growing period. This long-term fixed experiment started in 1992,included straw-returning under no-tillage(NT) and conventional tillage(CT), two field management methods. The chemical fertilizer was applied to the two treatment are same. After 20-year later, soil samples in different layers and wheat growth period were collected. Soil organic carbon(SOC), soil microbial biomass carbon(MBC), and soil particulate organic carbon(POC) were measured, soil soluble carbon(DOC) content in different soil layers and growth period. Compared with CT, NT significantly changed the distribution of MBC, POC, and DOC of 0?30cm soil layer in the five growth stages before sowing, before winter, jointing, anthesis, and maturity. Furthermore, NT significantly improved their soil contents in the five stages(P<0.05), specifically, in comparison, MBC, POC, and DOC in the five growth stages increased averagely by 60.8%?161.4%, 71.8%?141.1%, and 21.9%?104.4%, respectively. Besides, there is a great influence on SOC content in the 0?20cm soil layer by applying no-tillage and straw-returning; the average SOC content of 0?5cm and 5?10cm soil increased 81.2% and 52.9%, respectively. However, this similar influence did not appear in the 5-growth period. In the layer of 0?60cm, the contents of SOC, MBC, POC, and DOC under two tillage methods all showed a downward trend with soil depth growth. The organic carbon content of surface soil(0?20cm) and the level of active organic carbon(MBC, POC, DOC) in the wheat-growing time were significantly improved after applying no-tillage and straw-returning. This study showed that long-term no-tillage could raise the soil organic carbon content and active organic carbon level during the wheat growing season, which provides a theoretical basis for the efficient storage of organic carbon in dryland soil.
Soil organic carbon; Soil labile organic carbon; No-tillage straw returning; Winter wheat; Dryland in the North
10.3969/j.issn.1000-6362.2021.03.001
白重九,王健波,董雯怡,等.長期免耕旱作對冬小麥生長季土壤剖面有機碳含量的影響[J].中國農(nóng)業(yè)氣象,2021,42(3):169-180
2020?09?18
國家自然科學基金國際(地區(qū))合作與交流項目(31961143017);國家自然科學基金面上項目(31470556;31871575);國家自然科學基金青年基金項目(41601328);公益性行業(yè)(農(nóng)業(yè)) 科研專項項目(201503120);中國農(nóng)業(yè)科學院生物節(jié)水與旱作農(nóng)業(yè)創(chuàng)新團隊項目;中國農(nóng)業(yè)科學院農(nóng)業(yè)環(huán)境與可持續(xù)發(fā)展研究所中央級公益性科研院所基本科研業(yè)務(wù)費專項資金項目
劉恩科,研究員,研究方向為旱地農(nóng)業(yè),E-mail:liuenke@caas.cn
白重九,E-mail: 1208593325@qq.com