蔡婕 韓超南 孫寧寧 嚴格
摘 要:以太湖沉積物樣品和濃縮綠藻等為試材進行室內(nèi)柱培養(yǎng)實驗,研究綠藻消亡分解條件下上覆水pH、溶解氧(DO)、總磷(TP)、總?cè)芙鈶B(tài)磷(TDP)和活性磷酸鹽(PO3-4)等含量的動態(tài)變化。結(jié)果表明,厭氧培養(yǎng)下綠藻等死亡速率相比好氧培養(yǎng)更快,且藻體消亡過程中耗O2產(chǎn)CO2、釋放小分子有機酸作用使之上覆水DO、pH明顯下降?!翱瞻?好氧”組上覆水PO3-4、TDP含量在1~20 d內(nèi)明顯上升,說明好氧條件下沉積物仍會釋放部分磷進入上覆水;“加藻-好氧”組PO3-4含量在10~20 d內(nèi)才升高,主要因培養(yǎng)后期綠藻死亡分解釋放磷而引起;“加藻-厭氧”組PO3-4、TDP含量變化較小,可能與后期藻體殘渣、懸浮物質(zhì)吸附PO3-4作用有關(guān),后續(xù)需進一步深入探討。研究表明,綠藻分解能明顯降低水體DO、pH,且能釋放磷進入水體,但不同培養(yǎng)條件綠藻分解釋放磷的時期有一定差異。
關(guān)鍵詞:綠藻;藻體分解;上覆水;磷形態(tài);溶解氧
中圖分類號:X524 ? ?文獻標識碼:A ? 文章編號:1006-8023(2021)01-0028-04
Abstract:Sediment samples and concentrated green algae from Taihu Lake were used as experimental materials for indoor column culture. Under the influence of algae decomposition, the dynamic variations of pH, dissolved oxygen (DO), total phosphorus (TP), total dissolved phosphorus (TDP) and active phosphate (PO3-4) in overlying water were studied. The results showed that the death rate of green algae in anaerobic culture was faster than that in aerobic culture. The process of algal death gradually consumed oxygen, produced carbon dioxide and even released small molecular organic acids, which made the DO and pH in overlying water of “algal anaerobic” group decrease obviously. During the column culture period (1-20 d), the concentrations of PO3-4 and TDP in overlying water of “blank aerobic” group increased significantly, indicating that parts of sediment phosphorus were released into the overlying water under aerobic culture environment. Whereas PO3-4 concentrations in overlying water of “algae aerobic” group only increased within 10-20 d, which was mainly caused by phosphorus release from algae decomposition in the later stage of column culture. Relatively, PO3-4 and TDP concentrations in overlying water of “algal anaerobic” group in the 10-20 d changed little. These may be related to the adsorption of PO3-4 by algae residue and suspended matter in overlying water during the later stage of column culture, which needed further study. The study indicated that green decomposition could obviously reduce DO, pH in water and release phosphorus into water, but there were some differences in the period of phosphorus release under different culture conditions.
Keywords:Green algae; algae decomposition; overlying water; phosphorus forms; dissolved oxygen
0 引言
磷是水體不可或缺的限制性營養(yǎng)元素,對于水環(huán)境中各類能量循環(huán)有著重要作用。當(dāng)水環(huán)境中含磷量過多時,水體容易趨于富營養(yǎng)化,藻類吸收氮、磷營養(yǎng)鹽而過量繁殖,形成大面積的水華,引起水質(zhì)惡化而威脅飲用水供水安全[1]。水華消退時期,大量藻類死亡分解會釋放氮、磷等物質(zhì)進入水體[2],同時也將驅(qū)動沉積物與水體間磷、鐵等元素遷移轉(zhuǎn)化[3],從而破壞了水體原本的生態(tài)系統(tǒng)平衡。因此,水華暴發(fā)過程和消亡過程直接影響或參與水環(huán)境中磷循環(huán)。
近年來水華生消對水體磷循環(huán)的影響已逐漸成為當(dāng)前研究的熱點。研究表明,藍藻水華消亡分解不僅可以直接釋放磷營養(yǎng)物質(zhì),而且可以通過產(chǎn)出硫化物來間接促進沉積物鐵結(jié)合態(tài)磷的還原釋放[4]。實際上除湖泊藍藻水華之外,綠藻、裸藻和隱藻等水華在淡水養(yǎng)殖的池塘中常有發(fā)生,對養(yǎng)殖生產(chǎn)造成較大的損失[5]。目前針對藍藻水華生消過程引起的生態(tài)效應(yīng)研究較多[6-7],而對綠藻、裸藻和小球藻等藻體死亡分解對水環(huán)境的影響研究鮮有報道。本研究通過室內(nèi)柱培養(yǎng)實驗,研究混合藻體(綠藻、裸藻、柵藻)消亡過程中水體多種磷形態(tài)含量的動態(tài)變化,以探討綠藻等藻體分解對沉積物-水環(huán)境中磷遷移轉(zhuǎn)化的影響,為水產(chǎn)養(yǎng)殖池塘水華防控提供科學(xué)依據(jù)。
1 實驗設(shè)計和測定
采用有機玻璃圓柱(高50 cm、直徑9 cm),在實驗室搭建“藻-水-沉積物柱培養(yǎng)體系”。實驗所用沉積物材料取自太湖湖底,去除雜質(zhì)后充分混合備用。購置綠藻、柵藻和裸藻的混合藻種,經(jīng)離心濃縮后作為藻體材料。柱體下部裝入厚約12 cm沉積物層,上部注入高約18 cm去離子水,裝好12根后靜置平衡2周(圖1)。實驗共設(shè)置“空白-好氧” “加藻-好氧” “加藻-厭氧”3組培養(yǎng)條件(每組4根柱子),3組柱體中分別加入濃縮藻體0、2.5、5 mL,前兩組上部敞口好氧培養(yǎng),后一組上部封蓋厭氧培養(yǎng),培養(yǎng)20 d。
分別于第1、5、10、20 d,采用多參數(shù)水質(zhì)分析儀測定3組上覆水的pH、溶解氧(DO)和水溫,同時吸取部分上覆水樣備用待測。取一定體積的上覆水經(jīng)0.45 μm濾膜過濾,過濾水樣、原水樣采用“過硫酸鉀消解+鉬銻抗分光光度法”[8]分別測定總?cè)芙鈶B(tài)磷(TDP)、總磷(TP)含量;過濾水樣采用“鉬銻抗分光光度法”[8]測定磷酸鹽(PO3-4)含量;過濾后的濾膜經(jīng)90%丙酮溶液提取后采用分光光度法[9]測定葉綠素a(Chla)含量。將水體TP與TDP含量差值作為水體總顆粒態(tài)磷(TPP)含量。
2 結(jié)果與討論
2.1 上覆水水質(zhì)參數(shù)的變化特征
柱培養(yǎng)期間,上覆水Chla、DO和pH的變化情況如圖2所示。從藻體投加至第20 d,兩個加藻組上覆水Chla含量均逐漸降低至0 mg/L,其中厭氧培養(yǎng)下的“加藻-厭氧”組藻體在1~10 d內(nèi)的死亡速率大于“加藻-好氧”組。隨著氣溫的降低,柱培養(yǎng)體系中上覆水的水溫逐漸從19 ℃降至7.6 ℃。由于水溫降低,大氣中O2向水體滲透增加,從而“空白-好氧” “加藻-好氧”組上覆水DO含量在1~20 d緩慢升高至7.8 mg/L?!凹釉?厭氧”組上覆水DO含量在1~10 d內(nèi)從4.4 mg/L降至2.9 mg/L。1~10 d內(nèi)“加藻-厭氧” 組藻體迅速死亡,呼吸作用會消耗水體O2,這應(yīng)該是造成該組上覆水DO降低的原因。
從pH變化來看,“加藻-厭氧”組的加藻量最多,培養(yǎng)初期(1~5 d)其上覆水pH大于“加藻-好氧” “空白-好氧”組,但培養(yǎng)后期(10~20 d)其上覆水pH卻小于“加藻-好氧” “空白-好氧”組。培養(yǎng)后期,藻體消亡過程中不僅會消耗水體O2產(chǎn)生CO2[10],而且還會分解釋放小分子有機酸類物質(zhì)[11],從而使得“加藻-厭氧”組柱體系上覆水pH明顯下降。
2.2 上覆水磷形態(tài)的變化特征
柱培養(yǎng)期間,上覆水磷形態(tài)含量的變化情況如圖3所示。培養(yǎng)期間上覆水TP含量由大到小依次為:“加藻-厭氧”(0.15~0.23 mg/L)、“加藻-好氧”(0.09~0.12 mg/L)、“空白-好氧”(0.03~0.08 mg/L),而上覆水TDP、PO3-4含量分布與TP相反。3組柱體系上覆水磷形態(tài)組成差異較大,“空白-好氧”組上覆水以TDP為主要磷形態(tài),TDP占TP含量組成的50%~100%。然而,“加藻-厭氧”和“加藻-好氧”組上覆水以TPP為主要磷形態(tài),TPP占TP含量組成的86%~97%和52%~92%。對比來看,藻體投加是引起“加藻-厭氧” “加藻-好氧”組上覆水TPP及TP含量較高的主要原因。
“空白-好氧”組上覆水TP含量在1~20 d內(nèi)呈緩慢上升特征,主要由其TDP、PO3-4含量升高所引起。這說明,好氧環(huán)境下,柱體系中沉積物仍然釋放了部分磷進入上覆水。對于“加藻-好氧”組上覆水TP含量在1~20 d變化不大,TDP含量波動上升,PO3-4含量則先下降后上升。培養(yǎng)初期(1~10 d),投加的綠藻等藻體需要吸收PO3-4以維持自身生存[12],從而造成“加藻-好氧”組上覆水PO3-4含量下降;在培養(yǎng)后期(10~20 d),約90%的投加藻體已消亡,除了沉積物釋放磷之外,藻體分解過程會釋放部分PO3-4和TDP[13-15],從而造成“加藻-好氧”組PO3-4含量又升高。
“加藻-厭氧”組上覆水TP含量在1~20 d內(nèi)呈下降特征,主要是由藻體消亡沉降引起TPP含量降低而造成的?!凹釉?厭氧”組投加藻量是“加藻-好氧”組的2倍,但在培養(yǎng)后期藻體消亡分解并沒有導(dǎo)致“加藻-厭氧”組TDP、PO3-4含量明顯升高,原因可能是藻體殘渣、懸浮物質(zhì)對上覆水PO3-4的吸附作用所引起[16-20],具體還需要后續(xù)進一步深入研究。
3 結(jié)論
(1)厭氧培養(yǎng)下,投加綠藻等在1~10 d內(nèi)的死亡速率大于好氧培養(yǎng)組,且藻體消亡過程中呼吸耗O2產(chǎn)CO2、釋放小分子有機酸作用導(dǎo)致上覆水DO含量、pH明顯下降。
(2)1~20 d內(nèi)“空白-好氧”組上覆水PO3-4、TDP含量呈明顯上升特征,說明好氧環(huán)境中沉積物仍釋放了部分磷進入上覆水。
(3)培養(yǎng)初期(1~10 d)綠藻等吸收PO3-4維持生存導(dǎo)致“加藻-好氧”組上覆水PO3-4含量下降,后期(10~20 d)PO3-4、TDP含量又上升,主要由綠藻等消亡分解釋放磷所致。
(4)培養(yǎng)后期(10~20 d)藻體分解釋磷作用下,“加藻-厭氧”組上覆水PO3-4、TDP含量并未明顯升高,可能與藻體殘渣、懸浮物質(zhì)吸附PO3-4作用有關(guān)。
【參 考 文 獻】
[1]吳慶龍,謝平,楊柳燕,等.湖泊藍藻水華生態(tài)災(zāi)害形成機理及防治的基礎(chǔ)研究[J].地球科學(xué)進展,2008,23(11):1115-1123.
WU Q L, XIE P, YANG L Y, et al. Ecological consequences of cyanobacetrial blooms in lakes and their countermeasures[J]. Advances in Earth Science, 2008, 23(11): 1115-1123.
[2]GARCI A-ROBLEDO E, CORZO A. Effects of macroalgal blooms on carbon and nitrogen biogeochemical cycling in photoautotrophic sediments: an experimental mesocosm[J]. Marine Pollution Bulletin, 2011, 62(7): 1550-1556.
[3]CHEN M S, DING S M, CHEN X, et al. Mechanisms driving phosphorus release during algal blooms based on hourly changes in iron and phosphorus concentrations in sediments[J]. Water Research, 2018, 133: 153-164.
[4]ZHAO Y P, ZHANG Z Q, WANG G X, et al. High sulfide production induced by algae decomposition and its potential stimulation to phosphorus mobility in sediment[J]. Science of the Total Environment, 2019, 650: 163-172.
[5]劉國祥.水產(chǎn)養(yǎng)殖池塘裸藻水華的特點、危害和調(diào)控[J].中國水產(chǎn),2009,51(2):59-60.
LIU G X. Characteristics, harm and control of gymnophyta bloom in aquaculture ponds [J]. China Fisheries, 2009, 51(2): 59-60.
[6]劉德富,楊正健,紀道斌,等.三峽水庫支流水華機理及其調(diào)控技術(shù)研究進展[J].水利學(xué)報,2016,47(3):443-454.
LIU D F, YANG Z J, JI D B, et al. A review on the mechanism and its controlling methods of the algal blooms in the tributaries of Three Gorges Reservoir[J]. Journal of Hydraulic Engineering, 2016, 47(3): 443-454.
[7]DING S M, CHEN M S, GONG M D, et al. Internal phosphorus loading from sediments causes seasonal nitrogen limitation for harmful algal blooms[J]. Science of the Total Environment, 2018, 625: 872-884.
[8]魏復(fù)盛.國家環(huán)境保護總局,水和廢水監(jiān)測分析方法編委會.水和廢水監(jiān)測分析方法[M].4版.北京:中國環(huán)境科學(xué)出版社,2002.
WEI F S, National Environmental Protection Agency, Editorial Board of Water and Wastewater Monitoring and Analysis Methods. Monitoring and analysis methods for water and wastewater[M]. 4th ed. Beijing: China Environment Science Press, 2002.
[9]中華人民共和國生態(tài)環(huán)境部.水質(zhì)葉綠素a的測定分光光度法HJ897—2017[S].北京:中國環(huán)境出版社,2017.
Ministry of Environmental Protection of the Peoples Republic of China. Water quality-determination of chlorophyll a -spectrophotometric method HJ 897-2017[S]. Beijing: China Environment Press, 2017.
[10]朱瑾燦,吳雨琛,尹洪斌.太湖藍藻聚集區(qū)沉積物硫形態(tài)的時空變異特征[J].中國環(huán)境科學(xué),2017,37(12):4690-4700.
ZHU J C, WU Y C, YIN H B. Temporal and spatial variations of sulfur speciations in the sediments of algae accumulation area in Lake Taihu[J]. China Environmental Science, 2017, 37(12): 4690-4700.
[11]FENG Z Y, FAN C X, HUANG W Y, et al. Microorganisms and typical organic matter responsible for lacustrine “black bloom”[J]. Science of the Total Environment, 2014, 470/471: 1-8.
[12]侯金枝,魏權(quán),高麗,等.剛毛藻分解對上覆水磷含量及賦存形態(tài)的影響[J].環(huán)境科學(xué),2013,34(6):2184-2190.
HOU J Z, WEI Q, GAO L, et al. Influence of decomposition of Cladophora sp. on phosphorus concentrations and forms in the overlying water[J]. Environmental Science, 2013, 34(6): 2184-2190.
[13]孫遠軍.淀山湖藍藻碎屑的好氧降解和營養(yǎng)鹽釋放規(guī)律研究[J].中國環(huán)境科學(xué),2013,33(11):2047-2052.
SUN Y J. Study on the aerobic decomposition and nutrient release of cyanobacteria detritus in Dianshan Lake[J]. China Environmental Science, 2013, 33(11): 2047-2052.
[14]CHUAI X M, DING W, CHEN X F, et al. Phosphorus release from cyanobacterial blooms in Meiliang Bay of Lake Taihu, China[J]. Ecological Engineering, 2011, 37(6): 842-849.
[15]孫寧寧,陳蕾.湖泊沉積物磷釋放的影響因素研究進展[J].應(yīng)用化工,2020,49(3):715-718.
SUN N N, CHEN L. Research progress on the influence factors of sediment phosphorus release in lake[J]. Applied Chemical Industry, 2020, 49(3): 715-718.
[16]陳俊,李勇,李大鵬,等.藻類與擾動共存下水體中不同形態(tài)磷的數(shù)量分布規(guī)律[J].環(huán)境科學(xué),2016,37(4):1413-1421.
CHEN J, LI Y, LI D P, et al. Distribution of phosphorus forms in the overlying water under disturbance with the addition of algae[J]. Chinese Journal of Environmental Science, 2016, 37(4): 1413-1421.
[17]丁麗花,顧艷,羅康寧,等.洪澤湖淮河入湖河口區(qū)群落間營養(yǎng)元素分布特征[J].南京林業(yè)大學(xué)學(xué)報(自然科學(xué)版),2020,44(3):111-118.
DING L H,GU Y,LUO K N,et al.The allocation of nutrient elements among plant communities in estuary of Huaihe River in Hongze Lake[J].Journal of Nanjing Forestry University(Natural Science Edition),2020,44(3):111-118.
[18]GAO Y, LIANG T, TIAN S H, et al. High-resolution imaging of labile phosphorus and its relationship with iron redox state in lake sediments[J]. Environmental Pollution, 2016, 219: 466-474.
[19]趙香香,韓超南,吳昊,等.藻體分解對沉積物-水中硫遷移轉(zhuǎn)化的影響[J].森林工程,2020,36(6):36-41.
ZHAO X X, HAN C N, WU H, et al. Influence of algal decomposition on the migration and transformation of sulfides in overlying water and sediment[J]. Forest Engineering, 2020, 36(6): 36-41.
[20]黃曉江,王鄭,李子木,等.煤質(zhì)活性炭對水中硼離子的吸附性能研究[J].森林工程,2019,35(1):101-105.
HUANG X J, WANG Z, LI Z M, et al. Adsorption properties of coal activated carbon for boron ion in water[J]. Forest Engineering, 2019, 35(1): 101-105.